Merge tag 'safesetid-5.10' of git://github.com/micah-morton/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_bw.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5
6 #include <drm/drm_atomic_state_helper.h>
7
8 #include "intel_atomic.h"
9 #include "intel_bw.h"
10 #include "intel_cdclk.h"
11 #include "intel_display_types.h"
12 #include "intel_pm.h"
13 #include "intel_sideband.h"
14
15 /* Parameters for Qclk Geyserville (QGV) */
16 struct intel_qgv_point {
17         u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
18 };
19
20 struct intel_qgv_info {
21         struct intel_qgv_point points[I915_NUM_QGV_POINTS];
22         u8 num_points;
23         u8 num_channels;
24         u8 t_bl;
25         enum intel_dram_type dram_type;
26 };
27
28 static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv,
29                                           struct intel_qgv_info *qi)
30 {
31         u32 val = 0;
32         int ret;
33
34         ret = sandybridge_pcode_read(dev_priv,
35                                      ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
36                                      ICL_PCODE_MEM_SS_READ_GLOBAL_INFO,
37                                      &val, NULL);
38         if (ret)
39                 return ret;
40
41         if (IS_GEN(dev_priv, 12)) {
42                 switch (val & 0xf) {
43                 case 0:
44                         qi->dram_type = INTEL_DRAM_DDR4;
45                         break;
46                 case 3:
47                         qi->dram_type = INTEL_DRAM_LPDDR4;
48                         break;
49                 case 4:
50                         qi->dram_type = INTEL_DRAM_DDR3;
51                         break;
52                 case 5:
53                         qi->dram_type = INTEL_DRAM_LPDDR3;
54                         break;
55                 default:
56                         MISSING_CASE(val & 0xf);
57                         break;
58                 }
59         } else if (IS_GEN(dev_priv, 11)) {
60                 switch (val & 0xf) {
61                 case 0:
62                         qi->dram_type = INTEL_DRAM_DDR4;
63                         break;
64                 case 1:
65                         qi->dram_type = INTEL_DRAM_DDR3;
66                         break;
67                 case 2:
68                         qi->dram_type = INTEL_DRAM_LPDDR3;
69                         break;
70                 case 3:
71                         qi->dram_type = INTEL_DRAM_LPDDR4;
72                         break;
73                 default:
74                         MISSING_CASE(val & 0xf);
75                         break;
76                 }
77         } else {
78                 MISSING_CASE(INTEL_GEN(dev_priv));
79                 qi->dram_type = INTEL_DRAM_LPDDR3; /* Conservative default */
80         }
81
82         qi->num_channels = (val & 0xf0) >> 4;
83         qi->num_points = (val & 0xf00) >> 8;
84
85         if (IS_GEN(dev_priv, 12))
86                 qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 16;
87         else if (IS_GEN(dev_priv, 11))
88                 qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 8;
89
90         return 0;
91 }
92
93 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
94                                          struct intel_qgv_point *sp,
95                                          int point)
96 {
97         u32 val = 0, val2 = 0;
98         int ret;
99
100         ret = sandybridge_pcode_read(dev_priv,
101                                      ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
102                                      ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
103                                      &val, &val2);
104         if (ret)
105                 return ret;
106
107         sp->dclk = val & 0xffff;
108         sp->t_rp = (val & 0xff0000) >> 16;
109         sp->t_rcd = (val & 0xff000000) >> 24;
110
111         sp->t_rdpre = val2 & 0xff;
112         sp->t_ras = (val2 & 0xff00) >> 8;
113
114         sp->t_rc = sp->t_rp + sp->t_ras;
115
116         return 0;
117 }
118
119 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
120                                   u32 points_mask)
121 {
122         int ret;
123
124         /* bspec says to keep retrying for at least 1 ms */
125         ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
126                                 points_mask,
127                                 ICL_PCODE_POINTS_RESTRICTED_MASK,
128                                 ICL_PCODE_POINTS_RESTRICTED,
129                                 1);
130
131         if (ret < 0) {
132                 drm_err(&dev_priv->drm, "Failed to disable qgv points (%d)\n", ret);
133                 return ret;
134         }
135
136         return 0;
137 }
138
139 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
140                               struct intel_qgv_info *qi)
141 {
142         int i, ret;
143
144         ret = icl_pcode_read_mem_global_info(dev_priv, qi);
145         if (ret)
146                 return ret;
147
148         if (drm_WARN_ON(&dev_priv->drm,
149                         qi->num_points > ARRAY_SIZE(qi->points)))
150                 qi->num_points = ARRAY_SIZE(qi->points);
151
152         for (i = 0; i < qi->num_points; i++) {
153                 struct intel_qgv_point *sp = &qi->points[i];
154
155                 ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
156                 if (ret)
157                         return ret;
158
159                 drm_dbg_kms(&dev_priv->drm,
160                             "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
161                             i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
162                             sp->t_rcd, sp->t_rc);
163         }
164
165         return 0;
166 }
167
168 static int icl_calc_bw(int dclk, int num, int den)
169 {
170         /* multiples of 16.666MHz (100/6) */
171         return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
172 }
173
174 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
175 {
176         u16 dclk = 0;
177         int i;
178
179         for (i = 0; i < qi->num_points; i++)
180                 dclk = max(dclk, qi->points[i].dclk);
181
182         return dclk;
183 }
184
185 struct intel_sa_info {
186         u16 displayrtids;
187         u8 deburst, deprogbwlimit;
188 };
189
190 static const struct intel_sa_info icl_sa_info = {
191         .deburst = 8,
192         .deprogbwlimit = 25, /* GB/s */
193         .displayrtids = 128,
194 };
195
196 static const struct intel_sa_info tgl_sa_info = {
197         .deburst = 16,
198         .deprogbwlimit = 34, /* GB/s */
199         .displayrtids = 256,
200 };
201
202 static const struct intel_sa_info rkl_sa_info = {
203         .deburst = 16,
204         .deprogbwlimit = 20, /* GB/s */
205         .displayrtids = 128,
206 };
207
208 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
209 {
210         struct intel_qgv_info qi = {};
211         bool is_y_tile = true; /* assume y tile may be used */
212         int num_channels;
213         int deinterleave;
214         int ipqdepth, ipqdepthpch;
215         int dclk_max;
216         int maxdebw;
217         int i, ret;
218
219         ret = icl_get_qgv_points(dev_priv, &qi);
220         if (ret) {
221                 drm_dbg_kms(&dev_priv->drm,
222                             "Failed to get memory subsystem information, ignoring bandwidth limits");
223                 return ret;
224         }
225         num_channels = qi.num_channels;
226
227         deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
228         dclk_max = icl_sagv_max_dclk(&qi);
229
230         ipqdepthpch = 16;
231
232         maxdebw = min(sa->deprogbwlimit * 1000,
233                       icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
234         ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
235
236         for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
237                 struct intel_bw_info *bi = &dev_priv->max_bw[i];
238                 int clpchgroup;
239                 int j;
240
241                 clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
242                 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
243
244                 bi->num_qgv_points = qi.num_points;
245
246                 for (j = 0; j < qi.num_points; j++) {
247                         const struct intel_qgv_point *sp = &qi.points[j];
248                         int ct, bw;
249
250                         /*
251                          * Max row cycle time
252                          *
253                          * FIXME what is the logic behind the
254                          * assumed burst length?
255                          */
256                         ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
257                                    (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
258                         bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
259
260                         bi->deratedbw[j] = min(maxdebw,
261                                                bw * 9 / 10); /* 90% */
262
263                         drm_dbg_kms(&dev_priv->drm,
264                                     "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
265                                     i, j, bi->num_planes, bi->deratedbw[j]);
266                 }
267
268                 if (bi->num_planes == 1)
269                         break;
270         }
271
272         /*
273          * In case if SAGV is disabled in BIOS, we always get 1
274          * SAGV point, but we can't send PCode commands to restrict it
275          * as it will fail and pointless anyway.
276          */
277         if (qi.num_points == 1)
278                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
279         else
280                 dev_priv->sagv_status = I915_SAGV_ENABLED;
281
282         return 0;
283 }
284
285 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
286                                int num_planes, int qgv_point)
287 {
288         int i;
289
290         /*
291          * Let's return max bw for 0 planes
292          */
293         num_planes = max(1, num_planes);
294
295         for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
296                 const struct intel_bw_info *bi =
297                         &dev_priv->max_bw[i];
298
299                 /*
300                  * Pcode will not expose all QGV points when
301                  * SAGV is forced to off/min/med/max.
302                  */
303                 if (qgv_point >= bi->num_qgv_points)
304                         return UINT_MAX;
305
306                 if (num_planes >= bi->num_planes)
307                         return bi->deratedbw[qgv_point];
308         }
309
310         return 0;
311 }
312
313 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
314 {
315         if (!HAS_DISPLAY(dev_priv))
316                 return;
317
318         if (IS_ROCKETLAKE(dev_priv))
319                 icl_get_bw_info(dev_priv, &rkl_sa_info);
320         else if (IS_GEN(dev_priv, 12))
321                 icl_get_bw_info(dev_priv, &tgl_sa_info);
322         else if (IS_GEN(dev_priv, 11))
323                 icl_get_bw_info(dev_priv, &icl_sa_info);
324 }
325
326 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
327 {
328         /*
329          * We assume cursors are small enough
330          * to not not cause bandwidth problems.
331          */
332         return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
333 }
334
335 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
336 {
337         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
338         unsigned int data_rate = 0;
339         enum plane_id plane_id;
340
341         for_each_plane_id_on_crtc(crtc, plane_id) {
342                 /*
343                  * We assume cursors are small enough
344                  * to not not cause bandwidth problems.
345                  */
346                 if (plane_id == PLANE_CURSOR)
347                         continue;
348
349                 data_rate += crtc_state->data_rate[plane_id];
350         }
351
352         return data_rate;
353 }
354
355 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
356                           const struct intel_crtc_state *crtc_state)
357 {
358         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
359         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
360
361         bw_state->data_rate[crtc->pipe] =
362                 intel_bw_crtc_data_rate(crtc_state);
363         bw_state->num_active_planes[crtc->pipe] =
364                 intel_bw_crtc_num_active_planes(crtc_state);
365
366         drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
367                     pipe_name(crtc->pipe),
368                     bw_state->data_rate[crtc->pipe],
369                     bw_state->num_active_planes[crtc->pipe]);
370 }
371
372 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
373                                                const struct intel_bw_state *bw_state)
374 {
375         unsigned int num_active_planes = 0;
376         enum pipe pipe;
377
378         for_each_pipe(dev_priv, pipe)
379                 num_active_planes += bw_state->num_active_planes[pipe];
380
381         return num_active_planes;
382 }
383
384 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
385                                        const struct intel_bw_state *bw_state)
386 {
387         unsigned int data_rate = 0;
388         enum pipe pipe;
389
390         for_each_pipe(dev_priv, pipe)
391                 data_rate += bw_state->data_rate[pipe];
392
393         return data_rate;
394 }
395
396 struct intel_bw_state *
397 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
398 {
399         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
400         struct intel_global_state *bw_state;
401
402         bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
403
404         return to_intel_bw_state(bw_state);
405 }
406
407 struct intel_bw_state *
408 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
409 {
410         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
411         struct intel_global_state *bw_state;
412
413         bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
414
415         return to_intel_bw_state(bw_state);
416 }
417
418 struct intel_bw_state *
419 intel_atomic_get_bw_state(struct intel_atomic_state *state)
420 {
421         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
422         struct intel_global_state *bw_state;
423
424         bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
425         if (IS_ERR(bw_state))
426                 return ERR_CAST(bw_state);
427
428         return to_intel_bw_state(bw_state);
429 }
430
431 int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
432 {
433         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
434         struct intel_bw_state *new_bw_state = NULL;
435         struct intel_bw_state *old_bw_state = NULL;
436         const struct intel_crtc_state *crtc_state;
437         struct intel_crtc *crtc;
438         int max_bw = 0;
439         int slice_id;
440         enum pipe pipe;
441         int i;
442
443         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
444                 enum plane_id plane_id;
445                 struct intel_dbuf_bw *crtc_bw;
446
447                 new_bw_state = intel_atomic_get_bw_state(state);
448                 if (IS_ERR(new_bw_state))
449                         return PTR_ERR(new_bw_state);
450
451                 old_bw_state = intel_atomic_get_old_bw_state(state);
452
453                 crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];
454
455                 memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));
456
457                 if (!crtc_state->hw.active)
458                         continue;
459
460                 for_each_plane_id_on_crtc(crtc, plane_id) {
461                         const struct skl_ddb_entry *plane_alloc =
462                                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
463                         const struct skl_ddb_entry *uv_plane_alloc =
464                                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
465                         unsigned int data_rate = crtc_state->data_rate[plane_id];
466                         unsigned int dbuf_mask = 0;
467
468                         dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
469                         dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);
470
471                         /*
472                          * FIXME: To calculate that more properly we probably
473                          * need to to split per plane data_rate into data_rate_y
474                          * and data_rate_uv for multiplanar formats in order not
475                          * to get accounted those twice if they happen to reside
476                          * on different slices.
477                          * However for pre-icl this would work anyway because
478                          * we have only single slice and for icl+ uv plane has
479                          * non-zero data rate.
480                          * So in worst case those calculation are a bit
481                          * pessimistic, which shouldn't pose any significant
482                          * problem anyway.
483                          */
484                         for_each_dbuf_slice_in_mask(slice_id, dbuf_mask)
485                                 crtc_bw->used_bw[slice_id] += data_rate;
486                 }
487         }
488
489         if (!old_bw_state)
490                 return 0;
491
492         for_each_pipe(dev_priv, pipe) {
493                 struct intel_dbuf_bw *crtc_bw;
494
495                 crtc_bw = &new_bw_state->dbuf_bw[pipe];
496
497                 for_each_dbuf_slice(slice_id) {
498                         /*
499                          * Current experimental observations show that contrary
500                          * to BSpec we get underruns once we exceed 64 * CDCLK
501                          * for slices in total.
502                          * As a temporary measure in order not to keep CDCLK
503                          * bumped up all the time we calculate CDCLK according
504                          * to this formula for  overall bw consumed by slices.
505                          */
506                         max_bw += crtc_bw->used_bw[slice_id];
507                 }
508         }
509
510         new_bw_state->min_cdclk = max_bw / 64;
511
512         if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
513                 int ret = intel_atomic_lock_global_state(&new_bw_state->base);
514
515                 if (ret)
516                         return ret;
517         }
518
519         return 0;
520 }
521
522 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
523 {
524         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
525         struct intel_bw_state *new_bw_state = NULL;
526         struct intel_bw_state *old_bw_state = NULL;
527         const struct intel_crtc_state *crtc_state;
528         struct intel_crtc *crtc;
529         int min_cdclk = 0;
530         enum pipe pipe;
531         int i;
532
533         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
534                 new_bw_state = intel_atomic_get_bw_state(state);
535                 if (IS_ERR(new_bw_state))
536                         return PTR_ERR(new_bw_state);
537
538                 old_bw_state = intel_atomic_get_old_bw_state(state);
539         }
540
541         if (!old_bw_state)
542                 return 0;
543
544         for_each_pipe(dev_priv, pipe) {
545                 struct intel_cdclk_state *cdclk_state;
546
547                 cdclk_state = intel_atomic_get_new_cdclk_state(state);
548                 if (!cdclk_state)
549                         return 0;
550
551                 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
552         }
553
554         new_bw_state->min_cdclk = min_cdclk;
555
556         if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
557                 int ret = intel_atomic_lock_global_state(&new_bw_state->base);
558
559                 if (ret)
560                         return ret;
561         }
562
563         return 0;
564 }
565
566 int intel_bw_atomic_check(struct intel_atomic_state *state)
567 {
568         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
569         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
570         struct intel_bw_state *new_bw_state = NULL;
571         const struct intel_bw_state *old_bw_state = NULL;
572         unsigned int data_rate;
573         unsigned int num_active_planes;
574         struct intel_crtc *crtc;
575         int i, ret;
576         u32 allowed_points = 0;
577         unsigned int max_bw_point = 0, max_bw = 0;
578         unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
579         u32 mask = (1 << num_qgv_points) - 1;
580
581         /* FIXME earlier gens need some checks too */
582         if (INTEL_GEN(dev_priv) < 11)
583                 return 0;
584
585         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
586                                             new_crtc_state, i) {
587                 unsigned int old_data_rate =
588                         intel_bw_crtc_data_rate(old_crtc_state);
589                 unsigned int new_data_rate =
590                         intel_bw_crtc_data_rate(new_crtc_state);
591                 unsigned int old_active_planes =
592                         intel_bw_crtc_num_active_planes(old_crtc_state);
593                 unsigned int new_active_planes =
594                         intel_bw_crtc_num_active_planes(new_crtc_state);
595
596                 /*
597                  * Avoid locking the bw state when
598                  * nothing significant has changed.
599                  */
600                 if (old_data_rate == new_data_rate &&
601                     old_active_planes == new_active_planes)
602                         continue;
603
604                 new_bw_state = intel_atomic_get_bw_state(state);
605                 if (IS_ERR(new_bw_state))
606                         return PTR_ERR(new_bw_state);
607
608                 new_bw_state->data_rate[crtc->pipe] = new_data_rate;
609                 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
610
611                 drm_dbg_kms(&dev_priv->drm,
612                             "pipe %c data rate %u num active planes %u\n",
613                             pipe_name(crtc->pipe),
614                             new_bw_state->data_rate[crtc->pipe],
615                             new_bw_state->num_active_planes[crtc->pipe]);
616         }
617
618         if (!new_bw_state)
619                 return 0;
620
621         ret = intel_atomic_lock_global_state(&new_bw_state->base);
622         if (ret)
623                 return ret;
624
625         data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
626         data_rate = DIV_ROUND_UP(data_rate, 1000);
627
628         num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
629
630         for (i = 0; i < num_qgv_points; i++) {
631                 unsigned int max_data_rate;
632
633                 max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
634                 /*
635                  * We need to know which qgv point gives us
636                  * maximum bandwidth in order to disable SAGV
637                  * if we find that we exceed SAGV block time
638                  * with watermarks. By that moment we already
639                  * have those, as it is calculated earlier in
640                  * intel_atomic_check,
641                  */
642                 if (max_data_rate > max_bw) {
643                         max_bw_point = i;
644                         max_bw = max_data_rate;
645                 }
646                 if (max_data_rate >= data_rate)
647                         allowed_points |= BIT(i);
648                 drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
649                             i, max_data_rate, data_rate);
650         }
651
652         /*
653          * BSpec states that we always should have at least one allowed point
654          * left, so if we couldn't - simply reject the configuration for obvious
655          * reasons.
656          */
657         if (allowed_points == 0) {
658                 drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
659                             " bandwidth %d for display configuration(%d active planes).\n",
660                             data_rate, num_active_planes);
661                 return -EINVAL;
662         }
663
664         /*
665          * Leave only single point with highest bandwidth, if
666          * we can't enable SAGV due to the increased memory latency it may
667          * cause.
668          */
669         if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
670                 allowed_points = BIT(max_bw_point);
671                 drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
672                             max_bw_point);
673         }
674         /*
675          * We store the ones which need to be masked as that is what PCode
676          * actually accepts as a parameter.
677          */
678         new_bw_state->qgv_points_mask = ~allowed_points & mask;
679
680         old_bw_state = intel_atomic_get_old_bw_state(state);
681         /*
682          * If the actual mask had changed we need to make sure that
683          * the commits are serialized(in case this is a nomodeset, nonblocking)
684          */
685         if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
686                 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
687                 if (ret)
688                         return ret;
689         }
690
691         return 0;
692 }
693
694 static struct intel_global_state *
695 intel_bw_duplicate_state(struct intel_global_obj *obj)
696 {
697         struct intel_bw_state *state;
698
699         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
700         if (!state)
701                 return NULL;
702
703         return &state->base;
704 }
705
706 static void intel_bw_destroy_state(struct intel_global_obj *obj,
707                                    struct intel_global_state *state)
708 {
709         kfree(state);
710 }
711
712 static const struct intel_global_state_funcs intel_bw_funcs = {
713         .atomic_duplicate_state = intel_bw_duplicate_state,
714         .atomic_destroy_state = intel_bw_destroy_state,
715 };
716
717 int intel_bw_init(struct drm_i915_private *dev_priv)
718 {
719         struct intel_bw_state *state;
720
721         state = kzalloc(sizeof(*state), GFP_KERNEL);
722         if (!state)
723                 return -ENOMEM;
724
725         intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
726                                      &state->base, &intel_bw_funcs);
727
728         return 0;
729 }