Merge tag 'zstd-linus-v6.2' of https://github.com/terrelln/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_edid.h>
29 #include <drm/display/drm_dp_helper.h>
30 #include <drm/display/drm_dsc_helper.h>
31
32 #include "display/intel_display.h"
33 #include "display/intel_display_types.h"
34 #include "display/intel_gmbus.h"
35
36 #include "i915_drv.h"
37 #include "i915_reg.h"
38
39 #define _INTEL_BIOS_PRIVATE
40 #include "intel_vbt_defs.h"
41
42 /**
43  * DOC: Video BIOS Table (VBT)
44  *
45  * The Video BIOS Table, or VBT, provides platform and board specific
46  * configuration information to the driver that is not discoverable or available
47  * through other means. The configuration is mostly related to display
48  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
49  * the PCI ROM.
50  *
51  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
52  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
53  * contain the actual configuration information. The VBT Header, and thus the
54  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
55  * BDB Header. The data blocks are concatenated after the BDB Header. The data
56  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
57  * data. (Block 53, the MIPI Sequence Block is an exception.)
58  *
59  * The driver parses the VBT during load. The relevant information is stored in
60  * driver private data for ease of use, and the actual VBT is not read after
61  * that.
62  */
63
64 /* Wrapper for VBT child device config */
65 struct intel_bios_encoder_data {
66         struct drm_i915_private *i915;
67
68         struct child_device_config child;
69         struct dsc_compression_parameters_entry *dsc;
70         struct list_head node;
71 };
72
73 #define SLAVE_ADDR1     0x70
74 #define SLAVE_ADDR2     0x72
75
76 /* Get BDB block size given a pointer to Block ID. */
77 static u32 _get_blocksize(const u8 *block_base)
78 {
79         /* The MIPI Sequence Block v3+ has a separate size field. */
80         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
81                 return *((const u32 *)(block_base + 4));
82         else
83                 return *((const u16 *)(block_base + 1));
84 }
85
86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
87 static u32 get_blocksize(const void *block_data)
88 {
89         return _get_blocksize(block_data - 3);
90 }
91
92 static const void *
93 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
94 {
95         const struct bdb_header *bdb = _bdb;
96         const u8 *base = _bdb;
97         int index = 0;
98         u32 total, current_size;
99         enum bdb_block_id current_id;
100
101         /* skip to first section */
102         index += bdb->header_size;
103         total = bdb->bdb_size;
104
105         /* walk the sections looking for section_id */
106         while (index + 3 < total) {
107                 current_id = *(base + index);
108                 current_size = _get_blocksize(base + index);
109                 index += 3;
110
111                 if (index + current_size > total)
112                         return NULL;
113
114                 if (current_id == section_id)
115                         return base + index;
116
117                 index += current_size;
118         }
119
120         return NULL;
121 }
122
123 /*
124  * Offset from the start of BDB to the start of the
125  * block data (just past the block header).
126  */
127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
128 {
129         const void *block;
130
131         block = find_raw_section(bdb, section_id);
132         if (!block)
133                 return 0;
134
135         return block - bdb;
136 }
137
138 struct bdb_block_entry {
139         struct list_head node;
140         enum bdb_block_id section_id;
141         u8 data[];
142 };
143
144 static const void *
145 find_section(struct drm_i915_private *i915,
146              enum bdb_block_id section_id)
147 {
148         struct bdb_block_entry *entry;
149
150         list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
151                 if (entry->section_id == section_id)
152                         return entry->data + 3;
153         }
154
155         return NULL;
156 }
157
158 static const struct {
159         enum bdb_block_id section_id;
160         size_t min_size;
161 } bdb_blocks[] = {
162         { .section_id = BDB_GENERAL_FEATURES,
163           .min_size = sizeof(struct bdb_general_features), },
164         { .section_id = BDB_GENERAL_DEFINITIONS,
165           .min_size = sizeof(struct bdb_general_definitions), },
166         { .section_id = BDB_PSR,
167           .min_size = sizeof(struct bdb_psr), },
168         { .section_id = BDB_DRIVER_FEATURES,
169           .min_size = sizeof(struct bdb_driver_features), },
170         { .section_id = BDB_SDVO_LVDS_OPTIONS,
171           .min_size = sizeof(struct bdb_sdvo_lvds_options), },
172         { .section_id = BDB_SDVO_PANEL_DTDS,
173           .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
174         { .section_id = BDB_EDP,
175           .min_size = sizeof(struct bdb_edp), },
176         { .section_id = BDB_LVDS_OPTIONS,
177           .min_size = sizeof(struct bdb_lvds_options), },
178         /*
179          * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
180          * so keep the two ordered.
181          */
182         { .section_id = BDB_LVDS_LFP_DATA_PTRS,
183           .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
184         { .section_id = BDB_LVDS_LFP_DATA,
185           .min_size = 0, /* special case */ },
186         { .section_id = BDB_LVDS_BACKLIGHT,
187           .min_size = sizeof(struct bdb_lfp_backlight_data), },
188         { .section_id = BDB_LFP_POWER,
189           .min_size = sizeof(struct bdb_lfp_power), },
190         { .section_id = BDB_MIPI_CONFIG,
191           .min_size = sizeof(struct bdb_mipi_config), },
192         { .section_id = BDB_MIPI_SEQUENCE,
193           .min_size = sizeof(struct bdb_mipi_sequence) },
194         { .section_id = BDB_COMPRESSION_PARAMETERS,
195           .min_size = sizeof(struct bdb_compression_parameters), },
196         { .section_id = BDB_GENERIC_DTD,
197           .min_size = sizeof(struct bdb_generic_dtd), },
198 };
199
200 static size_t lfp_data_min_size(struct drm_i915_private *i915)
201 {
202         const struct bdb_lvds_lfp_data_ptrs *ptrs;
203         size_t size;
204
205         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
206         if (!ptrs)
207                 return 0;
208
209         size = sizeof(struct bdb_lvds_lfp_data);
210         if (ptrs->panel_name.table_size)
211                 size = max(size, ptrs->panel_name.offset +
212                            sizeof(struct bdb_lvds_lfp_data_tail));
213
214         return size;
215 }
216
217 static bool validate_lfp_data_ptrs(const void *bdb,
218                                    const struct bdb_lvds_lfp_data_ptrs *ptrs)
219 {
220         int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
221         int data_block_size, lfp_data_size;
222         const void *data_block;
223         int i;
224
225         data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
226         if (!data_block)
227                 return false;
228
229         data_block_size = get_blocksize(data_block);
230         if (data_block_size == 0)
231                 return false;
232
233         /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
234         if (ptrs->lvds_entries != 3)
235                 return false;
236
237         fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
238         dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
239         panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
240         panel_name_size = ptrs->panel_name.table_size;
241
242         /* fp_timing has variable size */
243         if (fp_timing_size < 32 ||
244             dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
245             panel_pnp_id_size != sizeof(struct lvds_pnp_id))
246                 return false;
247
248         /* panel_name is not present in old VBTs */
249         if (panel_name_size != 0 &&
250             panel_name_size != sizeof(struct lvds_lfp_panel_name))
251                 return false;
252
253         lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
254         if (16 * lfp_data_size > data_block_size)
255                 return false;
256
257         /* make sure the table entries have uniform size */
258         for (i = 1; i < 16; i++) {
259                 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
260                     ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
261                     ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
262                         return false;
263
264                 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
265                     ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
266                     ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
267                         return false;
268         }
269
270         /*
271          * Except for vlv/chv machines all real VBTs seem to have 6
272          * unaccounted bytes in the fp_timing table. And it doesn't
273          * appear to be a really intentional hole as the fp_timing
274          * 0xffff terminator is always within those 6 missing bytes.
275          */
276         if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
277                 fp_timing_size += 6;
278
279         if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
280                 return false;
281
282         if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
283             ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
284             ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
285                 return false;
286
287         /* make sure the tables fit inside the data block */
288         for (i = 0; i < 16; i++) {
289                 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
290                     ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
291                     ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
292                         return false;
293         }
294
295         if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
296                 return false;
297
298         /* make sure fp_timing terminators are present at expected locations */
299         for (i = 0; i < 16; i++) {
300                 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
301                         fp_timing_size - 2;
302
303                 if (*t != 0xffff)
304                         return false;
305         }
306
307         return true;
308 }
309
310 /* make the data table offsets relative to the data block */
311 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
312 {
313         struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
314         u32 offset;
315         int i;
316
317         offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
318
319         for (i = 0; i < 16; i++) {
320                 if (ptrs->ptr[i].fp_timing.offset < offset ||
321                     ptrs->ptr[i].dvo_timing.offset < offset ||
322                     ptrs->ptr[i].panel_pnp_id.offset < offset)
323                         return false;
324
325                 ptrs->ptr[i].fp_timing.offset -= offset;
326                 ptrs->ptr[i].dvo_timing.offset -= offset;
327                 ptrs->ptr[i].panel_pnp_id.offset -= offset;
328         }
329
330         if (ptrs->panel_name.table_size) {
331                 if (ptrs->panel_name.offset < offset)
332                         return false;
333
334                 ptrs->panel_name.offset -= offset;
335         }
336
337         return validate_lfp_data_ptrs(bdb, ptrs);
338 }
339
340 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
341                              int table_size, int total_size)
342 {
343         if (total_size < table_size)
344                 return total_size;
345
346         table->table_size = table_size;
347         table->offset = total_size - table_size;
348
349         return total_size - table_size;
350 }
351
352 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
353                               const struct lvds_lfp_data_ptr_table *prev,
354                               int size)
355 {
356         next->table_size = prev->table_size;
357         next->offset = prev->offset + size;
358 }
359
360 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
361                                     const void *bdb)
362 {
363         int i, size, table_size, block_size, offset, fp_timing_size;
364         struct bdb_lvds_lfp_data_ptrs *ptrs;
365         const void *block;
366         void *ptrs_block;
367
368         /*
369          * The hardcoded fp_timing_size is only valid for
370          * modernish VBTs. All older VBTs definitely should
371          * include block 41 and thus we don't need to
372          * generate one.
373          */
374         if (i915->display.vbt.version < 155)
375                 return NULL;
376
377         fp_timing_size = 38;
378
379         block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
380         if (!block)
381                 return NULL;
382
383         drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
384
385         block_size = get_blocksize(block);
386
387         size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
388                 sizeof(struct lvds_pnp_id);
389         if (size * 16 > block_size)
390                 return NULL;
391
392         ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
393         if (!ptrs_block)
394                 return NULL;
395
396         *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
397         *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
398         ptrs = ptrs_block + 3;
399
400         table_size = sizeof(struct lvds_pnp_id);
401         size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
402
403         table_size = sizeof(struct lvds_dvo_timing);
404         size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
405
406         table_size = fp_timing_size;
407         size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
408
409         if (ptrs->ptr[0].fp_timing.table_size)
410                 ptrs->lvds_entries++;
411         if (ptrs->ptr[0].dvo_timing.table_size)
412                 ptrs->lvds_entries++;
413         if (ptrs->ptr[0].panel_pnp_id.table_size)
414                 ptrs->lvds_entries++;
415
416         if (size != 0 || ptrs->lvds_entries != 3) {
417                 kfree(ptrs_block);
418                 return NULL;
419         }
420
421         size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
422                 sizeof(struct lvds_pnp_id);
423         for (i = 1; i < 16; i++) {
424                 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
425                 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
426                 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
427         }
428
429         table_size = sizeof(struct lvds_lfp_panel_name);
430
431         if (16 * (size + table_size) <= block_size) {
432                 ptrs->panel_name.table_size = table_size;
433                 ptrs->panel_name.offset = size * 16;
434         }
435
436         offset = block - bdb;
437
438         for (i = 0; i < 16; i++) {
439                 ptrs->ptr[i].fp_timing.offset += offset;
440                 ptrs->ptr[i].dvo_timing.offset += offset;
441                 ptrs->ptr[i].panel_pnp_id.offset += offset;
442         }
443
444         if (ptrs->panel_name.table_size)
445                 ptrs->panel_name.offset += offset;
446
447         return ptrs_block;
448 }
449
450 static void
451 init_bdb_block(struct drm_i915_private *i915,
452                const void *bdb, enum bdb_block_id section_id,
453                size_t min_size)
454 {
455         struct bdb_block_entry *entry;
456         void *temp_block = NULL;
457         const void *block;
458         size_t block_size;
459
460         block = find_raw_section(bdb, section_id);
461
462         /* Modern VBTs lack the LFP data table pointers block, make one up */
463         if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
464                 temp_block = generate_lfp_data_ptrs(i915, bdb);
465                 if (temp_block)
466                         block = temp_block + 3;
467         }
468         if (!block)
469                 return;
470
471         drm_WARN(&i915->drm, min_size == 0,
472                  "Block %d min_size is zero\n", section_id);
473
474         block_size = get_blocksize(block);
475
476         /*
477          * Version number and new block size are considered
478          * part of the header for MIPI sequenece block v3+.
479          */
480         if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
481                 block_size += 5;
482
483         entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
484                         GFP_KERNEL);
485         if (!entry) {
486                 kfree(temp_block);
487                 return;
488         }
489
490         entry->section_id = section_id;
491         memcpy(entry->data, block - 3, block_size + 3);
492
493         kfree(temp_block);
494
495         drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
496                     section_id, block_size, min_size);
497
498         if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
499             !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
500                 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
501                 kfree(entry);
502                 return;
503         }
504
505         list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
506 }
507
508 static void init_bdb_blocks(struct drm_i915_private *i915,
509                             const void *bdb)
510 {
511         int i;
512
513         for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
514                 enum bdb_block_id section_id = bdb_blocks[i].section_id;
515                 size_t min_size = bdb_blocks[i].min_size;
516
517                 if (section_id == BDB_LVDS_LFP_DATA)
518                         min_size = lfp_data_min_size(i915);
519
520                 init_bdb_block(i915, bdb, section_id, min_size);
521         }
522 }
523
524 static void
525 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
526                         const struct lvds_dvo_timing *dvo_timing)
527 {
528         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529                 dvo_timing->hactive_lo;
530         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533                 ((dvo_timing->hsync_pulse_width_hi << 8) |
534                         dvo_timing->hsync_pulse_width_lo);
535         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537
538         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539                 dvo_timing->vactive_lo;
540         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543                 ((dvo_timing->vsync_pulse_width_hi << 4) |
544                         dvo_timing->vsync_pulse_width_lo);
545         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547         panel_fixed_mode->clock = dvo_timing->clock * 10;
548         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549
550         if (dvo_timing->hsync_positive)
551                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552         else
553                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554
555         if (dvo_timing->vsync_positive)
556                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557         else
558                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559
560         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561                 dvo_timing->himage_lo;
562         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563                 dvo_timing->vimage_lo;
564
565         /* Some VBTs have bogus h/vtotal values */
566         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
567                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
568         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
569                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
570
571         drm_mode_set_name(panel_fixed_mode);
572 }
573
574 static const struct lvds_dvo_timing *
575 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
576                     const struct bdb_lvds_lfp_data_ptrs *ptrs,
577                     int index)
578 {
579         return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
580 }
581
582 static const struct lvds_fp_timing *
583 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
584                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
585                    int index)
586 {
587         return (const void *)data + ptrs->ptr[index].fp_timing.offset;
588 }
589
590 static const struct lvds_pnp_id *
591 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
592                 const struct bdb_lvds_lfp_data_ptrs *ptrs,
593                 int index)
594 {
595         return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
596 }
597
598 static const struct bdb_lvds_lfp_data_tail *
599 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
600                   const struct bdb_lvds_lfp_data_ptrs *ptrs)
601 {
602         if (ptrs->panel_name.table_size)
603                 return (const void *)data + ptrs->panel_name.offset;
604         else
605                 return NULL;
606 }
607
608 static void dump_pnp_id(struct drm_i915_private *i915,
609                         const struct lvds_pnp_id *pnp_id,
610                         const char *name)
611 {
612         u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
613         char vend[4];
614
615         drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
616                     name, drm_edid_decode_mfg_id(mfg_name, vend),
617                     pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
618                     pnp_id->mfg_week, pnp_id->mfg_year + 1990);
619 }
620
621 static int opregion_get_panel_type(struct drm_i915_private *i915,
622                                    const struct intel_bios_encoder_data *devdata,
623                                    const struct edid *edid)
624 {
625         return intel_opregion_get_panel_type(i915);
626 }
627
628 static int vbt_get_panel_type(struct drm_i915_private *i915,
629                               const struct intel_bios_encoder_data *devdata,
630                               const struct edid *edid)
631 {
632         const struct bdb_lvds_options *lvds_options;
633
634         lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
635         if (!lvds_options)
636                 return -1;
637
638         if (lvds_options->panel_type > 0xf &&
639             lvds_options->panel_type != 0xff) {
640                 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
641                             lvds_options->panel_type);
642                 return -1;
643         }
644
645         if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
646                 return lvds_options->panel_type2;
647
648         drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
649
650         return lvds_options->panel_type;
651 }
652
653 static int pnpid_get_panel_type(struct drm_i915_private *i915,
654                                 const struct intel_bios_encoder_data *devdata,
655                                 const struct edid *edid)
656 {
657         const struct bdb_lvds_lfp_data *data;
658         const struct bdb_lvds_lfp_data_ptrs *ptrs;
659         const struct lvds_pnp_id *edid_id;
660         struct lvds_pnp_id edid_id_nodate;
661         int i, best = -1;
662
663         if (!edid)
664                 return -1;
665
666         edid_id = (const void *)&edid->mfg_id[0];
667
668         edid_id_nodate = *edid_id;
669         edid_id_nodate.mfg_week = 0;
670         edid_id_nodate.mfg_year = 0;
671
672         dump_pnp_id(i915, edid_id, "EDID");
673
674         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675         if (!ptrs)
676                 return -1;
677
678         data = find_section(i915, BDB_LVDS_LFP_DATA);
679         if (!data)
680                 return -1;
681
682         for (i = 0; i < 16; i++) {
683                 const struct lvds_pnp_id *vbt_id =
684                         get_lvds_pnp_id(data, ptrs, i);
685
686                 /* full match? */
687                 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688                         return i;
689
690                 /*
691                  * Accept a match w/o date if no full match is found,
692                  * and the VBT entry does not specify a date.
693                  */
694                 if (best < 0 &&
695                     !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696                         best = i;
697         }
698
699         return best;
700 }
701
702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703                                    const struct intel_bios_encoder_data *devdata,
704                                    const struct edid *edid)
705 {
706         return 0;
707 }
708
709 enum panel_type {
710         PANEL_TYPE_OPREGION,
711         PANEL_TYPE_VBT,
712         PANEL_TYPE_PNPID,
713         PANEL_TYPE_FALLBACK,
714 };
715
716 static int get_panel_type(struct drm_i915_private *i915,
717                           const struct intel_bios_encoder_data *devdata,
718                           const struct edid *edid)
719 {
720         struct {
721                 const char *name;
722                 int (*get_panel_type)(struct drm_i915_private *i915,
723                                       const struct intel_bios_encoder_data *devdata,
724                                       const struct edid *edid);
725                 int panel_type;
726         } panel_types[] = {
727                 [PANEL_TYPE_OPREGION] = {
728                         .name = "OpRegion",
729                         .get_panel_type = opregion_get_panel_type,
730                 },
731                 [PANEL_TYPE_VBT] = {
732                         .name = "VBT",
733                         .get_panel_type = vbt_get_panel_type,
734                 },
735                 [PANEL_TYPE_PNPID] = {
736                         .name = "PNPID",
737                         .get_panel_type = pnpid_get_panel_type,
738                 },
739                 [PANEL_TYPE_FALLBACK] = {
740                         .name = "fallback",
741                         .get_panel_type = fallback_get_panel_type,
742                 },
743         };
744         int i;
745
746         for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747                 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid);
748
749                 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
750                             panel_types[i].panel_type != 0xff);
751
752                 if (panel_types[i].panel_type >= 0)
753                         drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
754                                     panel_types[i].name, panel_types[i].panel_type);
755         }
756
757         if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
758                 i = PANEL_TYPE_OPREGION;
759         else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
760                  panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
761                 i = PANEL_TYPE_PNPID;
762         else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
763                  panel_types[PANEL_TYPE_VBT].panel_type >= 0)
764                 i = PANEL_TYPE_VBT;
765         else
766                 i = PANEL_TYPE_FALLBACK;
767
768         drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
769                     panel_types[i].name, panel_types[i].panel_type);
770
771         return panel_types[i].panel_type;
772 }
773
774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
775 {
776         return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
777 }
778
779 static bool panel_bool(unsigned int value, int panel_type)
780 {
781         return panel_bits(value, panel_type, 1);
782 }
783
784 /* Parse general panel options */
785 static void
786 parse_panel_options(struct drm_i915_private *i915,
787                     struct intel_panel *panel)
788 {
789         const struct bdb_lvds_options *lvds_options;
790         int panel_type = panel->vbt.panel_type;
791         int drrs_mode;
792
793         lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
794         if (!lvds_options)
795                 return;
796
797         panel->vbt.lvds_dither = lvds_options->pixel_dither;
798
799         /*
800          * Empirical evidence indicates the block size can be
801          * either 4,14,16,24+ bytes. For older VBTs no clear
802          * relationship between the block size vs. BDB version.
803          */
804         if (get_blocksize(lvds_options) < 16)
805                 return;
806
807         drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
808                                panel_type, 2);
809         /*
810          * VBT has static DRRS = 0 and seamless DRRS = 2.
811          * The below piece of code is required to adjust vbt.drrs_type
812          * to match the enum drrs_support_type.
813          */
814         switch (drrs_mode) {
815         case 0:
816                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
817                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
818                 break;
819         case 2:
820                 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
821                 drm_dbg_kms(&i915->drm,
822                             "DRRS supported mode is seamless\n");
823                 break;
824         default:
825                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
826                 drm_dbg_kms(&i915->drm,
827                             "DRRS not supported (VBT input)\n");
828                 break;
829         }
830 }
831
832 static void
833 parse_lfp_panel_dtd(struct drm_i915_private *i915,
834                     struct intel_panel *panel,
835                     const struct bdb_lvds_lfp_data *lvds_lfp_data,
836                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
837 {
838         const struct lvds_dvo_timing *panel_dvo_timing;
839         const struct lvds_fp_timing *fp_timing;
840         struct drm_display_mode *panel_fixed_mode;
841         int panel_type = panel->vbt.panel_type;
842
843         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
844                                                lvds_lfp_data_ptrs,
845                                                panel_type);
846
847         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
848         if (!panel_fixed_mode)
849                 return;
850
851         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
852
853         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
854
855         drm_dbg_kms(&i915->drm,
856                     "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
857                     DRM_MODE_ARG(panel_fixed_mode));
858
859         fp_timing = get_lvds_fp_timing(lvds_lfp_data,
860                                        lvds_lfp_data_ptrs,
861                                        panel_type);
862
863         /* check the resolution, just to be sure */
864         if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
865             fp_timing->y_res == panel_fixed_mode->vdisplay) {
866                 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
867                 drm_dbg_kms(&i915->drm,
868                             "VBT initial LVDS value %x\n",
869                             panel->vbt.bios_lvds_val);
870         }
871 }
872
873 static void
874 parse_lfp_data(struct drm_i915_private *i915,
875                struct intel_panel *panel)
876 {
877         const struct bdb_lvds_lfp_data *data;
878         const struct bdb_lvds_lfp_data_tail *tail;
879         const struct bdb_lvds_lfp_data_ptrs *ptrs;
880         const struct lvds_pnp_id *pnp_id;
881         int panel_type = panel->vbt.panel_type;
882
883         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
884         if (!ptrs)
885                 return;
886
887         data = find_section(i915, BDB_LVDS_LFP_DATA);
888         if (!data)
889                 return;
890
891         if (!panel->vbt.lfp_lvds_vbt_mode)
892                 parse_lfp_panel_dtd(i915, panel, data, ptrs);
893
894         pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
895         dump_pnp_id(i915, pnp_id, "Panel");
896
897         tail = get_lfp_data_tail(data, ptrs);
898         if (!tail)
899                 return;
900
901         drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
902                     (int)sizeof(tail->panel_name[0].name),
903                     tail->panel_name[panel_type].name);
904
905         if (i915->display.vbt.version >= 188) {
906                 panel->vbt.seamless_drrs_min_refresh_rate =
907                         tail->seamless_drrs_min_refresh_rate[panel_type];
908                 drm_dbg_kms(&i915->drm,
909                             "Seamless DRRS min refresh rate: %d Hz\n",
910                             panel->vbt.seamless_drrs_min_refresh_rate);
911         }
912 }
913
914 static void
915 parse_generic_dtd(struct drm_i915_private *i915,
916                   struct intel_panel *panel)
917 {
918         const struct bdb_generic_dtd *generic_dtd;
919         const struct generic_dtd_entry *dtd;
920         struct drm_display_mode *panel_fixed_mode;
921         int num_dtd;
922
923         /*
924          * Older VBTs provided DTD information for internal displays through
925          * the "LFP panel tables" block (42).  As of VBT revision 229 the
926          * DTD information should be provided via a newer "generic DTD"
927          * block (58).  Just to be safe, we'll try the new generic DTD block
928          * first on VBT >= 229, but still fall back to trying the old LFP
929          * block if that fails.
930          */
931         if (i915->display.vbt.version < 229)
932                 return;
933
934         generic_dtd = find_section(i915, BDB_GENERIC_DTD);
935         if (!generic_dtd)
936                 return;
937
938         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
939                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
940                         generic_dtd->gdtd_size);
941                 return;
942         } else if (generic_dtd->gdtd_size !=
943                    sizeof(struct generic_dtd_entry)) {
944                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
945                         generic_dtd->gdtd_size);
946                 /* DTD has unknown fields, but keep going */
947         }
948
949         num_dtd = (get_blocksize(generic_dtd) -
950                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
951         if (panel->vbt.panel_type >= num_dtd) {
952                 drm_err(&i915->drm,
953                         "Panel type %d not found in table of %d DTD's\n",
954                         panel->vbt.panel_type, num_dtd);
955                 return;
956         }
957
958         dtd = &generic_dtd->dtd[panel->vbt.panel_type];
959
960         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
961         if (!panel_fixed_mode)
962                 return;
963
964         panel_fixed_mode->hdisplay = dtd->hactive;
965         panel_fixed_mode->hsync_start =
966                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
967         panel_fixed_mode->hsync_end =
968                 panel_fixed_mode->hsync_start + dtd->hsync;
969         panel_fixed_mode->htotal =
970                 panel_fixed_mode->hdisplay + dtd->hblank;
971
972         panel_fixed_mode->vdisplay = dtd->vactive;
973         panel_fixed_mode->vsync_start =
974                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
975         panel_fixed_mode->vsync_end =
976                 panel_fixed_mode->vsync_start + dtd->vsync;
977         panel_fixed_mode->vtotal =
978                 panel_fixed_mode->vdisplay + dtd->vblank;
979
980         panel_fixed_mode->clock = dtd->pixel_clock;
981         panel_fixed_mode->width_mm = dtd->width_mm;
982         panel_fixed_mode->height_mm = dtd->height_mm;
983
984         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
985         drm_mode_set_name(panel_fixed_mode);
986
987         if (dtd->hsync_positive_polarity)
988                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
989         else
990                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
991
992         if (dtd->vsync_positive_polarity)
993                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
994         else
995                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
996
997         drm_dbg_kms(&i915->drm,
998                     "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
999                     DRM_MODE_ARG(panel_fixed_mode));
1000
1001         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1002 }
1003
1004 static void
1005 parse_lfp_backlight(struct drm_i915_private *i915,
1006                     struct intel_panel *panel)
1007 {
1008         const struct bdb_lfp_backlight_data *backlight_data;
1009         const struct lfp_backlight_data_entry *entry;
1010         int panel_type = panel->vbt.panel_type;
1011         u16 level;
1012
1013         backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
1014         if (!backlight_data)
1015                 return;
1016
1017         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1018                 drm_dbg_kms(&i915->drm,
1019                             "Unsupported backlight data entry size %u\n",
1020                             backlight_data->entry_size);
1021                 return;
1022         }
1023
1024         entry = &backlight_data->data[panel_type];
1025
1026         panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1027         if (!panel->vbt.backlight.present) {
1028                 drm_dbg_kms(&i915->drm,
1029                             "PWM backlight not present in VBT (type %u)\n",
1030                             entry->type);
1031                 return;
1032         }
1033
1034         panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1035         if (i915->display.vbt.version >= 191) {
1036                 size_t exp_size;
1037
1038                 if (i915->display.vbt.version >= 236)
1039                         exp_size = sizeof(struct bdb_lfp_backlight_data);
1040                 else if (i915->display.vbt.version >= 234)
1041                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1042                 else
1043                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1044
1045                 if (get_blocksize(backlight_data) >= exp_size) {
1046                         const struct lfp_backlight_control_method *method;
1047
1048                         method = &backlight_data->backlight_control[panel_type];
1049                         panel->vbt.backlight.type = method->type;
1050                         panel->vbt.backlight.controller = method->controller;
1051                 }
1052         }
1053
1054         panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055         panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056
1057         if (i915->display.vbt.version >= 234) {
1058                 u16 min_level;
1059                 bool scale;
1060
1061                 level = backlight_data->brightness_level[panel_type].level;
1062                 min_level = backlight_data->brightness_min_level[panel_type].level;
1063
1064                 if (i915->display.vbt.version >= 236)
1065                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066                 else
1067                         scale = level > 255;
1068
1069                 if (scale)
1070                         min_level = min_level / 255;
1071
1072                 if (min_level > 255) {
1073                         drm_warn(&i915->drm, "Brightness min level > 255\n");
1074                         level = 255;
1075                 }
1076                 panel->vbt.backlight.min_brightness = min_level;
1077
1078                 panel->vbt.backlight.brightness_precision_bits =
1079                         backlight_data->brightness_precision_bits[panel_type];
1080         } else {
1081                 level = backlight_data->level[panel_type];
1082                 panel->vbt.backlight.min_brightness = entry->min_brightness;
1083         }
1084
1085         drm_dbg_kms(&i915->drm,
1086                     "VBT backlight PWM modulation frequency %u Hz, "
1087                     "active %s, min brightness %u, level %u, controller %u\n",
1088                     panel->vbt.backlight.pwm_freq_hz,
1089                     panel->vbt.backlight.active_low_pwm ? "low" : "high",
1090                     panel->vbt.backlight.min_brightness,
1091                     level,
1092                     panel->vbt.backlight.controller);
1093 }
1094
1095 /* Try to find sdvo panel data */
1096 static void
1097 parse_sdvo_panel_data(struct drm_i915_private *i915,
1098                       struct intel_panel *panel)
1099 {
1100         const struct bdb_sdvo_panel_dtds *dtds;
1101         struct drm_display_mode *panel_fixed_mode;
1102         int index;
1103
1104         index = i915->params.vbt_sdvo_panel_type;
1105         if (index == -2) {
1106                 drm_dbg_kms(&i915->drm,
1107                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
1108                 return;
1109         }
1110
1111         if (index == -1) {
1112                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1113
1114                 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1115                 if (!sdvo_lvds_options)
1116                         return;
1117
1118                 index = sdvo_lvds_options->panel_type;
1119         }
1120
1121         dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1122         if (!dtds)
1123                 return;
1124
1125         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1126         if (!panel_fixed_mode)
1127                 return;
1128
1129         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1130
1131         panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1132
1133         drm_dbg_kms(&i915->drm,
1134                     "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1135                     DRM_MODE_ARG(panel_fixed_mode));
1136 }
1137
1138 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1139                                     bool alternate)
1140 {
1141         switch (DISPLAY_VER(i915)) {
1142         case 2:
1143                 return alternate ? 66667 : 48000;
1144         case 3:
1145         case 4:
1146                 return alternate ? 100000 : 96000;
1147         default:
1148                 return alternate ? 100000 : 120000;
1149         }
1150 }
1151
1152 static void
1153 parse_general_features(struct drm_i915_private *i915)
1154 {
1155         const struct bdb_general_features *general;
1156
1157         general = find_section(i915, BDB_GENERAL_FEATURES);
1158         if (!general)
1159                 return;
1160
1161         i915->display.vbt.int_tv_support = general->int_tv_support;
1162         /* int_crt_support can't be trusted on earlier platforms */
1163         if (i915->display.vbt.version >= 155 &&
1164             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1165                 i915->display.vbt.int_crt_support = general->int_crt_support;
1166         i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1167         i915->display.vbt.lvds_ssc_freq =
1168                 intel_bios_ssc_frequency(i915, general->ssc_freq);
1169         i915->display.vbt.display_clock_mode = general->display_clock_mode;
1170         i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1171         if (i915->display.vbt.version >= 181) {
1172                 i915->display.vbt.orientation = general->rotate_180 ?
1173                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1174                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
1175         } else {
1176                 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1177         }
1178
1179         if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1180                 i915->display.vbt.override_afc_startup = true;
1181                 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1182         }
1183
1184         drm_dbg_kms(&i915->drm,
1185                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1186                     i915->display.vbt.int_tv_support,
1187                     i915->display.vbt.int_crt_support,
1188                     i915->display.vbt.lvds_use_ssc,
1189                     i915->display.vbt.lvds_ssc_freq,
1190                     i915->display.vbt.display_clock_mode,
1191                     i915->display.vbt.fdi_rx_polarity_inverted);
1192 }
1193
1194 static const struct child_device_config *
1195 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1196 {
1197         return (const void *) &defs->devices[i * defs->child_dev_size];
1198 }
1199
1200 static void
1201 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1202 {
1203         struct sdvo_device_mapping *mapping;
1204         const struct intel_bios_encoder_data *devdata;
1205         const struct child_device_config *child;
1206         int count = 0;
1207
1208         /*
1209          * Only parse SDVO mappings on gens that could have SDVO. This isn't
1210          * accurate and doesn't have to be, as long as it's not too strict.
1211          */
1212         if (!IS_DISPLAY_VER(i915, 3, 7)) {
1213                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1214                 return;
1215         }
1216
1217         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1218                 child = &devdata->child;
1219
1220                 if (child->slave_addr != SLAVE_ADDR1 &&
1221                     child->slave_addr != SLAVE_ADDR2) {
1222                         /*
1223                          * If the slave address is neither 0x70 nor 0x72,
1224                          * it is not a SDVO device. Skip it.
1225                          */
1226                         continue;
1227                 }
1228                 if (child->dvo_port != DEVICE_PORT_DVOB &&
1229                     child->dvo_port != DEVICE_PORT_DVOC) {
1230                         /* skip the incorrect SDVO port */
1231                         drm_dbg_kms(&i915->drm,
1232                                     "Incorrect SDVO port. Skip it\n");
1233                         continue;
1234                 }
1235                 drm_dbg_kms(&i915->drm,
1236                             "the SDVO device with slave addr %2x is found on"
1237                             " %s port\n",
1238                             child->slave_addr,
1239                             (child->dvo_port == DEVICE_PORT_DVOB) ?
1240                             "SDVOB" : "SDVOC");
1241                 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1242                 if (!mapping->initialized) {
1243                         mapping->dvo_port = child->dvo_port;
1244                         mapping->slave_addr = child->slave_addr;
1245                         mapping->dvo_wiring = child->dvo_wiring;
1246                         mapping->ddc_pin = child->ddc_pin;
1247                         mapping->i2c_pin = child->i2c_pin;
1248                         mapping->initialized = 1;
1249                         drm_dbg_kms(&i915->drm,
1250                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1251                                     mapping->dvo_port, mapping->slave_addr,
1252                                     mapping->dvo_wiring, mapping->ddc_pin,
1253                                     mapping->i2c_pin);
1254                 } else {
1255                         drm_dbg_kms(&i915->drm,
1256                                     "Maybe one SDVO port is shared by "
1257                                     "two SDVO device.\n");
1258                 }
1259                 if (child->slave2_addr) {
1260                         /* Maybe this is a SDVO device with multiple inputs */
1261                         /* And the mapping info is not added */
1262                         drm_dbg_kms(&i915->drm,
1263                                     "there exists the slave2_addr. Maybe this"
1264                                     " is a SDVO device with multiple inputs.\n");
1265                 }
1266                 count++;
1267         }
1268
1269         if (!count) {
1270                 /* No SDVO device info is found */
1271                 drm_dbg_kms(&i915->drm,
1272                             "No SDVO device info is found in VBT\n");
1273         }
1274 }
1275
1276 static void
1277 parse_driver_features(struct drm_i915_private *i915)
1278 {
1279         const struct bdb_driver_features *driver;
1280
1281         driver = find_section(i915, BDB_DRIVER_FEATURES);
1282         if (!driver)
1283                 return;
1284
1285         if (DISPLAY_VER(i915) >= 5) {
1286                 /*
1287                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1288                  * to mean "eDP". The VBT spec doesn't agree with that
1289                  * interpretation, but real world VBTs seem to.
1290                  */
1291                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1292                         i915->display.vbt.int_lvds_support = 0;
1293         } else {
1294                 /*
1295                  * FIXME it's not clear which BDB version has the LVDS config
1296                  * bits defined. Revision history in the VBT spec says:
1297                  * "0.92 | Add two definitions for VBT value of LVDS Active
1298                  *  Config (00b and 11b values defined) | 06/13/2005"
1299                  * but does not the specify the BDB version.
1300                  *
1301                  * So far version 134 (on i945gm) is the oldest VBT observed
1302                  * in the wild with the bits correctly populated. Version
1303                  * 108 (on i85x) does not have the bits correctly populated.
1304                  */
1305                 if (i915->display.vbt.version >= 134 &&
1306                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1307                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1308                         i915->display.vbt.int_lvds_support = 0;
1309         }
1310 }
1311
1312 static void
1313 parse_panel_driver_features(struct drm_i915_private *i915,
1314                             struct intel_panel *panel)
1315 {
1316         const struct bdb_driver_features *driver;
1317
1318         driver = find_section(i915, BDB_DRIVER_FEATURES);
1319         if (!driver)
1320                 return;
1321
1322         if (i915->display.vbt.version < 228) {
1323                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1324                             driver->drrs_enabled);
1325                 /*
1326                  * If DRRS is not supported, drrs_type has to be set to 0.
1327                  * This is because, VBT is configured in such a way that
1328                  * static DRRS is 0 and DRRS not supported is represented by
1329                  * driver->drrs_enabled=false
1330                  */
1331                 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1332                         /*
1333                          * FIXME Should DMRRS perhaps be treated as seamless
1334                          * but without the automatic downclocking?
1335                          */
1336                         if (driver->dmrrs_enabled)
1337                                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1338                         else
1339                                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1340                 }
1341
1342                 panel->vbt.psr.enable = driver->psr_enabled;
1343         }
1344 }
1345
1346 static void
1347 parse_power_conservation_features(struct drm_i915_private *i915,
1348                                   struct intel_panel *panel)
1349 {
1350         const struct bdb_lfp_power *power;
1351         u8 panel_type = panel->vbt.panel_type;
1352
1353         panel->vbt.vrr = true; /* matches Windows behaviour */
1354
1355         if (i915->display.vbt.version < 228)
1356                 return;
1357
1358         power = find_section(i915, BDB_LFP_POWER);
1359         if (!power)
1360                 return;
1361
1362         panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1363
1364         /*
1365          * If DRRS is not supported, drrs_type has to be set to 0.
1366          * This is because, VBT is configured in such a way that
1367          * static DRRS is 0 and DRRS not supported is represented by
1368          * power->drrs & BIT(panel_type)=false
1369          */
1370         if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1371                 /*
1372                  * FIXME Should DMRRS perhaps be treated as seamless
1373                  * but without the automatic downclocking?
1374                  */
1375                 if (panel_bool(power->dmrrs, panel_type))
1376                         panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1377                 else
1378                         panel->vbt.drrs_type = DRRS_TYPE_NONE;
1379         }
1380
1381         if (i915->display.vbt.version >= 232)
1382                 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1383
1384         if (i915->display.vbt.version >= 233)
1385                 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1386                                             panel_type);
1387 }
1388
1389 static void
1390 parse_edp(struct drm_i915_private *i915,
1391           struct intel_panel *panel)
1392 {
1393         const struct bdb_edp *edp;
1394         const struct edp_power_seq *edp_pps;
1395         const struct edp_fast_link_params *edp_link_params;
1396         int panel_type = panel->vbt.panel_type;
1397
1398         edp = find_section(i915, BDB_EDP);
1399         if (!edp)
1400                 return;
1401
1402         switch (panel_bits(edp->color_depth, panel_type, 2)) {
1403         case EDP_18BPP:
1404                 panel->vbt.edp.bpp = 18;
1405                 break;
1406         case EDP_24BPP:
1407                 panel->vbt.edp.bpp = 24;
1408                 break;
1409         case EDP_30BPP:
1410                 panel->vbt.edp.bpp = 30;
1411                 break;
1412         }
1413
1414         /* Get the eDP sequencing and link info */
1415         edp_pps = &edp->power_seqs[panel_type];
1416         edp_link_params = &edp->fast_link_params[panel_type];
1417
1418         panel->vbt.edp.pps = *edp_pps;
1419
1420         if (i915->display.vbt.version >= 224) {
1421                 panel->vbt.edp.rate =
1422                         edp->edp_fast_link_training_rate[panel_type] * 20;
1423         } else {
1424                 switch (edp_link_params->rate) {
1425                 case EDP_RATE_1_62:
1426                         panel->vbt.edp.rate = 162000;
1427                         break;
1428                 case EDP_RATE_2_7:
1429                         panel->vbt.edp.rate = 270000;
1430                         break;
1431                 case EDP_RATE_5_4:
1432                         panel->vbt.edp.rate = 540000;
1433                         break;
1434                 default:
1435                         drm_dbg_kms(&i915->drm,
1436                                     "VBT has unknown eDP link rate value %u\n",
1437                                     edp_link_params->rate);
1438                         break;
1439                 }
1440         }
1441
1442         switch (edp_link_params->lanes) {
1443         case EDP_LANE_1:
1444                 panel->vbt.edp.lanes = 1;
1445                 break;
1446         case EDP_LANE_2:
1447                 panel->vbt.edp.lanes = 2;
1448                 break;
1449         case EDP_LANE_4:
1450                 panel->vbt.edp.lanes = 4;
1451                 break;
1452         default:
1453                 drm_dbg_kms(&i915->drm,
1454                             "VBT has unknown eDP lane count value %u\n",
1455                             edp_link_params->lanes);
1456                 break;
1457         }
1458
1459         switch (edp_link_params->preemphasis) {
1460         case EDP_PREEMPHASIS_NONE:
1461                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1462                 break;
1463         case EDP_PREEMPHASIS_3_5dB:
1464                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1465                 break;
1466         case EDP_PREEMPHASIS_6dB:
1467                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1468                 break;
1469         case EDP_PREEMPHASIS_9_5dB:
1470                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1471                 break;
1472         default:
1473                 drm_dbg_kms(&i915->drm,
1474                             "VBT has unknown eDP pre-emphasis value %u\n",
1475                             edp_link_params->preemphasis);
1476                 break;
1477         }
1478
1479         switch (edp_link_params->vswing) {
1480         case EDP_VSWING_0_4V:
1481                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1482                 break;
1483         case EDP_VSWING_0_6V:
1484                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1485                 break;
1486         case EDP_VSWING_0_8V:
1487                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1488                 break;
1489         case EDP_VSWING_1_2V:
1490                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1491                 break;
1492         default:
1493                 drm_dbg_kms(&i915->drm,
1494                             "VBT has unknown eDP voltage swing value %u\n",
1495                             edp_link_params->vswing);
1496                 break;
1497         }
1498
1499         if (i915->display.vbt.version >= 173) {
1500                 u8 vswing;
1501
1502                 /* Don't read from VBT if module parameter has valid value*/
1503                 if (i915->params.edp_vswing) {
1504                         panel->vbt.edp.low_vswing =
1505                                 i915->params.edp_vswing == 1;
1506                 } else {
1507                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1508                         panel->vbt.edp.low_vswing = vswing == 0;
1509                 }
1510         }
1511
1512         panel->vbt.edp.drrs_msa_timing_delay =
1513                 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1514
1515         if (i915->display.vbt.version >= 244)
1516                 panel->vbt.edp.max_link_rate =
1517                         edp->edp_max_port_link_rate[panel_type] * 20;
1518 }
1519
1520 static void
1521 parse_psr(struct drm_i915_private *i915,
1522           struct intel_panel *panel)
1523 {
1524         const struct bdb_psr *psr;
1525         const struct psr_table *psr_table;
1526         int panel_type = panel->vbt.panel_type;
1527
1528         psr = find_section(i915, BDB_PSR);
1529         if (!psr) {
1530                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1531                 return;
1532         }
1533
1534         psr_table = &psr->psr_table[panel_type];
1535
1536         panel->vbt.psr.full_link = psr_table->full_link;
1537         panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1538
1539         /* Allowed VBT values goes from 0 to 15 */
1540         panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1541                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1542
1543         /*
1544          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1545          * Old decimal value is wake up time in multiples of 100 us.
1546          */
1547         if (i915->display.vbt.version >= 205 &&
1548             (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1549                 switch (psr_table->tp1_wakeup_time) {
1550                 case 0:
1551                         panel->vbt.psr.tp1_wakeup_time_us = 500;
1552                         break;
1553                 case 1:
1554                         panel->vbt.psr.tp1_wakeup_time_us = 100;
1555                         break;
1556                 case 3:
1557                         panel->vbt.psr.tp1_wakeup_time_us = 0;
1558                         break;
1559                 default:
1560                         drm_dbg_kms(&i915->drm,
1561                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1562                                     psr_table->tp1_wakeup_time);
1563                         fallthrough;
1564                 case 2:
1565                         panel->vbt.psr.tp1_wakeup_time_us = 2500;
1566                         break;
1567                 }
1568
1569                 switch (psr_table->tp2_tp3_wakeup_time) {
1570                 case 0:
1571                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1572                         break;
1573                 case 1:
1574                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1575                         break;
1576                 case 3:
1577                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1578                         break;
1579                 default:
1580                         drm_dbg_kms(&i915->drm,
1581                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1582                                     psr_table->tp2_tp3_wakeup_time);
1583                         fallthrough;
1584                 case 2:
1585                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1586                 break;
1587                 }
1588         } else {
1589                 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1590                 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1591         }
1592
1593         if (i915->display.vbt.version >= 226) {
1594                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1595
1596                 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1597                 switch (wakeup_time) {
1598                 case 0:
1599                         wakeup_time = 500;
1600                         break;
1601                 case 1:
1602                         wakeup_time = 100;
1603                         break;
1604                 case 3:
1605                         wakeup_time = 50;
1606                         break;
1607                 default:
1608                 case 2:
1609                         wakeup_time = 2500;
1610                         break;
1611                 }
1612                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1613         } else {
1614                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1615                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1616         }
1617 }
1618
1619 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1620                                       struct intel_panel *panel,
1621                                       enum port port)
1622 {
1623         enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1624
1625         if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1626                 panel->vbt.dsi.bl_ports = BIT(port);
1627                 if (panel->vbt.dsi.config->cabc_supported)
1628                         panel->vbt.dsi.cabc_ports = BIT(port);
1629
1630                 return;
1631         }
1632
1633         switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1634         case DL_DCS_PORT_A:
1635                 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1636                 break;
1637         case DL_DCS_PORT_C:
1638                 panel->vbt.dsi.bl_ports = BIT(port_bc);
1639                 break;
1640         default:
1641         case DL_DCS_PORT_A_AND_C:
1642                 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1643                 break;
1644         }
1645
1646         if (!panel->vbt.dsi.config->cabc_supported)
1647                 return;
1648
1649         switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1650         case DL_DCS_PORT_A:
1651                 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1652                 break;
1653         case DL_DCS_PORT_C:
1654                 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1655                 break;
1656         default:
1657         case DL_DCS_PORT_A_AND_C:
1658                 panel->vbt.dsi.cabc_ports =
1659                                         BIT(PORT_A) | BIT(port_bc);
1660                 break;
1661         }
1662 }
1663
1664 static void
1665 parse_mipi_config(struct drm_i915_private *i915,
1666                   struct intel_panel *panel)
1667 {
1668         const struct bdb_mipi_config *start;
1669         const struct mipi_config *config;
1670         const struct mipi_pps_data *pps;
1671         int panel_type = panel->vbt.panel_type;
1672         enum port port;
1673
1674         /* parse MIPI blocks only if LFP type is MIPI */
1675         if (!intel_bios_is_dsi_present(i915, &port))
1676                 return;
1677
1678         /* Initialize this to undefined indicating no generic MIPI support */
1679         panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1680
1681         /* Block #40 is already parsed and panel_fixed_mode is
1682          * stored in i915->lfp_lvds_vbt_mode
1683          * resuse this when needed
1684          */
1685
1686         /* Parse #52 for panel index used from panel_type already
1687          * parsed
1688          */
1689         start = find_section(i915, BDB_MIPI_CONFIG);
1690         if (!start) {
1691                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1692                 return;
1693         }
1694
1695         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1696                 panel_type);
1697
1698         /*
1699          * get hold of the correct configuration block and pps data as per
1700          * the panel_type as index
1701          */
1702         config = &start->config[panel_type];
1703         pps = &start->pps[panel_type];
1704
1705         /* store as of now full data. Trim when we realise all is not needed */
1706         panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1707         if (!panel->vbt.dsi.config)
1708                 return;
1709
1710         panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1711         if (!panel->vbt.dsi.pps) {
1712                 kfree(panel->vbt.dsi.config);
1713                 return;
1714         }
1715
1716         parse_dsi_backlight_ports(i915, panel, port);
1717
1718         /* FIXME is the 90 vs. 270 correct? */
1719         switch (config->rotation) {
1720         case ENABLE_ROTATION_0:
1721                 /*
1722                  * Most (all?) VBTs claim 0 degrees despite having
1723                  * an upside down panel, thus we do not trust this.
1724                  */
1725                 panel->vbt.dsi.orientation =
1726                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1727                 break;
1728         case ENABLE_ROTATION_90:
1729                 panel->vbt.dsi.orientation =
1730                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1731                 break;
1732         case ENABLE_ROTATION_180:
1733                 panel->vbt.dsi.orientation =
1734                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1735                 break;
1736         case ENABLE_ROTATION_270:
1737                 panel->vbt.dsi.orientation =
1738                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1739                 break;
1740         }
1741
1742         /* We have mandatory mipi config blocks. Initialize as generic panel */
1743         panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1744 }
1745
1746 /* Find the sequence block and size for the given panel. */
1747 static const u8 *
1748 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1749                           u16 panel_id, u32 *seq_size)
1750 {
1751         u32 total = get_blocksize(sequence);
1752         const u8 *data = &sequence->data[0];
1753         u8 current_id;
1754         u32 current_size;
1755         int header_size = sequence->version >= 3 ? 5 : 3;
1756         int index = 0;
1757         int i;
1758
1759         /* skip new block size */
1760         if (sequence->version >= 3)
1761                 data += 4;
1762
1763         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1764                 if (index + header_size > total) {
1765                         DRM_ERROR("Invalid sequence block (header)\n");
1766                         return NULL;
1767                 }
1768
1769                 current_id = *(data + index);
1770                 if (sequence->version >= 3)
1771                         current_size = *((const u32 *)(data + index + 1));
1772                 else
1773                         current_size = *((const u16 *)(data + index + 1));
1774
1775                 index += header_size;
1776
1777                 if (index + current_size > total) {
1778                         DRM_ERROR("Invalid sequence block\n");
1779                         return NULL;
1780                 }
1781
1782                 if (current_id == panel_id) {
1783                         *seq_size = current_size;
1784                         return data + index;
1785                 }
1786
1787                 index += current_size;
1788         }
1789
1790         DRM_ERROR("Sequence block detected but no valid configuration\n");
1791
1792         return NULL;
1793 }
1794
1795 static int goto_next_sequence(const u8 *data, int index, int total)
1796 {
1797         u16 len;
1798
1799         /* Skip Sequence Byte. */
1800         for (index = index + 1; index < total; index += len) {
1801                 u8 operation_byte = *(data + index);
1802                 index++;
1803
1804                 switch (operation_byte) {
1805                 case MIPI_SEQ_ELEM_END:
1806                         return index;
1807                 case MIPI_SEQ_ELEM_SEND_PKT:
1808                         if (index + 4 > total)
1809                                 return 0;
1810
1811                         len = *((const u16 *)(data + index + 2)) + 4;
1812                         break;
1813                 case MIPI_SEQ_ELEM_DELAY:
1814                         len = 4;
1815                         break;
1816                 case MIPI_SEQ_ELEM_GPIO:
1817                         len = 2;
1818                         break;
1819                 case MIPI_SEQ_ELEM_I2C:
1820                         if (index + 7 > total)
1821                                 return 0;
1822                         len = *(data + index + 6) + 7;
1823                         break;
1824                 default:
1825                         DRM_ERROR("Unknown operation byte\n");
1826                         return 0;
1827                 }
1828         }
1829
1830         return 0;
1831 }
1832
1833 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1834 {
1835         int seq_end;
1836         u16 len;
1837         u32 size_of_sequence;
1838
1839         /*
1840          * Could skip sequence based on Size of Sequence alone, but also do some
1841          * checking on the structure.
1842          */
1843         if (total < 5) {
1844                 DRM_ERROR("Too small sequence size\n");
1845                 return 0;
1846         }
1847
1848         /* Skip Sequence Byte. */
1849         index++;
1850
1851         /*
1852          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1853          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1854          * byte.
1855          */
1856         size_of_sequence = *((const u32 *)(data + index));
1857         index += 4;
1858
1859         seq_end = index + size_of_sequence;
1860         if (seq_end > total) {
1861                 DRM_ERROR("Invalid sequence size\n");
1862                 return 0;
1863         }
1864
1865         for (; index < total; index += len) {
1866                 u8 operation_byte = *(data + index);
1867                 index++;
1868
1869                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1870                         if (index != seq_end) {
1871                                 DRM_ERROR("Invalid element structure\n");
1872                                 return 0;
1873                         }
1874                         return index;
1875                 }
1876
1877                 len = *(data + index);
1878                 index++;
1879
1880                 /*
1881                  * FIXME: Would be nice to check elements like for v1/v2 in
1882                  * goto_next_sequence() above.
1883                  */
1884                 switch (operation_byte) {
1885                 case MIPI_SEQ_ELEM_SEND_PKT:
1886                 case MIPI_SEQ_ELEM_DELAY:
1887                 case MIPI_SEQ_ELEM_GPIO:
1888                 case MIPI_SEQ_ELEM_I2C:
1889                 case MIPI_SEQ_ELEM_SPI:
1890                 case MIPI_SEQ_ELEM_PMIC:
1891                         break;
1892                 default:
1893                         DRM_ERROR("Unknown operation byte %u\n",
1894                                   operation_byte);
1895                         break;
1896                 }
1897         }
1898
1899         return 0;
1900 }
1901
1902 /*
1903  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1904  * skip all delay + gpio operands and stop at the first DSI packet op.
1905  */
1906 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1907                                               struct intel_panel *panel)
1908 {
1909         const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1910         int index, len;
1911
1912         if (drm_WARN_ON(&i915->drm,
1913                         !data || panel->vbt.dsi.seq_version != 1))
1914                 return 0;
1915
1916         /* index = 1 to skip sequence byte */
1917         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1918                 switch (data[index]) {
1919                 case MIPI_SEQ_ELEM_SEND_PKT:
1920                         return index == 1 ? 0 : index;
1921                 case MIPI_SEQ_ELEM_DELAY:
1922                         len = 5; /* 1 byte for operand + uint32 */
1923                         break;
1924                 case MIPI_SEQ_ELEM_GPIO:
1925                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1926                         break;
1927                 default:
1928                         return 0;
1929                 }
1930         }
1931
1932         return 0;
1933 }
1934
1935 /*
1936  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1937  * The deassert must be done before calling intel_dsi_device_ready, so for
1938  * these devices we split the init OTP sequence into a deassert sequence and
1939  * the actual init OTP part.
1940  */
1941 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1942                                  struct intel_panel *panel)
1943 {
1944         u8 *init_otp;
1945         int len;
1946
1947         /* Limit this to VLV for now. */
1948         if (!IS_VALLEYVIEW(i915))
1949                 return;
1950
1951         /* Limit this to v1 vid-mode sequences */
1952         if (panel->vbt.dsi.config->is_cmd_mode ||
1953             panel->vbt.dsi.seq_version != 1)
1954                 return;
1955
1956         /* Only do this if there are otp and assert seqs and no deassert seq */
1957         if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1958             !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1959             panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1960                 return;
1961
1962         /* The deassert-sequence ends at the first DSI packet */
1963         len = get_init_otp_deassert_fragment_len(i915, panel);
1964         if (!len)
1965                 return;
1966
1967         drm_dbg_kms(&i915->drm,
1968                     "Using init OTP fragment to deassert reset\n");
1969
1970         /* Copy the fragment, update seq byte and terminate it */
1971         init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1972         panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1973         if (!panel->vbt.dsi.deassert_seq)
1974                 return;
1975         panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1976         panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1977         /* Use the copy for deassert */
1978         panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1979                 panel->vbt.dsi.deassert_seq;
1980         /* Replace the last byte of the fragment with init OTP seq byte */
1981         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1982         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1983         panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1984 }
1985
1986 static void
1987 parse_mipi_sequence(struct drm_i915_private *i915,
1988                     struct intel_panel *panel)
1989 {
1990         int panel_type = panel->vbt.panel_type;
1991         const struct bdb_mipi_sequence *sequence;
1992         const u8 *seq_data;
1993         u32 seq_size;
1994         u8 *data;
1995         int index = 0;
1996
1997         /* Only our generic panel driver uses the sequence block. */
1998         if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1999                 return;
2000
2001         sequence = find_section(i915, BDB_MIPI_SEQUENCE);
2002         if (!sequence) {
2003                 drm_dbg_kms(&i915->drm,
2004                             "No MIPI Sequence found, parsing complete\n");
2005                 return;
2006         }
2007
2008         /* Fail gracefully for forward incompatible sequence block. */
2009         if (sequence->version >= 4) {
2010                 drm_err(&i915->drm,
2011                         "Unable to parse MIPI Sequence Block v%u\n",
2012                         sequence->version);
2013                 return;
2014         }
2015
2016         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2017                 sequence->version);
2018
2019         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2020         if (!seq_data)
2021                 return;
2022
2023         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2024         if (!data)
2025                 return;
2026
2027         /* Parse the sequences, store pointers to each sequence. */
2028         for (;;) {
2029                 u8 seq_id = *(data + index);
2030                 if (seq_id == MIPI_SEQ_END)
2031                         break;
2032
2033                 if (seq_id >= MIPI_SEQ_MAX) {
2034                         drm_err(&i915->drm, "Unknown sequence %u\n",
2035                                 seq_id);
2036                         goto err;
2037                 }
2038
2039                 /* Log about presence of sequences we won't run. */
2040                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2041                         drm_dbg_kms(&i915->drm,
2042                                     "Unsupported sequence %u\n", seq_id);
2043
2044                 panel->vbt.dsi.sequence[seq_id] = data + index;
2045
2046                 if (sequence->version >= 3)
2047                         index = goto_next_sequence_v3(data, index, seq_size);
2048                 else
2049                         index = goto_next_sequence(data, index, seq_size);
2050                 if (!index) {
2051                         drm_err(&i915->drm, "Invalid sequence %u\n",
2052                                 seq_id);
2053                         goto err;
2054                 }
2055         }
2056
2057         panel->vbt.dsi.data = data;
2058         panel->vbt.dsi.size = seq_size;
2059         panel->vbt.dsi.seq_version = sequence->version;
2060
2061         fixup_mipi_sequences(i915, panel);
2062
2063         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2064         return;
2065
2066 err:
2067         kfree(data);
2068         memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2069 }
2070
2071 static void
2072 parse_compression_parameters(struct drm_i915_private *i915)
2073 {
2074         const struct bdb_compression_parameters *params;
2075         struct intel_bios_encoder_data *devdata;
2076         const struct child_device_config *child;
2077         u16 block_size;
2078         int index;
2079
2080         if (i915->display.vbt.version < 198)
2081                 return;
2082
2083         params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2084         if (params) {
2085                 /* Sanity checks */
2086                 if (params->entry_size != sizeof(params->data[0])) {
2087                         drm_dbg_kms(&i915->drm,
2088                                     "VBT: unsupported compression param entry size\n");
2089                         return;
2090                 }
2091
2092                 block_size = get_blocksize(params);
2093                 if (block_size < sizeof(*params)) {
2094                         drm_dbg_kms(&i915->drm,
2095                                     "VBT: expected 16 compression param entries\n");
2096                         return;
2097                 }
2098         }
2099
2100         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2101                 child = &devdata->child;
2102
2103                 if (!child->compression_enable)
2104                         continue;
2105
2106                 if (!params) {
2107                         drm_dbg_kms(&i915->drm,
2108                                     "VBT: compression params not available\n");
2109                         continue;
2110                 }
2111
2112                 if (child->compression_method_cps) {
2113                         drm_dbg_kms(&i915->drm,
2114                                     "VBT: CPS compression not supported\n");
2115                         continue;
2116                 }
2117
2118                 index = child->compression_structure_index;
2119
2120                 devdata->dsc = kmemdup(&params->data[index],
2121                                        sizeof(*devdata->dsc), GFP_KERNEL);
2122         }
2123 }
2124
2125 static u8 translate_iboost(u8 val)
2126 {
2127         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2128
2129         if (val >= ARRAY_SIZE(mapping)) {
2130                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2131                 return 0;
2132         }
2133         return mapping[val];
2134 }
2135
2136 static const u8 cnp_ddc_pin_map[] = {
2137         [0] = 0, /* N/A */
2138         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2139         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2140         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2141         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2142 };
2143
2144 static const u8 icp_ddc_pin_map[] = {
2145         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2146         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2147         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2148         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2149         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2150         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2151         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2152         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2153         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2154 };
2155
2156 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2157         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2158         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2159         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2160         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2161 };
2162
2163 static const u8 adls_ddc_pin_map[] = {
2164         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2165         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2166         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2167         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2168         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2169 };
2170
2171 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2172         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2173         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2174         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2175 };
2176
2177 static const u8 adlp_ddc_pin_map[] = {
2178         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2179         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2180         [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2181         [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2182         [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2183         [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2184 };
2185
2186 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2187 {
2188         const u8 *ddc_pin_map;
2189         int n_entries;
2190
2191         if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2192                 ddc_pin_map = adlp_ddc_pin_map;
2193                 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2194         } else if (IS_ALDERLAKE_S(i915)) {
2195                 ddc_pin_map = adls_ddc_pin_map;
2196                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2197         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2198                 return vbt_pin;
2199         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2200                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2201                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2202         } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2203                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2204                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2205         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2206                 ddc_pin_map = icp_ddc_pin_map;
2207                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2208         } else if (HAS_PCH_CNP(i915)) {
2209                 ddc_pin_map = cnp_ddc_pin_map;
2210                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2211         } else {
2212                 /* Assuming direct map */
2213                 return vbt_pin;
2214         }
2215
2216         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2217                 return ddc_pin_map[vbt_pin];
2218
2219         drm_dbg_kms(&i915->drm,
2220                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2221                     vbt_pin);
2222         return 0;
2223 }
2224
2225 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2226 {
2227         const struct intel_bios_encoder_data *devdata;
2228         enum port port;
2229
2230         if (!ddc_pin)
2231                 return PORT_NONE;
2232
2233         for_each_port(port) {
2234                 devdata = i915->display.vbt.ports[port];
2235
2236                 if (devdata && ddc_pin == devdata->child.ddc_pin)
2237                         return port;
2238         }
2239
2240         return PORT_NONE;
2241 }
2242
2243 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2244                              enum port port)
2245 {
2246         struct drm_i915_private *i915 = devdata->i915;
2247         struct child_device_config *child;
2248         u8 mapped_ddc_pin;
2249         enum port p;
2250
2251         if (!devdata->child.ddc_pin)
2252                 return;
2253
2254         mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2255         if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2256                 drm_dbg_kms(&i915->drm,
2257                             "Port %c has invalid DDC pin %d, "
2258                             "sticking to defaults\n",
2259                             port_name(port), mapped_ddc_pin);
2260                 devdata->child.ddc_pin = 0;
2261                 return;
2262         }
2263
2264         p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2265         if (p == PORT_NONE)
2266                 return;
2267
2268         drm_dbg_kms(&i915->drm,
2269                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
2270                     "disabling port %c DVI/HDMI support\n",
2271                     port_name(port), mapped_ddc_pin,
2272                     port_name(p), port_name(p));
2273
2274         /*
2275          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2276          * couldn't exist on the shared port. Otherwise they share the same ddc
2277          * pin and system couldn't communicate with them separately.
2278          *
2279          * Give inverse child device order the priority, last one wins. Yes,
2280          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2281          * port A and port E with the same AUX ch and we must pick port E :(
2282          */
2283         child = &i915->display.vbt.ports[p]->child;
2284
2285         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2286         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2287
2288         child->ddc_pin = 0;
2289 }
2290
2291 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2292 {
2293         const struct intel_bios_encoder_data *devdata;
2294         enum port port;
2295
2296         if (!aux_ch)
2297                 return PORT_NONE;
2298
2299         for_each_port(port) {
2300                 devdata = i915->display.vbt.ports[port];
2301
2302                 if (devdata && aux_ch == devdata->child.aux_channel)
2303                         return port;
2304         }
2305
2306         return PORT_NONE;
2307 }
2308
2309 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2310                             enum port port)
2311 {
2312         struct drm_i915_private *i915 = devdata->i915;
2313         struct child_device_config *child;
2314         enum port p;
2315
2316         p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2317         if (p == PORT_NONE)
2318                 return;
2319
2320         drm_dbg_kms(&i915->drm,
2321                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
2322                     "disabling port %c DP support\n",
2323                     port_name(port), devdata->child.aux_channel,
2324                     port_name(p), port_name(p));
2325
2326         /*
2327          * If we have multiple ports supposedly sharing the aux channel, then DP
2328          * couldn't exist on the shared port. Otherwise they share the same aux
2329          * channel and system couldn't communicate with them separately.
2330          *
2331          * Give inverse child device order the priority, last one wins. Yes,
2332          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2333          * port A and port E with the same AUX ch and we must pick port E :(
2334          */
2335         child = &i915->display.vbt.ports[p]->child;
2336
2337         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2338         child->aux_channel = 0;
2339 }
2340
2341 static u8 dvo_port_type(u8 dvo_port)
2342 {
2343         switch (dvo_port) {
2344         case DVO_PORT_HDMIA:
2345         case DVO_PORT_HDMIB:
2346         case DVO_PORT_HDMIC:
2347         case DVO_PORT_HDMID:
2348         case DVO_PORT_HDMIE:
2349         case DVO_PORT_HDMIF:
2350         case DVO_PORT_HDMIG:
2351         case DVO_PORT_HDMIH:
2352         case DVO_PORT_HDMII:
2353                 return DVO_PORT_HDMIA;
2354         case DVO_PORT_DPA:
2355         case DVO_PORT_DPB:
2356         case DVO_PORT_DPC:
2357         case DVO_PORT_DPD:
2358         case DVO_PORT_DPE:
2359         case DVO_PORT_DPF:
2360         case DVO_PORT_DPG:
2361         case DVO_PORT_DPH:
2362         case DVO_PORT_DPI:
2363                 return DVO_PORT_DPA;
2364         case DVO_PORT_MIPIA:
2365         case DVO_PORT_MIPIB:
2366         case DVO_PORT_MIPIC:
2367         case DVO_PORT_MIPID:
2368                 return DVO_PORT_MIPIA;
2369         default:
2370                 return dvo_port;
2371         }
2372 }
2373
2374 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2375                                     const int port_mapping[][3], u8 dvo_port)
2376 {
2377         enum port port;
2378         int i;
2379
2380         for (port = PORT_A; port < n_ports; port++) {
2381                 for (i = 0; i < n_dvo; i++) {
2382                         if (port_mapping[port][i] == -1)
2383                                 break;
2384
2385                         if (dvo_port == port_mapping[port][i])
2386                                 return port;
2387                 }
2388         }
2389
2390         return PORT_NONE;
2391 }
2392
2393 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2394                                   u8 dvo_port)
2395 {
2396         /*
2397          * Each DDI port can have more than one value on the "DVO Port" field,
2398          * so look for all the possible values for each port.
2399          */
2400         static const int port_mapping[][3] = {
2401                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2402                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2403                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2404                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2405                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2406                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2407                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2408                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2409                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2410         };
2411         /*
2412          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2413          * map to DDI A,B,TC1,TC2 respectively.
2414          */
2415         static const int rkl_port_mapping[][3] = {
2416                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2417                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2418                 [PORT_C] = { -1 },
2419                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2420                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2421         };
2422         /*
2423          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2424          * PORT_F and PORT_G, we need to map that to correct VBT sections.
2425          */
2426         static const int adls_port_mapping[][3] = {
2427                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2428                 [PORT_B] = { -1 },
2429                 [PORT_C] = { -1 },
2430                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2431                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2432                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2433                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2434         };
2435         static const int xelpd_port_mapping[][3] = {
2436                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2437                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2438                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2439                 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2440                 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2441                 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2442                 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2443                 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2444                 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2445         };
2446
2447         if (DISPLAY_VER(i915) >= 13)
2448                 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2449                                           ARRAY_SIZE(xelpd_port_mapping[0]),
2450                                           xelpd_port_mapping,
2451                                           dvo_port);
2452         else if (IS_ALDERLAKE_S(i915))
2453                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2454                                           ARRAY_SIZE(adls_port_mapping[0]),
2455                                           adls_port_mapping,
2456                                           dvo_port);
2457         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2458                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2459                                           ARRAY_SIZE(rkl_port_mapping[0]),
2460                                           rkl_port_mapping,
2461                                           dvo_port);
2462         else
2463                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2464                                           ARRAY_SIZE(port_mapping[0]),
2465                                           port_mapping,
2466                                           dvo_port);
2467 }
2468
2469 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2470 {
2471         switch (vbt_max_link_rate) {
2472         default:
2473         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2474                 return 0;
2475         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2476                 return 2000000;
2477         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2478                 return 1350000;
2479         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2480                 return 1000000;
2481         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2482                 return 810000;
2483         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2484                 return 540000;
2485         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2486                 return 270000;
2487         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2488                 return 162000;
2489         }
2490 }
2491
2492 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2493 {
2494         switch (vbt_max_link_rate) {
2495         default:
2496         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2497                 return 810000;
2498         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2499                 return 540000;
2500         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2501                 return 270000;
2502         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2503                 return 162000;
2504         }
2505 }
2506
2507 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2508 {
2509         if (!devdata || devdata->i915->display.vbt.version < 216)
2510                 return 0;
2511
2512         if (devdata->i915->display.vbt.version >= 230)
2513                 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2514         else
2515                 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2516 }
2517
2518 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2519 {
2520         if (!devdata || devdata->i915->display.vbt.version < 244)
2521                 return 0;
2522
2523         return devdata->child.dp_max_lane_count + 1;
2524 }
2525
2526 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2527                                  enum port port)
2528 {
2529         struct drm_i915_private *i915 = devdata->i915;
2530         bool is_hdmi;
2531
2532         if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2533                 return;
2534
2535         if (!intel_bios_encoder_supports_dvi(devdata))
2536                 return;
2537
2538         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2539
2540         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2541                     is_hdmi ? "/HDMI" : "");
2542
2543         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2544         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2545 }
2546
2547 static bool
2548 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2549 {
2550         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2551 }
2552
2553 bool
2554 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2555 {
2556         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2557 }
2558
2559 bool
2560 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2561 {
2562         return intel_bios_encoder_supports_dvi(devdata) &&
2563                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2564 }
2565
2566 bool
2567 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2568 {
2569         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2570 }
2571
2572 static bool
2573 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2574 {
2575         return intel_bios_encoder_supports_dp(devdata) &&
2576                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2577 }
2578
2579 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2580 {
2581         if (!devdata || devdata->i915->display.vbt.version < 158)
2582                 return -1;
2583
2584         return devdata->child.hdmi_level_shifter_value;
2585 }
2586
2587 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2588 {
2589         if (!devdata || devdata->i915->display.vbt.version < 204)
2590                 return 0;
2591
2592         switch (devdata->child.hdmi_max_data_rate) {
2593         default:
2594                 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2595                 fallthrough;
2596         case HDMI_MAX_DATA_RATE_PLATFORM:
2597                 return 0;
2598         case HDMI_MAX_DATA_RATE_594:
2599                 return 594000;
2600         case HDMI_MAX_DATA_RATE_340:
2601                 return 340000;
2602         case HDMI_MAX_DATA_RATE_300:
2603                 return 300000;
2604         case HDMI_MAX_DATA_RATE_297:
2605                 return 297000;
2606         case HDMI_MAX_DATA_RATE_165:
2607                 return 165000;
2608         }
2609 }
2610
2611 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2612 {
2613         /*
2614          * On some ICL SKUs port F is not present, but broken VBTs mark
2615          * the port as present. Only try to initialize port F for the
2616          * SKUs that may actually have it.
2617          */
2618         if (port == PORT_F && IS_ICELAKE(i915))
2619                 return IS_ICL_WITH_PORT_F(i915);
2620
2621         return true;
2622 }
2623
2624 static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2625                            enum port port)
2626 {
2627         struct drm_i915_private *i915 = devdata->i915;
2628         const struct child_device_config *child = &devdata->child;
2629         bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2630         int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2631
2632         is_dvi = intel_bios_encoder_supports_dvi(devdata);
2633         is_dp = intel_bios_encoder_supports_dp(devdata);
2634         is_crt = intel_bios_encoder_supports_crt(devdata);
2635         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2636         is_edp = intel_bios_encoder_supports_edp(devdata);
2637
2638         supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2639         supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2640
2641         drm_dbg_kms(&i915->drm,
2642                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2643                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2644                     HAS_LSPCON(i915) && child->lspcon,
2645                     supports_typec_usb, supports_tbt,
2646                     devdata->dsc != NULL);
2647
2648         hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2649         if (hdmi_level_shift >= 0) {
2650                 drm_dbg_kms(&i915->drm,
2651                             "Port %c VBT HDMI level shift: %d\n",
2652                             port_name(port), hdmi_level_shift);
2653         }
2654
2655         max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2656         if (max_tmds_clock)
2657                 drm_dbg_kms(&i915->drm,
2658                             "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2659                             port_name(port), max_tmds_clock);
2660
2661         /* I_boost config for SKL and above */
2662         dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2663         if (dp_boost_level)
2664                 drm_dbg_kms(&i915->drm,
2665                             "Port %c VBT (e)DP boost level: %d\n",
2666                             port_name(port), dp_boost_level);
2667
2668         hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2669         if (hdmi_boost_level)
2670                 drm_dbg_kms(&i915->drm,
2671                             "Port %c VBT HDMI boost level: %d\n",
2672                             port_name(port), hdmi_boost_level);
2673
2674         dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2675         if (dp_max_link_rate)
2676                 drm_dbg_kms(&i915->drm,
2677                             "Port %c VBT DP max link rate: %d\n",
2678                             port_name(port), dp_max_link_rate);
2679
2680         /*
2681          * FIXME need to implement support for VBT
2682          * vswing/preemph tables should this ever trigger.
2683          */
2684         drm_WARN(&i915->drm, child->use_vbt_vswing,
2685                  "Port %c asks to use VBT vswing/preemph tables\n",
2686                  port_name(port));
2687 }
2688
2689 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2690 {
2691         struct drm_i915_private *i915 = devdata->i915;
2692         const struct child_device_config *child = &devdata->child;
2693         enum port port;
2694
2695         port = dvo_port_to_port(i915, child->dvo_port);
2696         if (port == PORT_NONE)
2697                 return;
2698
2699         if (!is_port_valid(i915, port)) {
2700                 drm_dbg_kms(&i915->drm,
2701                             "VBT reports port %c as supported, but that can't be true: skipping\n",
2702                             port_name(port));
2703                 return;
2704         }
2705
2706         if (i915->display.vbt.ports[port]) {
2707                 drm_dbg_kms(&i915->drm,
2708                             "More than one child device for port %c in VBT, using the first.\n",
2709                             port_name(port));
2710                 return;
2711         }
2712
2713         sanitize_device_type(devdata, port);
2714
2715         if (intel_bios_encoder_supports_dvi(devdata))
2716                 sanitize_ddc_pin(devdata, port);
2717
2718         if (intel_bios_encoder_supports_dp(devdata))
2719                 sanitize_aux_ch(devdata, port);
2720
2721         i915->display.vbt.ports[port] = devdata;
2722 }
2723
2724 static bool has_ddi_port_info(struct drm_i915_private *i915)
2725 {
2726         return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2727 }
2728
2729 static void parse_ddi_ports(struct drm_i915_private *i915)
2730 {
2731         struct intel_bios_encoder_data *devdata;
2732         enum port port;
2733
2734         if (!has_ddi_port_info(i915))
2735                 return;
2736
2737         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2738                 parse_ddi_port(devdata);
2739
2740         for_each_port(port) {
2741                 if (i915->display.vbt.ports[port])
2742                         print_ddi_port(i915->display.vbt.ports[port], port);
2743         }
2744 }
2745
2746 static void
2747 parse_general_definitions(struct drm_i915_private *i915)
2748 {
2749         const struct bdb_general_definitions *defs;
2750         struct intel_bios_encoder_data *devdata;
2751         const struct child_device_config *child;
2752         int i, child_device_num;
2753         u8 expected_size;
2754         u16 block_size;
2755         int bus_pin;
2756
2757         defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2758         if (!defs) {
2759                 drm_dbg_kms(&i915->drm,
2760                             "No general definition block is found, no devices defined.\n");
2761                 return;
2762         }
2763
2764         block_size = get_blocksize(defs);
2765         if (block_size < sizeof(*defs)) {
2766                 drm_dbg_kms(&i915->drm,
2767                             "General definitions block too small (%u)\n",
2768                             block_size);
2769                 return;
2770         }
2771
2772         bus_pin = defs->crt_ddc_gmbus_pin;
2773         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2774         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2775                 i915->display.vbt.crt_ddc_pin = bus_pin;
2776
2777         if (i915->display.vbt.version < 106) {
2778                 expected_size = 22;
2779         } else if (i915->display.vbt.version < 111) {
2780                 expected_size = 27;
2781         } else if (i915->display.vbt.version < 195) {
2782                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2783         } else if (i915->display.vbt.version == 195) {
2784                 expected_size = 37;
2785         } else if (i915->display.vbt.version <= 215) {
2786                 expected_size = 38;
2787         } else if (i915->display.vbt.version <= 237) {
2788                 expected_size = 39;
2789         } else {
2790                 expected_size = sizeof(*child);
2791                 BUILD_BUG_ON(sizeof(*child) < 39);
2792                 drm_dbg(&i915->drm,
2793                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2794                         i915->display.vbt.version, expected_size);
2795         }
2796
2797         /* Flag an error for unexpected size, but continue anyway. */
2798         if (defs->child_dev_size != expected_size)
2799                 drm_err(&i915->drm,
2800                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2801                         defs->child_dev_size, expected_size, i915->display.vbt.version);
2802
2803         /* The legacy sized child device config is the minimum we need. */
2804         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2805                 drm_dbg_kms(&i915->drm,
2806                             "Child device config size %u is too small.\n",
2807                             defs->child_dev_size);
2808                 return;
2809         }
2810
2811         /* get the number of child device */
2812         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2813
2814         for (i = 0; i < child_device_num; i++) {
2815                 child = child_device_ptr(defs, i);
2816                 if (!child->device_type)
2817                         continue;
2818
2819                 drm_dbg_kms(&i915->drm,
2820                             "Found VBT child device with type 0x%x\n",
2821                             child->device_type);
2822
2823                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2824                 if (!devdata)
2825                         break;
2826
2827                 devdata->i915 = i915;
2828
2829                 /*
2830                  * Copy as much as we know (sizeof) and is available
2831                  * (child_dev_size) of the child device config. Accessing the
2832                  * data must depend on VBT version.
2833                  */
2834                 memcpy(&devdata->child, child,
2835                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2836
2837                 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2838         }
2839
2840         if (list_empty(&i915->display.vbt.display_devices))
2841                 drm_dbg_kms(&i915->drm,
2842                             "no child dev is parsed from VBT\n");
2843 }
2844
2845 /* Common defaults which may be overridden by VBT. */
2846 static void
2847 init_vbt_defaults(struct drm_i915_private *i915)
2848 {
2849         i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2850
2851         /* general features */
2852         i915->display.vbt.int_tv_support = 1;
2853         i915->display.vbt.int_crt_support = 1;
2854
2855         /* driver features */
2856         i915->display.vbt.int_lvds_support = 1;
2857
2858         /* Default to using SSC */
2859         i915->display.vbt.lvds_use_ssc = 1;
2860         /*
2861          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2862          * clock for LVDS.
2863          */
2864         i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2865                                                                    !HAS_PCH_SPLIT(i915));
2866         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2867                     i915->display.vbt.lvds_ssc_freq);
2868 }
2869
2870 /* Common defaults which may be overridden by VBT. */
2871 static void
2872 init_vbt_panel_defaults(struct intel_panel *panel)
2873 {
2874         /* Default to having backlight */
2875         panel->vbt.backlight.present = true;
2876
2877         /* LFP panel data */
2878         panel->vbt.lvds_dither = true;
2879 }
2880
2881 /* Defaults to initialize only if there is no VBT. */
2882 static void
2883 init_vbt_missing_defaults(struct drm_i915_private *i915)
2884 {
2885         enum port port;
2886         int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2887                     BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2888
2889         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2890                 return;
2891
2892         for_each_port_masked(port, ports) {
2893                 struct intel_bios_encoder_data *devdata;
2894                 struct child_device_config *child;
2895                 enum phy phy = intel_port_to_phy(i915, port);
2896
2897                 /*
2898                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2899                  * to detect it.
2900                  */
2901                 if (intel_phy_is_tc(i915, phy))
2902                         continue;
2903
2904                 /* Create fake child device config */
2905                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2906                 if (!devdata)
2907                         break;
2908
2909                 devdata->i915 = i915;
2910                 child = &devdata->child;
2911
2912                 if (port == PORT_F)
2913                         child->dvo_port = DVO_PORT_HDMIF;
2914                 else if (port == PORT_E)
2915                         child->dvo_port = DVO_PORT_HDMIE;
2916                 else
2917                         child->dvo_port = DVO_PORT_HDMIA + port;
2918
2919                 if (port != PORT_A && port != PORT_E)
2920                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2921
2922                 if (port != PORT_E)
2923                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2924
2925                 if (port == PORT_A)
2926                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2927
2928                 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2929
2930                 drm_dbg_kms(&i915->drm,
2931                             "Generating default VBT child device with type 0x04%x on port %c\n",
2932                             child->device_type, port_name(port));
2933         }
2934
2935         /* Bypass some minimum baseline VBT version checks */
2936         i915->display.vbt.version = 155;
2937 }
2938
2939 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2940 {
2941         const void *_vbt = vbt;
2942
2943         return _vbt + vbt->bdb_offset;
2944 }
2945
2946 /**
2947  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2948  * @buf:        pointer to a buffer to validate
2949  * @size:       size of the buffer
2950  *
2951  * Returns true on valid VBT.
2952  */
2953 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2954 {
2955         const struct vbt_header *vbt = buf;
2956         const struct bdb_header *bdb;
2957
2958         if (!vbt)
2959                 return false;
2960
2961         if (sizeof(struct vbt_header) > size) {
2962                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2963                 return false;
2964         }
2965
2966         if (memcmp(vbt->signature, "$VBT", 4)) {
2967                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2968                 return false;
2969         }
2970
2971         if (vbt->vbt_size > size) {
2972                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2973                 return false;
2974         }
2975
2976         size = vbt->vbt_size;
2977
2978         if (range_overflows_t(size_t,
2979                               vbt->bdb_offset,
2980                               sizeof(struct bdb_header),
2981                               size)) {
2982                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2983                 return false;
2984         }
2985
2986         bdb = get_bdb_header(vbt);
2987         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2988                 DRM_DEBUG_DRIVER("BDB incomplete\n");
2989                 return false;
2990         }
2991
2992         return vbt;
2993 }
2994
2995 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2996 {
2997         u32 count, data, found, store = 0;
2998         u32 static_region, oprom_offset;
2999         u32 oprom_size = 0x200000;
3000         u16 vbt_size;
3001         u32 *vbt;
3002
3003         static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3004         static_region &= OPTIONROM_SPI_REGIONID_MASK;
3005         intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3006
3007         oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3008         oprom_offset &= OROM_OFFSET_MASK;
3009
3010         for (count = 0; count < oprom_size; count += 4) {
3011                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3012                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3013
3014                 if (data == *((const u32 *)"$VBT")) {
3015                         found = oprom_offset + count;
3016                         break;
3017                 }
3018         }
3019
3020         if (count >= oprom_size)
3021                 goto err_not_found;
3022
3023         /* Get VBT size and allocate space for the VBT */
3024         intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3025                    offsetof(struct vbt_header, vbt_size));
3026         vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3027         vbt_size &= 0xffff;
3028
3029         vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3030         if (!vbt)
3031                 goto err_not_found;
3032
3033         for (count = 0; count < vbt_size; count += 4) {
3034                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3035                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3036                 *(vbt + store++) = data;
3037         }
3038
3039         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3040                 goto err_free_vbt;
3041
3042         drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3043
3044         return (struct vbt_header *)vbt;
3045
3046 err_free_vbt:
3047         kfree(vbt);
3048 err_not_found:
3049         return NULL;
3050 }
3051
3052 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3053 {
3054         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3055         void __iomem *p = NULL, *oprom;
3056         struct vbt_header *vbt;
3057         u16 vbt_size;
3058         size_t i, size;
3059
3060         oprom = pci_map_rom(pdev, &size);
3061         if (!oprom)
3062                 return NULL;
3063
3064         /* Scour memory looking for the VBT signature. */
3065         for (i = 0; i + 4 < size; i += 4) {
3066                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3067                         continue;
3068
3069                 p = oprom + i;
3070                 size -= i;
3071                 break;
3072         }
3073
3074         if (!p)
3075                 goto err_unmap_oprom;
3076
3077         if (sizeof(struct vbt_header) > size) {
3078                 drm_dbg(&i915->drm, "VBT header incomplete\n");
3079                 goto err_unmap_oprom;
3080         }
3081
3082         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3083         if (vbt_size > size) {
3084                 drm_dbg(&i915->drm,
3085                         "VBT incomplete (vbt_size overflows)\n");
3086                 goto err_unmap_oprom;
3087         }
3088
3089         /* The rest will be validated by intel_bios_is_valid_vbt() */
3090         vbt = kmalloc(vbt_size, GFP_KERNEL);
3091         if (!vbt)
3092                 goto err_unmap_oprom;
3093
3094         memcpy_fromio(vbt, p, vbt_size);
3095
3096         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3097                 goto err_free_vbt;
3098
3099         pci_unmap_rom(pdev, oprom);
3100
3101         drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3102
3103         return vbt;
3104
3105 err_free_vbt:
3106         kfree(vbt);
3107 err_unmap_oprom:
3108         pci_unmap_rom(pdev, oprom);
3109
3110         return NULL;
3111 }
3112
3113 /**
3114  * intel_bios_init - find VBT and initialize settings from the BIOS
3115  * @i915: i915 device instance
3116  *
3117  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3118  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3119  * initialize some defaults if the VBT is not present at all.
3120  */
3121 void intel_bios_init(struct drm_i915_private *i915)
3122 {
3123         const struct vbt_header *vbt = i915->display.opregion.vbt;
3124         struct vbt_header *oprom_vbt = NULL;
3125         const struct bdb_header *bdb;
3126
3127         INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3128         INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3129
3130         if (!HAS_DISPLAY(i915)) {
3131                 drm_dbg_kms(&i915->drm,
3132                             "Skipping VBT init due to disabled display.\n");
3133                 return;
3134         }
3135
3136         init_vbt_defaults(i915);
3137
3138         /*
3139          * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3140          * PCI mapping
3141          */
3142         if (!vbt && IS_DGFX(i915)) {
3143                 oprom_vbt = spi_oprom_get_vbt(i915);
3144                 vbt = oprom_vbt;
3145         }
3146
3147         if (!vbt) {
3148                 oprom_vbt = oprom_get_vbt(i915);
3149                 vbt = oprom_vbt;
3150         }
3151
3152         if (!vbt)
3153                 goto out;
3154
3155         bdb = get_bdb_header(vbt);
3156         i915->display.vbt.version = bdb->version;
3157
3158         drm_dbg_kms(&i915->drm,
3159                     "VBT signature \"%.*s\", BDB version %d\n",
3160                     (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3161
3162         init_bdb_blocks(i915, bdb);
3163
3164         /* Grab useful general definitions */
3165         parse_general_features(i915);
3166         parse_general_definitions(i915);
3167         parse_driver_features(i915);
3168
3169         /* Depends on child device list */
3170         parse_compression_parameters(i915);
3171
3172 out:
3173         if (!vbt) {
3174                 drm_info(&i915->drm,
3175                          "Failed to find VBIOS tables (VBT)\n");
3176                 init_vbt_missing_defaults(i915);
3177         }
3178
3179         /* Further processing on pre-parsed or generated child device data */
3180         parse_sdvo_device_mapping(i915);
3181         parse_ddi_ports(i915);
3182
3183         kfree(oprom_vbt);
3184 }
3185
3186 void intel_bios_init_panel(struct drm_i915_private *i915,
3187                            struct intel_panel *panel,
3188                            const struct intel_bios_encoder_data *devdata,
3189                            const struct edid *edid)
3190 {
3191         init_vbt_panel_defaults(panel);
3192
3193         panel->vbt.panel_type = get_panel_type(i915, devdata, edid);
3194
3195         parse_panel_options(i915, panel);
3196         parse_generic_dtd(i915, panel);
3197         parse_lfp_data(i915, panel);
3198         parse_lfp_backlight(i915, panel);
3199         parse_sdvo_panel_data(i915, panel);
3200         parse_panel_driver_features(i915, panel);
3201         parse_power_conservation_features(i915, panel);
3202         parse_edp(i915, panel);
3203         parse_psr(i915, panel);
3204         parse_mipi_config(i915, panel);
3205         parse_mipi_sequence(i915, panel);
3206 }
3207
3208 /**
3209  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3210  * @i915: i915 device instance
3211  */
3212 void intel_bios_driver_remove(struct drm_i915_private *i915)
3213 {
3214         struct intel_bios_encoder_data *devdata, *nd;
3215         struct bdb_block_entry *entry, *ne;
3216
3217         list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3218                 list_del(&devdata->node);
3219                 kfree(devdata->dsc);
3220                 kfree(devdata);
3221         }
3222
3223         list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3224                 list_del(&entry->node);
3225                 kfree(entry);
3226         }
3227 }
3228
3229 void intel_bios_fini_panel(struct intel_panel *panel)
3230 {
3231         kfree(panel->vbt.sdvo_lvds_vbt_mode);
3232         panel->vbt.sdvo_lvds_vbt_mode = NULL;
3233         kfree(panel->vbt.lfp_lvds_vbt_mode);
3234         panel->vbt.lfp_lvds_vbt_mode = NULL;
3235         kfree(panel->vbt.dsi.data);
3236         panel->vbt.dsi.data = NULL;
3237         kfree(panel->vbt.dsi.pps);
3238         panel->vbt.dsi.pps = NULL;
3239         kfree(panel->vbt.dsi.config);
3240         panel->vbt.dsi.config = NULL;
3241         kfree(panel->vbt.dsi.deassert_seq);
3242         panel->vbt.dsi.deassert_seq = NULL;
3243 }
3244
3245 /**
3246  * intel_bios_is_tv_present - is integrated TV present in VBT
3247  * @i915: i915 device instance
3248  *
3249  * Return true if TV is present. If no child devices were parsed from VBT,
3250  * assume TV is present.
3251  */
3252 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3253 {
3254         const struct intel_bios_encoder_data *devdata;
3255         const struct child_device_config *child;
3256
3257         if (!i915->display.vbt.int_tv_support)
3258                 return false;
3259
3260         if (list_empty(&i915->display.vbt.display_devices))
3261                 return true;
3262
3263         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3264                 child = &devdata->child;
3265
3266                 /*
3267                  * If the device type is not TV, continue.
3268                  */
3269                 switch (child->device_type) {
3270                 case DEVICE_TYPE_INT_TV:
3271                 case DEVICE_TYPE_TV:
3272                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3273                         break;
3274                 default:
3275                         continue;
3276                 }
3277                 /* Only when the addin_offset is non-zero, it is regarded
3278                  * as present.
3279                  */
3280                 if (child->addin_offset)
3281                         return true;
3282         }
3283
3284         return false;
3285 }
3286
3287 /**
3288  * intel_bios_is_lvds_present - is LVDS present in VBT
3289  * @i915:       i915 device instance
3290  * @i2c_pin:    i2c pin for LVDS if present
3291  *
3292  * Return true if LVDS is present. If no child devices were parsed from VBT,
3293  * assume LVDS is present.
3294  */
3295 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3296 {
3297         const struct intel_bios_encoder_data *devdata;
3298         const struct child_device_config *child;
3299
3300         if (list_empty(&i915->display.vbt.display_devices))
3301                 return true;
3302
3303         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3304                 child = &devdata->child;
3305
3306                 /* If the device type is not LFP, continue.
3307                  * We have to check both the new identifiers as well as the
3308                  * old for compatibility with some BIOSes.
3309                  */
3310                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3311                     child->device_type != DEVICE_TYPE_LFP)
3312                         continue;
3313
3314                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3315                         *i2c_pin = child->i2c_pin;
3316
3317                 /* However, we cannot trust the BIOS writers to populate
3318                  * the VBT correctly.  Since LVDS requires additional
3319                  * information from AIM blocks, a non-zero addin offset is
3320                  * a good indicator that the LVDS is actually present.
3321                  */
3322                 if (child->addin_offset)
3323                         return true;
3324
3325                 /* But even then some BIOS writers perform some black magic
3326                  * and instantiate the device without reference to any
3327                  * additional data.  Trust that if the VBT was written into
3328                  * the OpRegion then they have validated the LVDS's existence.
3329                  */
3330                 if (i915->display.opregion.vbt)
3331                         return true;
3332         }
3333
3334         return false;
3335 }
3336
3337 /**
3338  * intel_bios_is_port_present - is the specified digital port present
3339  * @i915:       i915 device instance
3340  * @port:       port to check
3341  *
3342  * Return true if the device in %port is present.
3343  */
3344 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3345 {
3346         if (WARN_ON(!has_ddi_port_info(i915)))
3347                 return true;
3348
3349         return i915->display.vbt.ports[port];
3350 }
3351
3352 /**
3353  * intel_bios_is_port_edp - is the device in given port eDP
3354  * @i915:       i915 device instance
3355  * @port:       port to check
3356  *
3357  * Return true if the device in %port is eDP.
3358  */
3359 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3360 {
3361         const struct intel_bios_encoder_data *devdata =
3362                 intel_bios_encoder_data_lookup(i915, port);
3363
3364         return devdata && intel_bios_encoder_supports_edp(devdata);
3365 }
3366
3367 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3368 {
3369         const struct child_device_config *child = &devdata->child;
3370
3371         if (!intel_bios_encoder_supports_dp(devdata) ||
3372             !intel_bios_encoder_supports_hdmi(devdata))
3373                 return false;
3374
3375         if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3376                 return true;
3377
3378         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3379         if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3380             child->aux_channel != 0)
3381                 return true;
3382
3383         return false;
3384 }
3385
3386 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3387                                      enum port port)
3388 {
3389         const struct intel_bios_encoder_data *devdata =
3390                 intel_bios_encoder_data_lookup(i915, port);
3391
3392         return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3393 }
3394
3395 /**
3396  * intel_bios_is_dsi_present - is DSI present in VBT
3397  * @i915:       i915 device instance
3398  * @port:       port for DSI if present
3399  *
3400  * Return true if DSI is present, and return the port in %port.
3401  */
3402 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3403                                enum port *port)
3404 {
3405         const struct intel_bios_encoder_data *devdata;
3406         const struct child_device_config *child;
3407         u8 dvo_port;
3408
3409         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3410                 child = &devdata->child;
3411
3412                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3413                         continue;
3414
3415                 dvo_port = child->dvo_port;
3416
3417                 if (dvo_port == DVO_PORT_MIPIA ||
3418                     (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3419                     (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3420                         if (port)
3421                                 *port = dvo_port - DVO_PORT_MIPIA;
3422                         return true;
3423                 } else if (dvo_port == DVO_PORT_MIPIB ||
3424                            dvo_port == DVO_PORT_MIPIC ||
3425                            dvo_port == DVO_PORT_MIPID) {
3426                         drm_dbg_kms(&i915->drm,
3427                                     "VBT has unsupported DSI port %c\n",
3428                                     port_name(dvo_port - DVO_PORT_MIPIA));
3429                 }
3430         }
3431
3432         return false;
3433 }
3434
3435 static void fill_dsc(struct intel_crtc_state *crtc_state,
3436                      struct dsc_compression_parameters_entry *dsc,
3437                      int dsc_max_bpc)
3438 {
3439         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3440         int bpc = 8;
3441
3442         vdsc_cfg->dsc_version_major = dsc->version_major;
3443         vdsc_cfg->dsc_version_minor = dsc->version_minor;
3444
3445         if (dsc->support_12bpc && dsc_max_bpc >= 12)
3446                 bpc = 12;
3447         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3448                 bpc = 10;
3449         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3450                 bpc = 8;
3451         else
3452                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3453                               dsc_max_bpc);
3454
3455         crtc_state->pipe_bpp = bpc * 3;
3456
3457         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3458                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
3459
3460         /*
3461          * FIXME: This is ugly, and slice count should take DSC engine
3462          * throughput etc. into account.
3463          *
3464          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3465          */
3466         if (dsc->slices_per_line & BIT(2)) {
3467                 crtc_state->dsc.slice_count = 4;
3468         } else if (dsc->slices_per_line & BIT(1)) {
3469                 crtc_state->dsc.slice_count = 2;
3470         } else {
3471                 /* FIXME */
3472                 if (!(dsc->slices_per_line & BIT(0)))
3473                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3474
3475                 crtc_state->dsc.slice_count = 1;
3476         }
3477
3478         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3479             crtc_state->dsc.slice_count != 0)
3480                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3481                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
3482                               crtc_state->dsc.slice_count);
3483
3484         /*
3485          * The VBT rc_buffer_block_size and rc_buffer_size definitions
3486          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3487          */
3488         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3489                                                             dsc->rc_buffer_size);
3490
3491         /* FIXME: DSI spec says bpc + 1 for this one */
3492         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3493
3494         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3495
3496         vdsc_cfg->slice_height = dsc->slice_height;
3497 }
3498
3499 /* FIXME: initially DSI specific */
3500 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3501                                struct intel_crtc_state *crtc_state,
3502                                int dsc_max_bpc)
3503 {
3504         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3505         const struct intel_bios_encoder_data *devdata;
3506         const struct child_device_config *child;
3507
3508         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3509                 child = &devdata->child;
3510
3511                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3512                         continue;
3513
3514                 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3515                         if (!devdata->dsc)
3516                                 return false;
3517
3518                         if (crtc_state)
3519                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3520
3521                         return true;
3522                 }
3523         }
3524
3525         return false;
3526 }
3527
3528 /**
3529  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3530  * @i915:       i915 device instance
3531  * @port:       port to check
3532  *
3533  * Return true if HPD should be inverted for %port.
3534  */
3535 bool
3536 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3537                                 enum port port)
3538 {
3539         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3540
3541         if (drm_WARN_ON_ONCE(&i915->drm,
3542                              !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3543                 return false;
3544
3545         return devdata && devdata->child.hpd_invert;
3546 }
3547
3548 /**
3549  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3550  * @i915:       i915 device instance
3551  * @port:       port to check
3552  *
3553  * Return true if LSPCON is present on this port
3554  */
3555 bool
3556 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3557                              enum port port)
3558 {
3559         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3560
3561         return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3562 }
3563
3564 /**
3565  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3566  * @i915:       i915 device instance
3567  * @port:       port to check
3568  *
3569  * Return true if port requires lane reversal
3570  */
3571 bool
3572 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3573                                    enum port port)
3574 {
3575         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3576
3577         return devdata && devdata->child.lane_reversal;
3578 }
3579
3580 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3581                                    enum port port)
3582 {
3583         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3584         enum aux_ch aux_ch;
3585
3586         if (!devdata || !devdata->child.aux_channel) {
3587                 aux_ch = (enum aux_ch)port;
3588
3589                 drm_dbg_kms(&i915->drm,
3590                             "using AUX %c for port %c (platform default)\n",
3591                             aux_ch_name(aux_ch), port_name(port));
3592                 return aux_ch;
3593         }
3594
3595         /*
3596          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3597          * map to DDI A,B,TC1,TC2 respectively.
3598          *
3599          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3600          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3601          */
3602         switch (devdata->child.aux_channel) {
3603         case DP_AUX_A:
3604                 aux_ch = AUX_CH_A;
3605                 break;
3606         case DP_AUX_B:
3607                 if (IS_ALDERLAKE_S(i915))
3608                         aux_ch = AUX_CH_USBC1;
3609                 else
3610                         aux_ch = AUX_CH_B;
3611                 break;
3612         case DP_AUX_C:
3613                 if (IS_ALDERLAKE_S(i915))
3614                         aux_ch = AUX_CH_USBC2;
3615                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3616                         aux_ch = AUX_CH_USBC1;
3617                 else
3618                         aux_ch = AUX_CH_C;
3619                 break;
3620         case DP_AUX_D:
3621                 if (DISPLAY_VER(i915) >= 13)
3622                         aux_ch = AUX_CH_D_XELPD;
3623                 else if (IS_ALDERLAKE_S(i915))
3624                         aux_ch = AUX_CH_USBC3;
3625                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3626                         aux_ch = AUX_CH_USBC2;
3627                 else
3628                         aux_ch = AUX_CH_D;
3629                 break;
3630         case DP_AUX_E:
3631                 if (DISPLAY_VER(i915) >= 13)
3632                         aux_ch = AUX_CH_E_XELPD;
3633                 else if (IS_ALDERLAKE_S(i915))
3634                         aux_ch = AUX_CH_USBC4;
3635                 else
3636                         aux_ch = AUX_CH_E;
3637                 break;
3638         case DP_AUX_F:
3639                 if (DISPLAY_VER(i915) >= 13)
3640                         aux_ch = AUX_CH_USBC1;
3641                 else
3642                         aux_ch = AUX_CH_F;
3643                 break;
3644         case DP_AUX_G:
3645                 if (DISPLAY_VER(i915) >= 13)
3646                         aux_ch = AUX_CH_USBC2;
3647                 else
3648                         aux_ch = AUX_CH_G;
3649                 break;
3650         case DP_AUX_H:
3651                 if (DISPLAY_VER(i915) >= 13)
3652                         aux_ch = AUX_CH_USBC3;
3653                 else
3654                         aux_ch = AUX_CH_H;
3655                 break;
3656         case DP_AUX_I:
3657                 if (DISPLAY_VER(i915) >= 13)
3658                         aux_ch = AUX_CH_USBC4;
3659                 else
3660                         aux_ch = AUX_CH_I;
3661                 break;
3662         default:
3663                 MISSING_CASE(devdata->child.aux_channel);
3664                 aux_ch = AUX_CH_A;
3665                 break;
3666         }
3667
3668         drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3669                     aux_ch_name(aux_ch), port_name(port));
3670
3671         return aux_ch;
3672 }
3673
3674 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3675 {
3676         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3677         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3678
3679         return _intel_bios_max_tmds_clock(devdata);
3680 }
3681
3682 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3683 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3684 {
3685         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3686         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3687
3688         return _intel_bios_hdmi_level_shift(devdata);
3689 }
3690
3691 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3692 {
3693         if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3694                 return 0;
3695
3696         return translate_iboost(devdata->child.dp_iboost_level);
3697 }
3698
3699 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3700 {
3701         if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3702                 return 0;
3703
3704         return translate_iboost(devdata->child.hdmi_iboost_level);
3705 }
3706
3707 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3708 {
3709         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3710         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3711
3712         return _intel_bios_dp_max_link_rate(devdata);
3713 }
3714
3715 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder)
3716 {
3717         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3718         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3719
3720         return _intel_bios_dp_max_lane_count(devdata);
3721 }
3722
3723 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3724 {
3725         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3726         const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3727
3728         if (!devdata || !devdata->child.ddc_pin)
3729                 return 0;
3730
3731         return map_ddc_pin(i915, devdata->child.ddc_pin);
3732 }
3733
3734 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3735 {
3736         return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3737 }
3738
3739 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3740 {
3741         return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3742 }
3743
3744 const struct intel_bios_encoder_data *
3745 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3746 {
3747         return i915->display.vbt.ports[port];
3748 }