drm/i915/bios: fix slab-out-of-bounds access
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_dp_helper.h>
29
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33
34 #include "i915_drv.h"
35
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60
61 /* Wrapper for VBT child device config */
62 struct intel_bios_encoder_data {
63         struct drm_i915_private *i915;
64
65         struct child_device_config child;
66         struct dsc_compression_parameters_entry *dsc;
67         struct list_head node;
68 };
69
70 #define SLAVE_ADDR1     0x70
71 #define SLAVE_ADDR2     0x72
72
73 /* Get BDB block size given a pointer to Block ID. */
74 static u32 _get_blocksize(const u8 *block_base)
75 {
76         /* The MIPI Sequence Block v3+ has a separate size field. */
77         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
78                 return *((const u32 *)(block_base + 4));
79         else
80                 return *((const u16 *)(block_base + 1));
81 }
82
83 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
84 static u32 get_blocksize(const void *block_data)
85 {
86         return _get_blocksize(block_data - 3);
87 }
88
89 static const void *
90 find_section(const void *_bdb, enum bdb_block_id section_id)
91 {
92         const struct bdb_header *bdb = _bdb;
93         const u8 *base = _bdb;
94         int index = 0;
95         u32 total, current_size;
96         enum bdb_block_id current_id;
97
98         /* skip to first section */
99         index += bdb->header_size;
100         total = bdb->bdb_size;
101
102         /* walk the sections looking for section_id */
103         while (index + 3 < total) {
104                 current_id = *(base + index);
105                 current_size = _get_blocksize(base + index);
106                 index += 3;
107
108                 if (index + current_size > total)
109                         return NULL;
110
111                 if (current_id == section_id)
112                         return base + index;
113
114                 index += current_size;
115         }
116
117         return NULL;
118 }
119
120 static void
121 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
122                         const struct lvds_dvo_timing *dvo_timing)
123 {
124         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
125                 dvo_timing->hactive_lo;
126         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
127                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
128         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
129                 ((dvo_timing->hsync_pulse_width_hi << 8) |
130                         dvo_timing->hsync_pulse_width_lo);
131         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
132                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
133
134         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
135                 dvo_timing->vactive_lo;
136         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
137                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
138         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
139                 ((dvo_timing->vsync_pulse_width_hi << 4) |
140                         dvo_timing->vsync_pulse_width_lo);
141         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
142                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
143         panel_fixed_mode->clock = dvo_timing->clock * 10;
144         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
145
146         if (dvo_timing->hsync_positive)
147                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
148         else
149                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
150
151         if (dvo_timing->vsync_positive)
152                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
153         else
154                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
155
156         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
157                 dvo_timing->himage_lo;
158         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
159                 dvo_timing->vimage_lo;
160
161         /* Some VBTs have bogus h/vtotal values */
162         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
163                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
164         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
165                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
166
167         drm_mode_set_name(panel_fixed_mode);
168 }
169
170 static const struct lvds_dvo_timing *
171 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
172                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
173                     int index)
174 {
175         /*
176          * the size of fp_timing varies on the different platform.
177          * So calculate the DVO timing relative offset in LVDS data
178          * entry to get the DVO timing entry
179          */
180
181         int lfp_data_size =
182                 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
183                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
184         int dvo_timing_offset =
185                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
186                 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
187         char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
188
189         return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
190 }
191
192 /* get lvds_fp_timing entry
193  * this function may return NULL if the corresponding entry is invalid
194  */
195 static const struct lvds_fp_timing *
196 get_lvds_fp_timing(const struct bdb_header *bdb,
197                    const struct bdb_lvds_lfp_data *data,
198                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
199                    int index)
200 {
201         size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
202         u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
203         size_t ofs;
204
205         if (index >= ARRAY_SIZE(ptrs->ptr))
206                 return NULL;
207         ofs = ptrs->ptr[index].fp_timing_offset;
208         if (ofs < data_ofs ||
209             ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
210                 return NULL;
211         return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
212 }
213
214 /* Parse general panel options */
215 static void
216 parse_panel_options(struct drm_i915_private *i915,
217                     const struct bdb_header *bdb)
218 {
219         const struct bdb_lvds_options *lvds_options;
220         int panel_type;
221         int drrs_mode;
222         int ret;
223
224         lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
225         if (!lvds_options)
226                 return;
227
228         i915->vbt.lvds_dither = lvds_options->pixel_dither;
229
230         ret = intel_opregion_get_panel_type(i915);
231         if (ret >= 0) {
232                 drm_WARN_ON(&i915->drm, ret > 0xf);
233                 panel_type = ret;
234                 drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
235                             panel_type);
236         } else {
237                 if (lvds_options->panel_type > 0xf) {
238                         drm_dbg_kms(&i915->drm,
239                                     "Invalid VBT panel type 0x%x\n",
240                                     lvds_options->panel_type);
241                         return;
242                 }
243                 panel_type = lvds_options->panel_type;
244                 drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
245                             panel_type);
246         }
247
248         i915->vbt.panel_type = panel_type;
249
250         drrs_mode = (lvds_options->dps_panel_type_bits
251                                 >> (panel_type * 2)) & MODE_MASK;
252         /*
253          * VBT has static DRRS = 0 and seamless DRRS = 2.
254          * The below piece of code is required to adjust vbt.drrs_type
255          * to match the enum drrs_support_type.
256          */
257         switch (drrs_mode) {
258         case 0:
259                 i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
260                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
261                 break;
262         case 2:
263                 i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
264                 drm_dbg_kms(&i915->drm,
265                             "DRRS supported mode is seamless\n");
266                 break;
267         default:
268                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
269                 drm_dbg_kms(&i915->drm,
270                             "DRRS not supported (VBT input)\n");
271                 break;
272         }
273 }
274
275 /* Try to find integrated panel timing data */
276 static void
277 parse_lfp_panel_dtd(struct drm_i915_private *i915,
278                     const struct bdb_header *bdb)
279 {
280         const struct bdb_lvds_lfp_data *lvds_lfp_data;
281         const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
282         const struct lvds_dvo_timing *panel_dvo_timing;
283         const struct lvds_fp_timing *fp_timing;
284         struct drm_display_mode *panel_fixed_mode;
285         int panel_type = i915->vbt.panel_type;
286
287         lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
288         if (!lvds_lfp_data)
289                 return;
290
291         lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
292         if (!lvds_lfp_data_ptrs)
293                 return;
294
295         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
296                                                lvds_lfp_data_ptrs,
297                                                panel_type);
298
299         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
300         if (!panel_fixed_mode)
301                 return;
302
303         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
304
305         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
306
307         drm_dbg_kms(&i915->drm,
308                     "Found panel mode in BIOS VBT legacy lfp table:\n");
309         drm_mode_debug_printmodeline(panel_fixed_mode);
310
311         fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
312                                        lvds_lfp_data_ptrs,
313                                        panel_type);
314         if (fp_timing) {
315                 /* check the resolution, just to be sure */
316                 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
317                     fp_timing->y_res == panel_fixed_mode->vdisplay) {
318                         i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
319                         drm_dbg_kms(&i915->drm,
320                                     "VBT initial LVDS value %x\n",
321                                     i915->vbt.bios_lvds_val);
322                 }
323         }
324 }
325
326 static void
327 parse_generic_dtd(struct drm_i915_private *i915,
328                   const struct bdb_header *bdb)
329 {
330         const struct bdb_generic_dtd *generic_dtd;
331         const struct generic_dtd_entry *dtd;
332         struct drm_display_mode *panel_fixed_mode;
333         int num_dtd;
334
335         generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
336         if (!generic_dtd)
337                 return;
338
339         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
340                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
341                         generic_dtd->gdtd_size);
342                 return;
343         } else if (generic_dtd->gdtd_size !=
344                    sizeof(struct generic_dtd_entry)) {
345                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
346                         generic_dtd->gdtd_size);
347                 /* DTD has unknown fields, but keep going */
348         }
349
350         num_dtd = (get_blocksize(generic_dtd) -
351                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
352         if (i915->vbt.panel_type >= num_dtd) {
353                 drm_err(&i915->drm,
354                         "Panel type %d not found in table of %d DTD's\n",
355                         i915->vbt.panel_type, num_dtd);
356                 return;
357         }
358
359         dtd = &generic_dtd->dtd[i915->vbt.panel_type];
360
361         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
362         if (!panel_fixed_mode)
363                 return;
364
365         panel_fixed_mode->hdisplay = dtd->hactive;
366         panel_fixed_mode->hsync_start =
367                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
368         panel_fixed_mode->hsync_end =
369                 panel_fixed_mode->hsync_start + dtd->hsync;
370         panel_fixed_mode->htotal =
371                 panel_fixed_mode->hdisplay + dtd->hblank;
372
373         panel_fixed_mode->vdisplay = dtd->vactive;
374         panel_fixed_mode->vsync_start =
375                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
376         panel_fixed_mode->vsync_end =
377                 panel_fixed_mode->vsync_start + dtd->vsync;
378         panel_fixed_mode->vtotal =
379                 panel_fixed_mode->vdisplay + dtd->vblank;
380
381         panel_fixed_mode->clock = dtd->pixel_clock;
382         panel_fixed_mode->width_mm = dtd->width_mm;
383         panel_fixed_mode->height_mm = dtd->height_mm;
384
385         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
386         drm_mode_set_name(panel_fixed_mode);
387
388         if (dtd->hsync_positive_polarity)
389                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
390         else
391                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
392
393         if (dtd->vsync_positive_polarity)
394                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
395         else
396                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
397
398         drm_dbg_kms(&i915->drm,
399                     "Found panel mode in BIOS VBT generic dtd table:\n");
400         drm_mode_debug_printmodeline(panel_fixed_mode);
401
402         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
403 }
404
405 static void
406 parse_panel_dtd(struct drm_i915_private *i915,
407                 const struct bdb_header *bdb)
408 {
409         /*
410          * Older VBTs provided provided DTD information for internal displays
411          * through the "LFP panel DTD" block (42).  As of VBT revision 229,
412          * that block is now deprecated and DTD information should be provided
413          * via a newer "generic DTD" block (58).  Just to be safe, we'll
414          * try the new generic DTD block first on VBT >= 229, but still fall
415          * back to trying the old LFP block if that fails.
416          */
417         if (bdb->version >= 229)
418                 parse_generic_dtd(i915, bdb);
419         if (!i915->vbt.lfp_lvds_vbt_mode)
420                 parse_lfp_panel_dtd(i915, bdb);
421 }
422
423 static void
424 parse_lfp_backlight(struct drm_i915_private *i915,
425                     const struct bdb_header *bdb)
426 {
427         const struct bdb_lfp_backlight_data *backlight_data;
428         const struct lfp_backlight_data_entry *entry;
429         int panel_type = i915->vbt.panel_type;
430         u16 level;
431
432         backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
433         if (!backlight_data)
434                 return;
435
436         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
437                 drm_dbg_kms(&i915->drm,
438                             "Unsupported backlight data entry size %u\n",
439                             backlight_data->entry_size);
440                 return;
441         }
442
443         entry = &backlight_data->data[panel_type];
444
445         i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
446         if (!i915->vbt.backlight.present) {
447                 drm_dbg_kms(&i915->drm,
448                             "PWM backlight not present in VBT (type %u)\n",
449                             entry->type);
450                 return;
451         }
452
453         i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
454         if (bdb->version >= 191) {
455                 size_t exp_size;
456
457                 if (bdb->version >= 236)
458                         exp_size = sizeof(struct bdb_lfp_backlight_data);
459                 else if (bdb->version >= 234)
460                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
461                 else
462                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
463
464                 if (get_blocksize(backlight_data) >= exp_size) {
465                         const struct lfp_backlight_control_method *method;
466
467                         method = &backlight_data->backlight_control[panel_type];
468                         i915->vbt.backlight.type = method->type;
469                         i915->vbt.backlight.controller = method->controller;
470                 }
471         }
472
473         i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
474         i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
475
476         if (bdb->version >= 234) {
477                 u16 min_level;
478                 bool scale;
479
480                 level = backlight_data->brightness_level[panel_type].level;
481                 min_level = backlight_data->brightness_min_level[panel_type].level;
482
483                 if (bdb->version >= 236)
484                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
485                 else
486                         scale = level > 255;
487
488                 if (scale)
489                         min_level = min_level / 255;
490
491                 if (min_level > 255) {
492                         drm_warn(&i915->drm, "Brightness min level > 255\n");
493                         level = 255;
494                 }
495                 i915->vbt.backlight.min_brightness = min_level;
496
497                 i915->vbt.backlight.brightness_precision_bits =
498                         backlight_data->brightness_precision_bits[panel_type];
499         } else {
500                 level = backlight_data->level[panel_type];
501                 i915->vbt.backlight.min_brightness = entry->min_brightness;
502         }
503
504         drm_dbg_kms(&i915->drm,
505                     "VBT backlight PWM modulation frequency %u Hz, "
506                     "active %s, min brightness %u, level %u, controller %u\n",
507                     i915->vbt.backlight.pwm_freq_hz,
508                     i915->vbt.backlight.active_low_pwm ? "low" : "high",
509                     i915->vbt.backlight.min_brightness,
510                     level,
511                     i915->vbt.backlight.controller);
512 }
513
514 /* Try to find sdvo panel data */
515 static void
516 parse_sdvo_panel_data(struct drm_i915_private *i915,
517                       const struct bdb_header *bdb)
518 {
519         const struct bdb_sdvo_panel_dtds *dtds;
520         struct drm_display_mode *panel_fixed_mode;
521         int index;
522
523         index = i915->params.vbt_sdvo_panel_type;
524         if (index == -2) {
525                 drm_dbg_kms(&i915->drm,
526                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
527                 return;
528         }
529
530         if (index == -1) {
531                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
532
533                 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
534                 if (!sdvo_lvds_options)
535                         return;
536
537                 index = sdvo_lvds_options->panel_type;
538         }
539
540         dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
541         if (!dtds)
542                 return;
543
544         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
545         if (!panel_fixed_mode)
546                 return;
547
548         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
549
550         i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
551
552         drm_dbg_kms(&i915->drm,
553                     "Found SDVO panel mode in BIOS VBT tables:\n");
554         drm_mode_debug_printmodeline(panel_fixed_mode);
555 }
556
557 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
558                                     bool alternate)
559 {
560         switch (DISPLAY_VER(i915)) {
561         case 2:
562                 return alternate ? 66667 : 48000;
563         case 3:
564         case 4:
565                 return alternate ? 100000 : 96000;
566         default:
567                 return alternate ? 100000 : 120000;
568         }
569 }
570
571 static void
572 parse_general_features(struct drm_i915_private *i915,
573                        const struct bdb_header *bdb)
574 {
575         const struct bdb_general_features *general;
576
577         general = find_section(bdb, BDB_GENERAL_FEATURES);
578         if (!general)
579                 return;
580
581         i915->vbt.int_tv_support = general->int_tv_support;
582         /* int_crt_support can't be trusted on earlier platforms */
583         if (bdb->version >= 155 &&
584             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
585                 i915->vbt.int_crt_support = general->int_crt_support;
586         i915->vbt.lvds_use_ssc = general->enable_ssc;
587         i915->vbt.lvds_ssc_freq =
588                 intel_bios_ssc_frequency(i915, general->ssc_freq);
589         i915->vbt.display_clock_mode = general->display_clock_mode;
590         i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
591         if (bdb->version >= 181) {
592                 i915->vbt.orientation = general->rotate_180 ?
593                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
594                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
595         } else {
596                 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
597         }
598         drm_dbg_kms(&i915->drm,
599                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
600                     i915->vbt.int_tv_support,
601                     i915->vbt.int_crt_support,
602                     i915->vbt.lvds_use_ssc,
603                     i915->vbt.lvds_ssc_freq,
604                     i915->vbt.display_clock_mode,
605                     i915->vbt.fdi_rx_polarity_inverted);
606 }
607
608 static const struct child_device_config *
609 child_device_ptr(const struct bdb_general_definitions *defs, int i)
610 {
611         return (const void *) &defs->devices[i * defs->child_dev_size];
612 }
613
614 static void
615 parse_sdvo_device_mapping(struct drm_i915_private *i915)
616 {
617         struct sdvo_device_mapping *mapping;
618         const struct intel_bios_encoder_data *devdata;
619         const struct child_device_config *child;
620         int count = 0;
621
622         /*
623          * Only parse SDVO mappings on gens that could have SDVO. This isn't
624          * accurate and doesn't have to be, as long as it's not too strict.
625          */
626         if (!IS_DISPLAY_VER(i915, 3, 7)) {
627                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
628                 return;
629         }
630
631         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
632                 child = &devdata->child;
633
634                 if (child->slave_addr != SLAVE_ADDR1 &&
635                     child->slave_addr != SLAVE_ADDR2) {
636                         /*
637                          * If the slave address is neither 0x70 nor 0x72,
638                          * it is not a SDVO device. Skip it.
639                          */
640                         continue;
641                 }
642                 if (child->dvo_port != DEVICE_PORT_DVOB &&
643                     child->dvo_port != DEVICE_PORT_DVOC) {
644                         /* skip the incorrect SDVO port */
645                         drm_dbg_kms(&i915->drm,
646                                     "Incorrect SDVO port. Skip it\n");
647                         continue;
648                 }
649                 drm_dbg_kms(&i915->drm,
650                             "the SDVO device with slave addr %2x is found on"
651                             " %s port\n",
652                             child->slave_addr,
653                             (child->dvo_port == DEVICE_PORT_DVOB) ?
654                             "SDVOB" : "SDVOC");
655                 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
656                 if (!mapping->initialized) {
657                         mapping->dvo_port = child->dvo_port;
658                         mapping->slave_addr = child->slave_addr;
659                         mapping->dvo_wiring = child->dvo_wiring;
660                         mapping->ddc_pin = child->ddc_pin;
661                         mapping->i2c_pin = child->i2c_pin;
662                         mapping->initialized = 1;
663                         drm_dbg_kms(&i915->drm,
664                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
665                                     mapping->dvo_port, mapping->slave_addr,
666                                     mapping->dvo_wiring, mapping->ddc_pin,
667                                     mapping->i2c_pin);
668                 } else {
669                         drm_dbg_kms(&i915->drm,
670                                     "Maybe one SDVO port is shared by "
671                                     "two SDVO device.\n");
672                 }
673                 if (child->slave2_addr) {
674                         /* Maybe this is a SDVO device with multiple inputs */
675                         /* And the mapping info is not added */
676                         drm_dbg_kms(&i915->drm,
677                                     "there exists the slave2_addr. Maybe this"
678                                     " is a SDVO device with multiple inputs.\n");
679                 }
680                 count++;
681         }
682
683         if (!count) {
684                 /* No SDVO device info is found */
685                 drm_dbg_kms(&i915->drm,
686                             "No SDVO device info is found in VBT\n");
687         }
688 }
689
690 static void
691 parse_driver_features(struct drm_i915_private *i915,
692                       const struct bdb_header *bdb)
693 {
694         const struct bdb_driver_features *driver;
695
696         driver = find_section(bdb, BDB_DRIVER_FEATURES);
697         if (!driver)
698                 return;
699
700         if (DISPLAY_VER(i915) >= 5) {
701                 /*
702                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
703                  * to mean "eDP". The VBT spec doesn't agree with that
704                  * interpretation, but real world VBTs seem to.
705                  */
706                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
707                         i915->vbt.int_lvds_support = 0;
708         } else {
709                 /*
710                  * FIXME it's not clear which BDB version has the LVDS config
711                  * bits defined. Revision history in the VBT spec says:
712                  * "0.92 | Add two definitions for VBT value of LVDS Active
713                  *  Config (00b and 11b values defined) | 06/13/2005"
714                  * but does not the specify the BDB version.
715                  *
716                  * So far version 134 (on i945gm) is the oldest VBT observed
717                  * in the wild with the bits correctly populated. Version
718                  * 108 (on i85x) does not have the bits correctly populated.
719                  */
720                 if (bdb->version >= 134 &&
721                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
722                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
723                         i915->vbt.int_lvds_support = 0;
724         }
725
726         if (bdb->version < 228) {
727                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
728                             driver->drrs_enabled);
729                 /*
730                  * If DRRS is not supported, drrs_type has to be set to 0.
731                  * This is because, VBT is configured in such a way that
732                  * static DRRS is 0 and DRRS not supported is represented by
733                  * driver->drrs_enabled=false
734                  */
735                 if (!driver->drrs_enabled)
736                         i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
737
738                 i915->vbt.psr.enable = driver->psr_enabled;
739         }
740 }
741
742 static void
743 parse_power_conservation_features(struct drm_i915_private *i915,
744                                   const struct bdb_header *bdb)
745 {
746         const struct bdb_lfp_power *power;
747         u8 panel_type = i915->vbt.panel_type;
748
749         if (bdb->version < 228)
750                 return;
751
752         power = find_section(bdb, BDB_LFP_POWER);
753         if (!power)
754                 return;
755
756         i915->vbt.psr.enable = power->psr & BIT(panel_type);
757
758         /*
759          * If DRRS is not supported, drrs_type has to be set to 0.
760          * This is because, VBT is configured in such a way that
761          * static DRRS is 0 and DRRS not supported is represented by
762          * power->drrs & BIT(panel_type)=false
763          */
764         if (!(power->drrs & BIT(panel_type)))
765                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
766
767         if (bdb->version >= 232)
768                 i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
769 }
770
771 static void
772 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
773 {
774         const struct bdb_edp *edp;
775         const struct edp_power_seq *edp_pps;
776         const struct edp_fast_link_params *edp_link_params;
777         int panel_type = i915->vbt.panel_type;
778
779         edp = find_section(bdb, BDB_EDP);
780         if (!edp)
781                 return;
782
783         switch ((edp->color_depth >> (panel_type * 2)) & 3) {
784         case EDP_18BPP:
785                 i915->vbt.edp.bpp = 18;
786                 break;
787         case EDP_24BPP:
788                 i915->vbt.edp.bpp = 24;
789                 break;
790         case EDP_30BPP:
791                 i915->vbt.edp.bpp = 30;
792                 break;
793         }
794
795         /* Get the eDP sequencing and link info */
796         edp_pps = &edp->power_seqs[panel_type];
797         edp_link_params = &edp->fast_link_params[panel_type];
798
799         i915->vbt.edp.pps = *edp_pps;
800
801         switch (edp_link_params->rate) {
802         case EDP_RATE_1_62:
803                 i915->vbt.edp.rate = DP_LINK_BW_1_62;
804                 break;
805         case EDP_RATE_2_7:
806                 i915->vbt.edp.rate = DP_LINK_BW_2_7;
807                 break;
808         default:
809                 drm_dbg_kms(&i915->drm,
810                             "VBT has unknown eDP link rate value %u\n",
811                              edp_link_params->rate);
812                 break;
813         }
814
815         switch (edp_link_params->lanes) {
816         case EDP_LANE_1:
817                 i915->vbt.edp.lanes = 1;
818                 break;
819         case EDP_LANE_2:
820                 i915->vbt.edp.lanes = 2;
821                 break;
822         case EDP_LANE_4:
823                 i915->vbt.edp.lanes = 4;
824                 break;
825         default:
826                 drm_dbg_kms(&i915->drm,
827                             "VBT has unknown eDP lane count value %u\n",
828                             edp_link_params->lanes);
829                 break;
830         }
831
832         switch (edp_link_params->preemphasis) {
833         case EDP_PREEMPHASIS_NONE:
834                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
835                 break;
836         case EDP_PREEMPHASIS_3_5dB:
837                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
838                 break;
839         case EDP_PREEMPHASIS_6dB:
840                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
841                 break;
842         case EDP_PREEMPHASIS_9_5dB:
843                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
844                 break;
845         default:
846                 drm_dbg_kms(&i915->drm,
847                             "VBT has unknown eDP pre-emphasis value %u\n",
848                             edp_link_params->preemphasis);
849                 break;
850         }
851
852         switch (edp_link_params->vswing) {
853         case EDP_VSWING_0_4V:
854                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
855                 break;
856         case EDP_VSWING_0_6V:
857                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
858                 break;
859         case EDP_VSWING_0_8V:
860                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
861                 break;
862         case EDP_VSWING_1_2V:
863                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
864                 break;
865         default:
866                 drm_dbg_kms(&i915->drm,
867                             "VBT has unknown eDP voltage swing value %u\n",
868                             edp_link_params->vswing);
869                 break;
870         }
871
872         if (bdb->version >= 173) {
873                 u8 vswing;
874
875                 /* Don't read from VBT if module parameter has valid value*/
876                 if (i915->params.edp_vswing) {
877                         i915->vbt.edp.low_vswing =
878                                 i915->params.edp_vswing == 1;
879                 } else {
880                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
881                         i915->vbt.edp.low_vswing = vswing == 0;
882                 }
883         }
884 }
885
886 static void
887 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
888 {
889         const struct bdb_psr *psr;
890         const struct psr_table *psr_table;
891         int panel_type = i915->vbt.panel_type;
892
893         psr = find_section(bdb, BDB_PSR);
894         if (!psr) {
895                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
896                 return;
897         }
898
899         psr_table = &psr->psr_table[panel_type];
900
901         i915->vbt.psr.full_link = psr_table->full_link;
902         i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
903
904         /* Allowed VBT values goes from 0 to 15 */
905         i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
906                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
907
908         switch (psr_table->lines_to_wait) {
909         case 0:
910                 i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
911                 break;
912         case 1:
913                 i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
914                 break;
915         case 2:
916                 i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
917                 break;
918         case 3:
919                 i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
920                 break;
921         default:
922                 drm_dbg_kms(&i915->drm,
923                             "VBT has unknown PSR lines to wait %u\n",
924                             psr_table->lines_to_wait);
925                 break;
926         }
927
928         /*
929          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
930          * Old decimal value is wake up time in multiples of 100 us.
931          */
932         if (bdb->version >= 205 &&
933             (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
934                 switch (psr_table->tp1_wakeup_time) {
935                 case 0:
936                         i915->vbt.psr.tp1_wakeup_time_us = 500;
937                         break;
938                 case 1:
939                         i915->vbt.psr.tp1_wakeup_time_us = 100;
940                         break;
941                 case 3:
942                         i915->vbt.psr.tp1_wakeup_time_us = 0;
943                         break;
944                 default:
945                         drm_dbg_kms(&i915->drm,
946                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
947                                     psr_table->tp1_wakeup_time);
948                         fallthrough;
949                 case 2:
950                         i915->vbt.psr.tp1_wakeup_time_us = 2500;
951                         break;
952                 }
953
954                 switch (psr_table->tp2_tp3_wakeup_time) {
955                 case 0:
956                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
957                         break;
958                 case 1:
959                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
960                         break;
961                 case 3:
962                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
963                         break;
964                 default:
965                         drm_dbg_kms(&i915->drm,
966                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
967                                     psr_table->tp2_tp3_wakeup_time);
968                         fallthrough;
969                 case 2:
970                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
971                 break;
972                 }
973         } else {
974                 i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
975                 i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
976         }
977
978         if (bdb->version >= 226) {
979                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
980
981                 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
982                 switch (wakeup_time) {
983                 case 0:
984                         wakeup_time = 500;
985                         break;
986                 case 1:
987                         wakeup_time = 100;
988                         break;
989                 case 3:
990                         wakeup_time = 50;
991                         break;
992                 default:
993                 case 2:
994                         wakeup_time = 2500;
995                         break;
996                 }
997                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
998         } else {
999                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1000                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
1001         }
1002 }
1003
1004 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1005                                       u16 version, enum port port)
1006 {
1007         if (!i915->vbt.dsi.config->dual_link || version < 197) {
1008                 i915->vbt.dsi.bl_ports = BIT(port);
1009                 if (i915->vbt.dsi.config->cabc_supported)
1010                         i915->vbt.dsi.cabc_ports = BIT(port);
1011
1012                 return;
1013         }
1014
1015         switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1016         case DL_DCS_PORT_A:
1017                 i915->vbt.dsi.bl_ports = BIT(PORT_A);
1018                 break;
1019         case DL_DCS_PORT_C:
1020                 i915->vbt.dsi.bl_ports = BIT(PORT_C);
1021                 break;
1022         default:
1023         case DL_DCS_PORT_A_AND_C:
1024                 i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1025                 break;
1026         }
1027
1028         if (!i915->vbt.dsi.config->cabc_supported)
1029                 return;
1030
1031         switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1032         case DL_DCS_PORT_A:
1033                 i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1034                 break;
1035         case DL_DCS_PORT_C:
1036                 i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1037                 break;
1038         default:
1039         case DL_DCS_PORT_A_AND_C:
1040                 i915->vbt.dsi.cabc_ports =
1041                                         BIT(PORT_A) | BIT(PORT_C);
1042                 break;
1043         }
1044 }
1045
1046 static void
1047 parse_mipi_config(struct drm_i915_private *i915,
1048                   const struct bdb_header *bdb)
1049 {
1050         const struct bdb_mipi_config *start;
1051         const struct mipi_config *config;
1052         const struct mipi_pps_data *pps;
1053         int panel_type = i915->vbt.panel_type;
1054         enum port port;
1055
1056         /* parse MIPI blocks only if LFP type is MIPI */
1057         if (!intel_bios_is_dsi_present(i915, &port))
1058                 return;
1059
1060         /* Initialize this to undefined indicating no generic MIPI support */
1061         i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1062
1063         /* Block #40 is already parsed and panel_fixed_mode is
1064          * stored in i915->lfp_lvds_vbt_mode
1065          * resuse this when needed
1066          */
1067
1068         /* Parse #52 for panel index used from panel_type already
1069          * parsed
1070          */
1071         start = find_section(bdb, BDB_MIPI_CONFIG);
1072         if (!start) {
1073                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1074                 return;
1075         }
1076
1077         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1078                 panel_type);
1079
1080         /*
1081          * get hold of the correct configuration block and pps data as per
1082          * the panel_type as index
1083          */
1084         config = &start->config[panel_type];
1085         pps = &start->pps[panel_type];
1086
1087         /* store as of now full data. Trim when we realise all is not needed */
1088         i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1089         if (!i915->vbt.dsi.config)
1090                 return;
1091
1092         i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1093         if (!i915->vbt.dsi.pps) {
1094                 kfree(i915->vbt.dsi.config);
1095                 return;
1096         }
1097
1098         parse_dsi_backlight_ports(i915, bdb->version, port);
1099
1100         /* FIXME is the 90 vs. 270 correct? */
1101         switch (config->rotation) {
1102         case ENABLE_ROTATION_0:
1103                 /*
1104                  * Most (all?) VBTs claim 0 degrees despite having
1105                  * an upside down panel, thus we do not trust this.
1106                  */
1107                 i915->vbt.dsi.orientation =
1108                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1109                 break;
1110         case ENABLE_ROTATION_90:
1111                 i915->vbt.dsi.orientation =
1112                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1113                 break;
1114         case ENABLE_ROTATION_180:
1115                 i915->vbt.dsi.orientation =
1116                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1117                 break;
1118         case ENABLE_ROTATION_270:
1119                 i915->vbt.dsi.orientation =
1120                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1121                 break;
1122         }
1123
1124         /* We have mandatory mipi config blocks. Initialize as generic panel */
1125         i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1126 }
1127
1128 /* Find the sequence block and size for the given panel. */
1129 static const u8 *
1130 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1131                           u16 panel_id, u32 *seq_size)
1132 {
1133         u32 total = get_blocksize(sequence);
1134         const u8 *data = &sequence->data[0];
1135         u8 current_id;
1136         u32 current_size;
1137         int header_size = sequence->version >= 3 ? 5 : 3;
1138         int index = 0;
1139         int i;
1140
1141         /* skip new block size */
1142         if (sequence->version >= 3)
1143                 data += 4;
1144
1145         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1146                 if (index + header_size > total) {
1147                         DRM_ERROR("Invalid sequence block (header)\n");
1148                         return NULL;
1149                 }
1150
1151                 current_id = *(data + index);
1152                 if (sequence->version >= 3)
1153                         current_size = *((const u32 *)(data + index + 1));
1154                 else
1155                         current_size = *((const u16 *)(data + index + 1));
1156
1157                 index += header_size;
1158
1159                 if (index + current_size > total) {
1160                         DRM_ERROR("Invalid sequence block\n");
1161                         return NULL;
1162                 }
1163
1164                 if (current_id == panel_id) {
1165                         *seq_size = current_size;
1166                         return data + index;
1167                 }
1168
1169                 index += current_size;
1170         }
1171
1172         DRM_ERROR("Sequence block detected but no valid configuration\n");
1173
1174         return NULL;
1175 }
1176
1177 static int goto_next_sequence(const u8 *data, int index, int total)
1178 {
1179         u16 len;
1180
1181         /* Skip Sequence Byte. */
1182         for (index = index + 1; index < total; index += len) {
1183                 u8 operation_byte = *(data + index);
1184                 index++;
1185
1186                 switch (operation_byte) {
1187                 case MIPI_SEQ_ELEM_END:
1188                         return index;
1189                 case MIPI_SEQ_ELEM_SEND_PKT:
1190                         if (index + 4 > total)
1191                                 return 0;
1192
1193                         len = *((const u16 *)(data + index + 2)) + 4;
1194                         break;
1195                 case MIPI_SEQ_ELEM_DELAY:
1196                         len = 4;
1197                         break;
1198                 case MIPI_SEQ_ELEM_GPIO:
1199                         len = 2;
1200                         break;
1201                 case MIPI_SEQ_ELEM_I2C:
1202                         if (index + 7 > total)
1203                                 return 0;
1204                         len = *(data + index + 6) + 7;
1205                         break;
1206                 default:
1207                         DRM_ERROR("Unknown operation byte\n");
1208                         return 0;
1209                 }
1210         }
1211
1212         return 0;
1213 }
1214
1215 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1216 {
1217         int seq_end;
1218         u16 len;
1219         u32 size_of_sequence;
1220
1221         /*
1222          * Could skip sequence based on Size of Sequence alone, but also do some
1223          * checking on the structure.
1224          */
1225         if (total < 5) {
1226                 DRM_ERROR("Too small sequence size\n");
1227                 return 0;
1228         }
1229
1230         /* Skip Sequence Byte. */
1231         index++;
1232
1233         /*
1234          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1235          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1236          * byte.
1237          */
1238         size_of_sequence = *((const u32 *)(data + index));
1239         index += 4;
1240
1241         seq_end = index + size_of_sequence;
1242         if (seq_end > total) {
1243                 DRM_ERROR("Invalid sequence size\n");
1244                 return 0;
1245         }
1246
1247         for (; index < total; index += len) {
1248                 u8 operation_byte = *(data + index);
1249                 index++;
1250
1251                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1252                         if (index != seq_end) {
1253                                 DRM_ERROR("Invalid element structure\n");
1254                                 return 0;
1255                         }
1256                         return index;
1257                 }
1258
1259                 len = *(data + index);
1260                 index++;
1261
1262                 /*
1263                  * FIXME: Would be nice to check elements like for v1/v2 in
1264                  * goto_next_sequence() above.
1265                  */
1266                 switch (operation_byte) {
1267                 case MIPI_SEQ_ELEM_SEND_PKT:
1268                 case MIPI_SEQ_ELEM_DELAY:
1269                 case MIPI_SEQ_ELEM_GPIO:
1270                 case MIPI_SEQ_ELEM_I2C:
1271                 case MIPI_SEQ_ELEM_SPI:
1272                 case MIPI_SEQ_ELEM_PMIC:
1273                         break;
1274                 default:
1275                         DRM_ERROR("Unknown operation byte %u\n",
1276                                   operation_byte);
1277                         break;
1278                 }
1279         }
1280
1281         return 0;
1282 }
1283
1284 /*
1285  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1286  * skip all delay + gpio operands and stop at the first DSI packet op.
1287  */
1288 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1289 {
1290         const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1291         int index, len;
1292
1293         if (drm_WARN_ON(&i915->drm,
1294                         !data || i915->vbt.dsi.seq_version != 1))
1295                 return 0;
1296
1297         /* index = 1 to skip sequence byte */
1298         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1299                 switch (data[index]) {
1300                 case MIPI_SEQ_ELEM_SEND_PKT:
1301                         return index == 1 ? 0 : index;
1302                 case MIPI_SEQ_ELEM_DELAY:
1303                         len = 5; /* 1 byte for operand + uint32 */
1304                         break;
1305                 case MIPI_SEQ_ELEM_GPIO:
1306                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1307                         break;
1308                 default:
1309                         return 0;
1310                 }
1311         }
1312
1313         return 0;
1314 }
1315
1316 /*
1317  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1318  * The deassert must be done before calling intel_dsi_device_ready, so for
1319  * these devices we split the init OTP sequence into a deassert sequence and
1320  * the actual init OTP part.
1321  */
1322 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1323 {
1324         u8 *init_otp;
1325         int len;
1326
1327         /* Limit this to VLV for now. */
1328         if (!IS_VALLEYVIEW(i915))
1329                 return;
1330
1331         /* Limit this to v1 vid-mode sequences */
1332         if (i915->vbt.dsi.config->is_cmd_mode ||
1333             i915->vbt.dsi.seq_version != 1)
1334                 return;
1335
1336         /* Only do this if there are otp and assert seqs and no deassert seq */
1337         if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1338             !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1339             i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1340                 return;
1341
1342         /* The deassert-sequence ends at the first DSI packet */
1343         len = get_init_otp_deassert_fragment_len(i915);
1344         if (!len)
1345                 return;
1346
1347         drm_dbg_kms(&i915->drm,
1348                     "Using init OTP fragment to deassert reset\n");
1349
1350         /* Copy the fragment, update seq byte and terminate it */
1351         init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1352         i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1353         if (!i915->vbt.dsi.deassert_seq)
1354                 return;
1355         i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1356         i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1357         /* Use the copy for deassert */
1358         i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1359                 i915->vbt.dsi.deassert_seq;
1360         /* Replace the last byte of the fragment with init OTP seq byte */
1361         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1362         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1363         i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1364 }
1365
1366 static void
1367 parse_mipi_sequence(struct drm_i915_private *i915,
1368                     const struct bdb_header *bdb)
1369 {
1370         int panel_type = i915->vbt.panel_type;
1371         const struct bdb_mipi_sequence *sequence;
1372         const u8 *seq_data;
1373         u32 seq_size;
1374         u8 *data;
1375         int index = 0;
1376
1377         /* Only our generic panel driver uses the sequence block. */
1378         if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1379                 return;
1380
1381         sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1382         if (!sequence) {
1383                 drm_dbg_kms(&i915->drm,
1384                             "No MIPI Sequence found, parsing complete\n");
1385                 return;
1386         }
1387
1388         /* Fail gracefully for forward incompatible sequence block. */
1389         if (sequence->version >= 4) {
1390                 drm_err(&i915->drm,
1391                         "Unable to parse MIPI Sequence Block v%u\n",
1392                         sequence->version);
1393                 return;
1394         }
1395
1396         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1397                 sequence->version);
1398
1399         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1400         if (!seq_data)
1401                 return;
1402
1403         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1404         if (!data)
1405                 return;
1406
1407         /* Parse the sequences, store pointers to each sequence. */
1408         for (;;) {
1409                 u8 seq_id = *(data + index);
1410                 if (seq_id == MIPI_SEQ_END)
1411                         break;
1412
1413                 if (seq_id >= MIPI_SEQ_MAX) {
1414                         drm_err(&i915->drm, "Unknown sequence %u\n",
1415                                 seq_id);
1416                         goto err;
1417                 }
1418
1419                 /* Log about presence of sequences we won't run. */
1420                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1421                         drm_dbg_kms(&i915->drm,
1422                                     "Unsupported sequence %u\n", seq_id);
1423
1424                 i915->vbt.dsi.sequence[seq_id] = data + index;
1425
1426                 if (sequence->version >= 3)
1427                         index = goto_next_sequence_v3(data, index, seq_size);
1428                 else
1429                         index = goto_next_sequence(data, index, seq_size);
1430                 if (!index) {
1431                         drm_err(&i915->drm, "Invalid sequence %u\n",
1432                                 seq_id);
1433                         goto err;
1434                 }
1435         }
1436
1437         i915->vbt.dsi.data = data;
1438         i915->vbt.dsi.size = seq_size;
1439         i915->vbt.dsi.seq_version = sequence->version;
1440
1441         fixup_mipi_sequences(i915);
1442
1443         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1444         return;
1445
1446 err:
1447         kfree(data);
1448         memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1449 }
1450
1451 static void
1452 parse_compression_parameters(struct drm_i915_private *i915,
1453                              const struct bdb_header *bdb)
1454 {
1455         const struct bdb_compression_parameters *params;
1456         struct intel_bios_encoder_data *devdata;
1457         const struct child_device_config *child;
1458         u16 block_size;
1459         int index;
1460
1461         if (bdb->version < 198)
1462                 return;
1463
1464         params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1465         if (params) {
1466                 /* Sanity checks */
1467                 if (params->entry_size != sizeof(params->data[0])) {
1468                         drm_dbg_kms(&i915->drm,
1469                                     "VBT: unsupported compression param entry size\n");
1470                         return;
1471                 }
1472
1473                 block_size = get_blocksize(params);
1474                 if (block_size < sizeof(*params)) {
1475                         drm_dbg_kms(&i915->drm,
1476                                     "VBT: expected 16 compression param entries\n");
1477                         return;
1478                 }
1479         }
1480
1481         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1482                 child = &devdata->child;
1483
1484                 if (!child->compression_enable)
1485                         continue;
1486
1487                 if (!params) {
1488                         drm_dbg_kms(&i915->drm,
1489                                     "VBT: compression params not available\n");
1490                         continue;
1491                 }
1492
1493                 if (child->compression_method_cps) {
1494                         drm_dbg_kms(&i915->drm,
1495                                     "VBT: CPS compression not supported\n");
1496                         continue;
1497                 }
1498
1499                 index = child->compression_structure_index;
1500
1501                 devdata->dsc = kmemdup(&params->data[index],
1502                                        sizeof(*devdata->dsc), GFP_KERNEL);
1503         }
1504 }
1505
1506 static u8 translate_iboost(u8 val)
1507 {
1508         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1509
1510         if (val >= ARRAY_SIZE(mapping)) {
1511                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1512                 return 0;
1513         }
1514         return mapping[val];
1515 }
1516
1517 static const u8 cnp_ddc_pin_map[] = {
1518         [0] = 0, /* N/A */
1519         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1520         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1521         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1522         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1523 };
1524
1525 static const u8 icp_ddc_pin_map[] = {
1526         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1527         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1528         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1529         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1530         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1531         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1532         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1533         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1534         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1535 };
1536
1537 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1538         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1539         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1540         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1541         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1542 };
1543
1544 static const u8 adls_ddc_pin_map[] = {
1545         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1546         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1547         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1548         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1549         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1550 };
1551
1552 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1553         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1554         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1555         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1556 };
1557
1558 static const u8 adlp_ddc_pin_map[] = {
1559         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1560         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1561         [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1562         [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1563         [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1564         [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1565 };
1566
1567 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1568 {
1569         const u8 *ddc_pin_map;
1570         int n_entries;
1571
1572         if (IS_ALDERLAKE_P(i915)) {
1573                 ddc_pin_map = adlp_ddc_pin_map;
1574                 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
1575         } else if (IS_ALDERLAKE_S(i915)) {
1576                 ddc_pin_map = adls_ddc_pin_map;
1577                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1578         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1579                 return vbt_pin;
1580         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1581                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1582                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1583         } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
1584                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1585                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1586         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1587                 ddc_pin_map = icp_ddc_pin_map;
1588                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1589         } else if (HAS_PCH_CNP(i915)) {
1590                 ddc_pin_map = cnp_ddc_pin_map;
1591                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1592         } else {
1593                 /* Assuming direct map */
1594                 return vbt_pin;
1595         }
1596
1597         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1598                 return ddc_pin_map[vbt_pin];
1599
1600         drm_dbg_kms(&i915->drm,
1601                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1602                     vbt_pin);
1603         return 0;
1604 }
1605
1606 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1607 {
1608         const struct intel_bios_encoder_data *devdata;
1609         enum port port;
1610
1611         if (!ddc_pin)
1612                 return PORT_NONE;
1613
1614         for_each_port(port) {
1615                 devdata = i915->vbt.ports[port];
1616
1617                 if (devdata && ddc_pin == devdata->child.ddc_pin)
1618                         return port;
1619         }
1620
1621         return PORT_NONE;
1622 }
1623
1624 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
1625                              enum port port)
1626 {
1627         struct drm_i915_private *i915 = devdata->i915;
1628         struct child_device_config *child;
1629         u8 mapped_ddc_pin;
1630         enum port p;
1631
1632         if (!devdata->child.ddc_pin)
1633                 return;
1634
1635         mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
1636         if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
1637                 drm_dbg_kms(&i915->drm,
1638                             "Port %c has invalid DDC pin %d, "
1639                             "sticking to defaults\n",
1640                             port_name(port), mapped_ddc_pin);
1641                 devdata->child.ddc_pin = 0;
1642                 return;
1643         }
1644
1645         p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
1646         if (p == PORT_NONE)
1647                 return;
1648
1649         drm_dbg_kms(&i915->drm,
1650                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
1651                     "disabling port %c DVI/HDMI support\n",
1652                     port_name(port), mapped_ddc_pin,
1653                     port_name(p), port_name(p));
1654
1655         /*
1656          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1657          * couldn't exist on the shared port. Otherwise they share the same ddc
1658          * pin and system couldn't communicate with them separately.
1659          *
1660          * Give inverse child device order the priority, last one wins. Yes,
1661          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1662          * port A and port E with the same AUX ch and we must pick port E :(
1663          */
1664         child = &i915->vbt.ports[p]->child;
1665
1666         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1667         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1668
1669         child->ddc_pin = 0;
1670 }
1671
1672 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1673 {
1674         const struct intel_bios_encoder_data *devdata;
1675         enum port port;
1676
1677         if (!aux_ch)
1678                 return PORT_NONE;
1679
1680         for_each_port(port) {
1681                 devdata = i915->vbt.ports[port];
1682
1683                 if (devdata && aux_ch == devdata->child.aux_channel)
1684                         return port;
1685         }
1686
1687         return PORT_NONE;
1688 }
1689
1690 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
1691                             enum port port)
1692 {
1693         struct drm_i915_private *i915 = devdata->i915;
1694         struct child_device_config *child;
1695         enum port p;
1696
1697         p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
1698         if (p == PORT_NONE)
1699                 return;
1700
1701         drm_dbg_kms(&i915->drm,
1702                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
1703                     "disabling port %c DP support\n",
1704                     port_name(port), devdata->child.aux_channel,
1705                     port_name(p), port_name(p));
1706
1707         /*
1708          * If we have multiple ports supposedly sharing the aux channel, then DP
1709          * couldn't exist on the shared port. Otherwise they share the same aux
1710          * channel and system couldn't communicate with them separately.
1711          *
1712          * Give inverse child device order the priority, last one wins. Yes,
1713          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1714          * port A and port E with the same AUX ch and we must pick port E :(
1715          */
1716         child = &i915->vbt.ports[p]->child;
1717
1718         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1719         child->aux_channel = 0;
1720 }
1721
1722 static u8 dvo_port_type(u8 dvo_port)
1723 {
1724         switch (dvo_port) {
1725         case DVO_PORT_HDMIA:
1726         case DVO_PORT_HDMIB:
1727         case DVO_PORT_HDMIC:
1728         case DVO_PORT_HDMID:
1729         case DVO_PORT_HDMIE:
1730         case DVO_PORT_HDMIF:
1731         case DVO_PORT_HDMIG:
1732         case DVO_PORT_HDMIH:
1733         case DVO_PORT_HDMII:
1734                 return DVO_PORT_HDMIA;
1735         case DVO_PORT_DPA:
1736         case DVO_PORT_DPB:
1737         case DVO_PORT_DPC:
1738         case DVO_PORT_DPD:
1739         case DVO_PORT_DPE:
1740         case DVO_PORT_DPF:
1741         case DVO_PORT_DPG:
1742         case DVO_PORT_DPH:
1743         case DVO_PORT_DPI:
1744                 return DVO_PORT_DPA;
1745         case DVO_PORT_MIPIA:
1746         case DVO_PORT_MIPIB:
1747         case DVO_PORT_MIPIC:
1748         case DVO_PORT_MIPID:
1749                 return DVO_PORT_MIPIA;
1750         default:
1751                 return dvo_port;
1752         }
1753 }
1754
1755 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1756                                     const int port_mapping[][3], u8 dvo_port)
1757 {
1758         enum port port;
1759         int i;
1760
1761         for (port = PORT_A; port < n_ports; port++) {
1762                 for (i = 0; i < n_dvo; i++) {
1763                         if (port_mapping[port][i] == -1)
1764                                 break;
1765
1766                         if (dvo_port == port_mapping[port][i])
1767                                 return port;
1768                 }
1769         }
1770
1771         return PORT_NONE;
1772 }
1773
1774 static enum port dvo_port_to_port(struct drm_i915_private *i915,
1775                                   u8 dvo_port)
1776 {
1777         /*
1778          * Each DDI port can have more than one value on the "DVO Port" field,
1779          * so look for all the possible values for each port.
1780          */
1781         static const int port_mapping[][3] = {
1782                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1783                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1784                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1785                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1786                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1787                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1788                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1789                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1790                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1791         };
1792         /*
1793          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1794          * map to DDI A,B,TC1,TC2 respectively.
1795          */
1796         static const int rkl_port_mapping[][3] = {
1797                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1798                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1799                 [PORT_C] = { -1 },
1800                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1801                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1802         };
1803         /*
1804          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1805          * PORT_F and PORT_G, we need to map that to correct VBT sections.
1806          */
1807         static const int adls_port_mapping[][3] = {
1808                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1809                 [PORT_B] = { -1 },
1810                 [PORT_C] = { -1 },
1811                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1812                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1813                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1814                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1815         };
1816         static const int xelpd_port_mapping[][3] = {
1817                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1818                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1819                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1820                 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1821                 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1822                 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1823                 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1824                 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1825                 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1826         };
1827
1828         if (DISPLAY_VER(i915) == 13)
1829                 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
1830                                           ARRAY_SIZE(xelpd_port_mapping[0]),
1831                                           xelpd_port_mapping,
1832                                           dvo_port);
1833         else if (IS_ALDERLAKE_S(i915))
1834                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1835                                           ARRAY_SIZE(adls_port_mapping[0]),
1836                                           adls_port_mapping,
1837                                           dvo_port);
1838         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1839                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1840                                           ARRAY_SIZE(rkl_port_mapping[0]),
1841                                           rkl_port_mapping,
1842                                           dvo_port);
1843         else
1844                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1845                                           ARRAY_SIZE(port_mapping[0]),
1846                                           port_mapping,
1847                                           dvo_port);
1848 }
1849
1850 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1851 {
1852         switch (vbt_max_link_rate) {
1853         default:
1854         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1855                 return 0;
1856         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1857                 return 2000000;
1858         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1859                 return 1350000;
1860         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1861                 return 1000000;
1862         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1863                 return 810000;
1864         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1865                 return 540000;
1866         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1867                 return 270000;
1868         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1869                 return 162000;
1870         }
1871 }
1872
1873 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1874 {
1875         switch (vbt_max_link_rate) {
1876         default:
1877         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1878                 return 810000;
1879         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1880                 return 540000;
1881         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1882                 return 270000;
1883         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1884                 return 162000;
1885         }
1886 }
1887
1888 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
1889 {
1890         if (!devdata || devdata->i915->vbt.version < 216)
1891                 return 0;
1892
1893         if (devdata->i915->vbt.version >= 230)
1894                 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
1895         else
1896                 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
1897 }
1898
1899 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1900                                  enum port port)
1901 {
1902         struct drm_i915_private *i915 = devdata->i915;
1903         bool is_hdmi;
1904
1905         if (port != PORT_A || DISPLAY_VER(i915) >= 12)
1906                 return;
1907
1908         if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1909                 return;
1910
1911         is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1912
1913         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1914                     is_hdmi ? "/HDMI" : "");
1915
1916         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1917         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1918 }
1919
1920 static bool
1921 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1922 {
1923         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1924 }
1925
1926 bool
1927 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1928 {
1929         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1930 }
1931
1932 bool
1933 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1934 {
1935         return intel_bios_encoder_supports_dvi(devdata) &&
1936                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1937 }
1938
1939 bool
1940 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1941 {
1942         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1943 }
1944
1945 static bool
1946 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1947 {
1948         return intel_bios_encoder_supports_dp(devdata) &&
1949                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1950 }
1951
1952 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
1953 {
1954         if (!devdata || devdata->i915->vbt.version < 158)
1955                 return -1;
1956
1957         return devdata->child.hdmi_level_shifter_value;
1958 }
1959
1960 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
1961 {
1962         if (!devdata || devdata->i915->vbt.version < 204)
1963                 return 0;
1964
1965         switch (devdata->child.hdmi_max_data_rate) {
1966         default:
1967                 MISSING_CASE(devdata->child.hdmi_max_data_rate);
1968                 fallthrough;
1969         case HDMI_MAX_DATA_RATE_PLATFORM:
1970                 return 0;
1971         case HDMI_MAX_DATA_RATE_297:
1972                 return 297000;
1973         case HDMI_MAX_DATA_RATE_165:
1974                 return 165000;
1975         }
1976 }
1977
1978 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
1979 {
1980         /*
1981          * On some ICL SKUs port F is not present, but broken VBTs mark
1982          * the port as present. Only try to initialize port F for the
1983          * SKUs that may actually have it.
1984          */
1985         if (port == PORT_F && IS_ICELAKE(i915))
1986                 return IS_ICL_WITH_PORT_F(i915);
1987
1988         return true;
1989 }
1990
1991 static void parse_ddi_port(struct drm_i915_private *i915,
1992                            struct intel_bios_encoder_data *devdata)
1993 {
1994         const struct child_device_config *child = &devdata->child;
1995         bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
1996         int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
1997         enum port port;
1998
1999         port = dvo_port_to_port(i915, child->dvo_port);
2000         if (port == PORT_NONE)
2001                 return;
2002
2003         if (!is_port_valid(i915, port)) {
2004                 drm_dbg_kms(&i915->drm,
2005                             "VBT reports port %c as supported, but that can't be true: skipping\n",
2006                             port_name(port));
2007                 return;
2008         }
2009
2010         if (i915->vbt.ports[port]) {
2011                 drm_dbg_kms(&i915->drm,
2012                             "More than one child device for port %c in VBT, using the first.\n",
2013                             port_name(port));
2014                 return;
2015         }
2016
2017         sanitize_device_type(devdata, port);
2018
2019         is_dvi = intel_bios_encoder_supports_dvi(devdata);
2020         is_dp = intel_bios_encoder_supports_dp(devdata);
2021         is_crt = intel_bios_encoder_supports_crt(devdata);
2022         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2023         is_edp = intel_bios_encoder_supports_edp(devdata);
2024
2025         supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2026         supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2027
2028         drm_dbg_kms(&i915->drm,
2029                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2030                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2031                     HAS_LSPCON(i915) && child->lspcon,
2032                     supports_typec_usb, supports_tbt,
2033                     devdata->dsc != NULL);
2034
2035         if (is_dvi)
2036                 sanitize_ddc_pin(devdata, port);
2037
2038         if (is_dp)
2039                 sanitize_aux_ch(devdata, port);
2040
2041         hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2042         if (hdmi_level_shift >= 0) {
2043                 drm_dbg_kms(&i915->drm,
2044                             "Port %c VBT HDMI level shift: %d\n",
2045                             port_name(port), hdmi_level_shift);
2046         }
2047
2048         max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2049         if (max_tmds_clock)
2050                 drm_dbg_kms(&i915->drm,
2051                             "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2052                             port_name(port), max_tmds_clock);
2053
2054         /* I_boost config for SKL and above */
2055         dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2056         if (dp_boost_level)
2057                 drm_dbg_kms(&i915->drm,
2058                             "Port %c VBT (e)DP boost level: %d\n",
2059                             port_name(port), dp_boost_level);
2060
2061         hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2062         if (hdmi_boost_level)
2063                 drm_dbg_kms(&i915->drm,
2064                             "Port %c VBT HDMI boost level: %d\n",
2065                             port_name(port), hdmi_boost_level);
2066
2067         dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2068         if (dp_max_link_rate)
2069                 drm_dbg_kms(&i915->drm,
2070                             "Port %c VBT DP max link rate: %d\n",
2071                             port_name(port), dp_max_link_rate);
2072
2073         i915->vbt.ports[port] = devdata;
2074 }
2075
2076 static void parse_ddi_ports(struct drm_i915_private *i915)
2077 {
2078         struct intel_bios_encoder_data *devdata;
2079
2080         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2081                 return;
2082
2083         if (i915->vbt.version < 155)
2084                 return;
2085
2086         list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2087                 parse_ddi_port(i915, devdata);
2088 }
2089
2090 static void
2091 parse_general_definitions(struct drm_i915_private *i915,
2092                           const struct bdb_header *bdb)
2093 {
2094         const struct bdb_general_definitions *defs;
2095         struct intel_bios_encoder_data *devdata;
2096         const struct child_device_config *child;
2097         int i, child_device_num;
2098         u8 expected_size;
2099         u16 block_size;
2100         int bus_pin;
2101
2102         defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2103         if (!defs) {
2104                 drm_dbg_kms(&i915->drm,
2105                             "No general definition block is found, no devices defined.\n");
2106                 return;
2107         }
2108
2109         block_size = get_blocksize(defs);
2110         if (block_size < sizeof(*defs)) {
2111                 drm_dbg_kms(&i915->drm,
2112                             "General definitions block too small (%u)\n",
2113                             block_size);
2114                 return;
2115         }
2116
2117         bus_pin = defs->crt_ddc_gmbus_pin;
2118         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2119         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2120                 i915->vbt.crt_ddc_pin = bus_pin;
2121
2122         if (bdb->version < 106) {
2123                 expected_size = 22;
2124         } else if (bdb->version < 111) {
2125                 expected_size = 27;
2126         } else if (bdb->version < 195) {
2127                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2128         } else if (bdb->version == 195) {
2129                 expected_size = 37;
2130         } else if (bdb->version <= 215) {
2131                 expected_size = 38;
2132         } else if (bdb->version <= 237) {
2133                 expected_size = 39;
2134         } else {
2135                 expected_size = sizeof(*child);
2136                 BUILD_BUG_ON(sizeof(*child) < 39);
2137                 drm_dbg(&i915->drm,
2138                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2139                         bdb->version, expected_size);
2140         }
2141
2142         /* Flag an error for unexpected size, but continue anyway. */
2143         if (defs->child_dev_size != expected_size)
2144                 drm_err(&i915->drm,
2145                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2146                         defs->child_dev_size, expected_size, bdb->version);
2147
2148         /* The legacy sized child device config is the minimum we need. */
2149         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2150                 drm_dbg_kms(&i915->drm,
2151                             "Child device config size %u is too small.\n",
2152                             defs->child_dev_size);
2153                 return;
2154         }
2155
2156         /* get the number of child device */
2157         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2158
2159         for (i = 0; i < child_device_num; i++) {
2160                 child = child_device_ptr(defs, i);
2161                 if (!child->device_type)
2162                         continue;
2163
2164                 drm_dbg_kms(&i915->drm,
2165                             "Found VBT child device with type 0x%x\n",
2166                             child->device_type);
2167
2168                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2169                 if (!devdata)
2170                         break;
2171
2172                 devdata->i915 = i915;
2173
2174                 /*
2175                  * Copy as much as we know (sizeof) and is available
2176                  * (child_dev_size) of the child device config. Accessing the
2177                  * data must depend on VBT version.
2178                  */
2179                 memcpy(&devdata->child, child,
2180                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2181
2182                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2183         }
2184
2185         if (list_empty(&i915->vbt.display_devices))
2186                 drm_dbg_kms(&i915->drm,
2187                             "no child dev is parsed from VBT\n");
2188 }
2189
2190 /* Common defaults which may be overridden by VBT. */
2191 static void
2192 init_vbt_defaults(struct drm_i915_private *i915)
2193 {
2194         i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2195
2196         /* Default to having backlight */
2197         i915->vbt.backlight.present = true;
2198
2199         /* LFP panel data */
2200         i915->vbt.lvds_dither = 1;
2201
2202         /* SDVO panel data */
2203         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2204
2205         /* general features */
2206         i915->vbt.int_tv_support = 1;
2207         i915->vbt.int_crt_support = 1;
2208
2209         /* driver features */
2210         i915->vbt.int_lvds_support = 1;
2211
2212         /* Default to using SSC */
2213         i915->vbt.lvds_use_ssc = 1;
2214         /*
2215          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2216          * clock for LVDS.
2217          */
2218         i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2219                                                            !HAS_PCH_SPLIT(i915));
2220         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2221                     i915->vbt.lvds_ssc_freq);
2222 }
2223
2224 /* Defaults to initialize only if there is no VBT. */
2225 static void
2226 init_vbt_missing_defaults(struct drm_i915_private *i915)
2227 {
2228         enum port port;
2229         int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2230                     BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2231
2232         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2233                 return;
2234
2235         for_each_port_masked(port, ports) {
2236                 struct intel_bios_encoder_data *devdata;
2237                 struct child_device_config *child;
2238                 enum phy phy = intel_port_to_phy(i915, port);
2239
2240                 /*
2241                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2242                  * to detect it.
2243                  */
2244                 if (intel_phy_is_tc(i915, phy))
2245                         continue;
2246
2247                 /* Create fake child device config */
2248                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2249                 if (!devdata)
2250                         break;
2251
2252                 devdata->i915 = i915;
2253                 child = &devdata->child;
2254
2255                 if (port == PORT_F)
2256                         child->dvo_port = DVO_PORT_HDMIF;
2257                 else if (port == PORT_E)
2258                         child->dvo_port = DVO_PORT_HDMIE;
2259                 else
2260                         child->dvo_port = DVO_PORT_HDMIA + port;
2261
2262                 if (port != PORT_A && port != PORT_E)
2263                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2264
2265                 if (port != PORT_E)
2266                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2267
2268                 if (port == PORT_A)
2269                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2270
2271                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2272
2273                 drm_dbg_kms(&i915->drm,
2274                             "Generating default VBT child device with type 0x04%x on port %c\n",
2275                             child->device_type, port_name(port));
2276         }
2277
2278         /* Bypass some minimum baseline VBT version checks */
2279         i915->vbt.version = 155;
2280 }
2281
2282 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2283 {
2284         const void *_vbt = vbt;
2285
2286         return _vbt + vbt->bdb_offset;
2287 }
2288
2289 /**
2290  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2291  * @buf:        pointer to a buffer to validate
2292  * @size:       size of the buffer
2293  *
2294  * Returns true on valid VBT.
2295  */
2296 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2297 {
2298         const struct vbt_header *vbt = buf;
2299         const struct bdb_header *bdb;
2300
2301         if (!vbt)
2302                 return false;
2303
2304         if (sizeof(struct vbt_header) > size) {
2305                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2306                 return false;
2307         }
2308
2309         if (memcmp(vbt->signature, "$VBT", 4)) {
2310                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2311                 return false;
2312         }
2313
2314         if (vbt->vbt_size > size) {
2315                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2316                 return false;
2317         }
2318
2319         size = vbt->vbt_size;
2320
2321         if (range_overflows_t(size_t,
2322                               vbt->bdb_offset,
2323                               sizeof(struct bdb_header),
2324                               size)) {
2325                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2326                 return false;
2327         }
2328
2329         bdb = get_bdb_header(vbt);
2330         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2331                 DRM_DEBUG_DRIVER("BDB incomplete\n");
2332                 return false;
2333         }
2334
2335         return vbt;
2336 }
2337
2338 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2339 {
2340         u32 count, data, found, store = 0;
2341         u32 static_region, oprom_offset;
2342         u32 oprom_size = 0x200000;
2343         u16 vbt_size;
2344         u32 *vbt;
2345
2346         static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2347         static_region &= OPTIONROM_SPI_REGIONID_MASK;
2348         intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2349
2350         oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2351         oprom_offset &= OROM_OFFSET_MASK;
2352
2353         for (count = 0; count < oprom_size; count += 4) {
2354                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
2355                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2356
2357                 if (data == *((const u32 *)"$VBT")) {
2358                         found = oprom_offset + count;
2359                         break;
2360                 }
2361         }
2362
2363         if (count >= oprom_size)
2364                 goto err_not_found;
2365
2366         /* Get VBT size and allocate space for the VBT */
2367         intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
2368                    offsetof(struct vbt_header, vbt_size));
2369         vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2370         vbt_size &= 0xffff;
2371
2372         vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2373         if (!vbt)
2374                 goto err_not_found;
2375
2376         for (count = 0; count < vbt_size; count += 4) {
2377                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
2378                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2379                 *(vbt + store++) = data;
2380         }
2381
2382         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2383                 goto err_free_vbt;
2384
2385         drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2386
2387         return (struct vbt_header *)vbt;
2388
2389 err_free_vbt:
2390         kfree(vbt);
2391 err_not_found:
2392         return NULL;
2393 }
2394
2395 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2396 {
2397         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2398         void __iomem *p = NULL, *oprom;
2399         struct vbt_header *vbt;
2400         u16 vbt_size;
2401         size_t i, size;
2402
2403         oprom = pci_map_rom(pdev, &size);
2404         if (!oprom)
2405                 return NULL;
2406
2407         /* Scour memory looking for the VBT signature. */
2408         for (i = 0; i + 4 < size; i += 4) {
2409                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2410                         continue;
2411
2412                 p = oprom + i;
2413                 size -= i;
2414                 break;
2415         }
2416
2417         if (!p)
2418                 goto err_unmap_oprom;
2419
2420         if (sizeof(struct vbt_header) > size) {
2421                 drm_dbg(&i915->drm, "VBT header incomplete\n");
2422                 goto err_unmap_oprom;
2423         }
2424
2425         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2426         if (vbt_size > size) {
2427                 drm_dbg(&i915->drm,
2428                         "VBT incomplete (vbt_size overflows)\n");
2429                 goto err_unmap_oprom;
2430         }
2431
2432         /* The rest will be validated by intel_bios_is_valid_vbt() */
2433         vbt = kmalloc(vbt_size, GFP_KERNEL);
2434         if (!vbt)
2435                 goto err_unmap_oprom;
2436
2437         memcpy_fromio(vbt, p, vbt_size);
2438
2439         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2440                 goto err_free_vbt;
2441
2442         pci_unmap_rom(pdev, oprom);
2443
2444         drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2445
2446         return vbt;
2447
2448 err_free_vbt:
2449         kfree(vbt);
2450 err_unmap_oprom:
2451         pci_unmap_rom(pdev, oprom);
2452
2453         return NULL;
2454 }
2455
2456 /**
2457  * intel_bios_init - find VBT and initialize settings from the BIOS
2458  * @i915: i915 device instance
2459  *
2460  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2461  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2462  * initialize some defaults if the VBT is not present at all.
2463  */
2464 void intel_bios_init(struct drm_i915_private *i915)
2465 {
2466         const struct vbt_header *vbt = i915->opregion.vbt;
2467         struct vbt_header *oprom_vbt = NULL;
2468         const struct bdb_header *bdb;
2469
2470         INIT_LIST_HEAD(&i915->vbt.display_devices);
2471
2472         if (!HAS_DISPLAY(i915)) {
2473                 drm_dbg_kms(&i915->drm,
2474                             "Skipping VBT init due to disabled display.\n");
2475                 return;
2476         }
2477
2478         init_vbt_defaults(i915);
2479
2480         /*
2481          * If the OpRegion does not have VBT, look in SPI flash through MMIO or
2482          * PCI mapping
2483          */
2484         if (!vbt && IS_DGFX(i915)) {
2485                 oprom_vbt = spi_oprom_get_vbt(i915);
2486                 vbt = oprom_vbt;
2487         }
2488
2489         if (!vbt) {
2490                 oprom_vbt = oprom_get_vbt(i915);
2491                 vbt = oprom_vbt;
2492         }
2493
2494         if (!vbt)
2495                 goto out;
2496
2497         bdb = get_bdb_header(vbt);
2498         i915->vbt.version = bdb->version;
2499
2500         drm_dbg_kms(&i915->drm,
2501                     "VBT signature \"%.*s\", BDB version %d\n",
2502                     (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2503
2504         /* Grab useful general definitions */
2505         parse_general_features(i915, bdb);
2506         parse_general_definitions(i915, bdb);
2507         parse_panel_options(i915, bdb);
2508         parse_panel_dtd(i915, bdb);
2509         parse_lfp_backlight(i915, bdb);
2510         parse_sdvo_panel_data(i915, bdb);
2511         parse_driver_features(i915, bdb);
2512         parse_power_conservation_features(i915, bdb);
2513         parse_edp(i915, bdb);
2514         parse_psr(i915, bdb);
2515         parse_mipi_config(i915, bdb);
2516         parse_mipi_sequence(i915, bdb);
2517
2518         /* Depends on child device list */
2519         parse_compression_parameters(i915, bdb);
2520
2521 out:
2522         if (!vbt) {
2523                 drm_info(&i915->drm,
2524                          "Failed to find VBIOS tables (VBT)\n");
2525                 init_vbt_missing_defaults(i915);
2526         }
2527
2528         /* Further processing on pre-parsed or generated child device data */
2529         parse_sdvo_device_mapping(i915);
2530         parse_ddi_ports(i915);
2531
2532         kfree(oprom_vbt);
2533 }
2534
2535 /**
2536  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2537  * @i915: i915 device instance
2538  */
2539 void intel_bios_driver_remove(struct drm_i915_private *i915)
2540 {
2541         struct intel_bios_encoder_data *devdata, *n;
2542
2543         list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2544                 list_del(&devdata->node);
2545                 kfree(devdata->dsc);
2546                 kfree(devdata);
2547         }
2548
2549         kfree(i915->vbt.sdvo_lvds_vbt_mode);
2550         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2551         kfree(i915->vbt.lfp_lvds_vbt_mode);
2552         i915->vbt.lfp_lvds_vbt_mode = NULL;
2553         kfree(i915->vbt.dsi.data);
2554         i915->vbt.dsi.data = NULL;
2555         kfree(i915->vbt.dsi.pps);
2556         i915->vbt.dsi.pps = NULL;
2557         kfree(i915->vbt.dsi.config);
2558         i915->vbt.dsi.config = NULL;
2559         kfree(i915->vbt.dsi.deassert_seq);
2560         i915->vbt.dsi.deassert_seq = NULL;
2561 }
2562
2563 /**
2564  * intel_bios_is_tv_present - is integrated TV present in VBT
2565  * @i915: i915 device instance
2566  *
2567  * Return true if TV is present. If no child devices were parsed from VBT,
2568  * assume TV is present.
2569  */
2570 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2571 {
2572         const struct intel_bios_encoder_data *devdata;
2573         const struct child_device_config *child;
2574
2575         if (!i915->vbt.int_tv_support)
2576                 return false;
2577
2578         if (list_empty(&i915->vbt.display_devices))
2579                 return true;
2580
2581         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2582                 child = &devdata->child;
2583
2584                 /*
2585                  * If the device type is not TV, continue.
2586                  */
2587                 switch (child->device_type) {
2588                 case DEVICE_TYPE_INT_TV:
2589                 case DEVICE_TYPE_TV:
2590                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2591                         break;
2592                 default:
2593                         continue;
2594                 }
2595                 /* Only when the addin_offset is non-zero, it is regarded
2596                  * as present.
2597                  */
2598                 if (child->addin_offset)
2599                         return true;
2600         }
2601
2602         return false;
2603 }
2604
2605 /**
2606  * intel_bios_is_lvds_present - is LVDS present in VBT
2607  * @i915:       i915 device instance
2608  * @i2c_pin:    i2c pin for LVDS if present
2609  *
2610  * Return true if LVDS is present. If no child devices were parsed from VBT,
2611  * assume LVDS is present.
2612  */
2613 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2614 {
2615         const struct intel_bios_encoder_data *devdata;
2616         const struct child_device_config *child;
2617
2618         if (list_empty(&i915->vbt.display_devices))
2619                 return true;
2620
2621         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2622                 child = &devdata->child;
2623
2624                 /* If the device type is not LFP, continue.
2625                  * We have to check both the new identifiers as well as the
2626                  * old for compatibility with some BIOSes.
2627                  */
2628                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
2629                     child->device_type != DEVICE_TYPE_LFP)
2630                         continue;
2631
2632                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2633                         *i2c_pin = child->i2c_pin;
2634
2635                 /* However, we cannot trust the BIOS writers to populate
2636                  * the VBT correctly.  Since LVDS requires additional
2637                  * information from AIM blocks, a non-zero addin offset is
2638                  * a good indicator that the LVDS is actually present.
2639                  */
2640                 if (child->addin_offset)
2641                         return true;
2642
2643                 /* But even then some BIOS writers perform some black magic
2644                  * and instantiate the device without reference to any
2645                  * additional data.  Trust that if the VBT was written into
2646                  * the OpRegion then they have validated the LVDS's existence.
2647                  */
2648                 if (i915->opregion.vbt)
2649                         return true;
2650         }
2651
2652         return false;
2653 }
2654
2655 /**
2656  * intel_bios_is_port_present - is the specified digital port present
2657  * @i915:       i915 device instance
2658  * @port:       port to check
2659  *
2660  * Return true if the device in %port is present.
2661  */
2662 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2663 {
2664         const struct intel_bios_encoder_data *devdata;
2665         const struct child_device_config *child;
2666         static const struct {
2667                 u16 dp, hdmi;
2668         } port_mapping[] = {
2669                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2670                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2671                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2672                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2673                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2674         };
2675
2676         if (HAS_DDI(i915))
2677                 return i915->vbt.ports[port];
2678
2679         /* FIXME maybe deal with port A as well? */
2680         if (drm_WARN_ON(&i915->drm,
2681                         port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2682                 return false;
2683
2684         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2685                 child = &devdata->child;
2686
2687                 if ((child->dvo_port == port_mapping[port].dp ||
2688                      child->dvo_port == port_mapping[port].hdmi) &&
2689                     (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2690                                            DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2691                         return true;
2692         }
2693
2694         return false;
2695 }
2696
2697 /**
2698  * intel_bios_is_port_edp - is the device in given port eDP
2699  * @i915:       i915 device instance
2700  * @port:       port to check
2701  *
2702  * Return true if the device in %port is eDP.
2703  */
2704 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2705 {
2706         const struct intel_bios_encoder_data *devdata;
2707         const struct child_device_config *child;
2708         static const short port_mapping[] = {
2709                 [PORT_B] = DVO_PORT_DPB,
2710                 [PORT_C] = DVO_PORT_DPC,
2711                 [PORT_D] = DVO_PORT_DPD,
2712                 [PORT_E] = DVO_PORT_DPE,
2713                 [PORT_F] = DVO_PORT_DPF,
2714         };
2715
2716         if (HAS_DDI(i915)) {
2717                 const struct intel_bios_encoder_data *devdata;
2718
2719                 devdata = intel_bios_encoder_data_lookup(i915, port);
2720
2721                 return devdata && intel_bios_encoder_supports_edp(devdata);
2722         }
2723
2724         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2725                 child = &devdata->child;
2726
2727                 if (child->dvo_port == port_mapping[port] &&
2728                     (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2729                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2730                         return true;
2731         }
2732
2733         return false;
2734 }
2735
2736 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child)
2737 {
2738         if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2739             (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2740                 return false;
2741
2742         if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
2743                 return true;
2744
2745         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2746         if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
2747             child->aux_channel != 0)
2748                 return true;
2749
2750         return false;
2751 }
2752
2753 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2754                                      enum port port)
2755 {
2756         static const struct {
2757                 u16 dp, hdmi;
2758         } port_mapping[] = {
2759                 /*
2760                  * Buggy VBTs may declare DP ports as having
2761                  * HDMI type dvo_port :( So let's check both.
2762                  */
2763                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2764                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2765                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2766                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2767                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2768         };
2769         const struct intel_bios_encoder_data *devdata;
2770
2771         if (HAS_DDI(i915)) {
2772                 const struct intel_bios_encoder_data *devdata;
2773
2774                 devdata = intel_bios_encoder_data_lookup(i915, port);
2775
2776                 return devdata && child_dev_is_dp_dual_mode(&devdata->child);
2777         }
2778
2779         if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2780                 return false;
2781
2782         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2783                 if ((devdata->child.dvo_port == port_mapping[port].dp ||
2784                      devdata->child.dvo_port == port_mapping[port].hdmi) &&
2785                     child_dev_is_dp_dual_mode(&devdata->child))
2786                         return true;
2787         }
2788
2789         return false;
2790 }
2791
2792 /**
2793  * intel_bios_is_dsi_present - is DSI present in VBT
2794  * @i915:       i915 device instance
2795  * @port:       port for DSI if present
2796  *
2797  * Return true if DSI is present, and return the port in %port.
2798  */
2799 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2800                                enum port *port)
2801 {
2802         const struct intel_bios_encoder_data *devdata;
2803         const struct child_device_config *child;
2804         u8 dvo_port;
2805
2806         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2807                 child = &devdata->child;
2808
2809                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2810                         continue;
2811
2812                 dvo_port = child->dvo_port;
2813
2814                 if (dvo_port == DVO_PORT_MIPIA ||
2815                     (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
2816                     (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
2817                         if (port)
2818                                 *port = dvo_port - DVO_PORT_MIPIA;
2819                         return true;
2820                 } else if (dvo_port == DVO_PORT_MIPIB ||
2821                            dvo_port == DVO_PORT_MIPIC ||
2822                            dvo_port == DVO_PORT_MIPID) {
2823                         drm_dbg_kms(&i915->drm,
2824                                     "VBT has unsupported DSI port %c\n",
2825                                     port_name(dvo_port - DVO_PORT_MIPIA));
2826                 }
2827         }
2828
2829         return false;
2830 }
2831
2832 static void fill_dsc(struct intel_crtc_state *crtc_state,
2833                      struct dsc_compression_parameters_entry *dsc,
2834                      int dsc_max_bpc)
2835 {
2836         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2837         int bpc = 8;
2838
2839         vdsc_cfg->dsc_version_major = dsc->version_major;
2840         vdsc_cfg->dsc_version_minor = dsc->version_minor;
2841
2842         if (dsc->support_12bpc && dsc_max_bpc >= 12)
2843                 bpc = 12;
2844         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2845                 bpc = 10;
2846         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2847                 bpc = 8;
2848         else
2849                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2850                               dsc_max_bpc);
2851
2852         crtc_state->pipe_bpp = bpc * 3;
2853
2854         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2855                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
2856
2857         /*
2858          * FIXME: This is ugly, and slice count should take DSC engine
2859          * throughput etc. into account.
2860          *
2861          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2862          */
2863         if (dsc->slices_per_line & BIT(2)) {
2864                 crtc_state->dsc.slice_count = 4;
2865         } else if (dsc->slices_per_line & BIT(1)) {
2866                 crtc_state->dsc.slice_count = 2;
2867         } else {
2868                 /* FIXME */
2869                 if (!(dsc->slices_per_line & BIT(0)))
2870                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2871
2872                 crtc_state->dsc.slice_count = 1;
2873         }
2874
2875         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2876             crtc_state->dsc.slice_count != 0)
2877                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2878                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
2879                               crtc_state->dsc.slice_count);
2880
2881         /*
2882          * The VBT rc_buffer_block_size and rc_buffer_size definitions
2883          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2884          */
2885         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2886                                                             dsc->rc_buffer_size);
2887
2888         /* FIXME: DSI spec says bpc + 1 for this one */
2889         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2890
2891         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2892
2893         vdsc_cfg->slice_height = dsc->slice_height;
2894 }
2895
2896 /* FIXME: initially DSI specific */
2897 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2898                                struct intel_crtc_state *crtc_state,
2899                                int dsc_max_bpc)
2900 {
2901         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2902         const struct intel_bios_encoder_data *devdata;
2903         const struct child_device_config *child;
2904
2905         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2906                 child = &devdata->child;
2907
2908                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2909                         continue;
2910
2911                 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2912                         if (!devdata->dsc)
2913                                 return false;
2914
2915                         if (crtc_state)
2916                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2917
2918                         return true;
2919                 }
2920         }
2921
2922         return false;
2923 }
2924
2925 /**
2926  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2927  * @i915:       i915 device instance
2928  * @port:       port to check
2929  *
2930  * Return true if HPD should be inverted for %port.
2931  */
2932 bool
2933 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2934                                 enum port port)
2935 {
2936         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2937
2938         if (drm_WARN_ON_ONCE(&i915->drm,
2939                              !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
2940                 return false;
2941
2942         return devdata && devdata->child.hpd_invert;
2943 }
2944
2945 /**
2946  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2947  * @i915:       i915 device instance
2948  * @port:       port to check
2949  *
2950  * Return true if LSPCON is present on this port
2951  */
2952 bool
2953 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2954                              enum port port)
2955 {
2956         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2957
2958         return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2959 }
2960
2961 /**
2962  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2963  * @i915:       i915 device instance
2964  * @port:       port to check
2965  *
2966  * Return true if port requires lane reversal
2967  */
2968 bool
2969 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2970                                    enum port port)
2971 {
2972         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2973
2974         return devdata && devdata->child.lane_reversal;
2975 }
2976
2977 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2978                                    enum port port)
2979 {
2980         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2981         enum aux_ch aux_ch;
2982
2983         if (!devdata || !devdata->child.aux_channel) {
2984                 aux_ch = (enum aux_ch)port;
2985
2986                 drm_dbg_kms(&i915->drm,
2987                             "using AUX %c for port %c (platform default)\n",
2988                             aux_ch_name(aux_ch), port_name(port));
2989                 return aux_ch;
2990         }
2991
2992         /*
2993          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2994          * map to DDI A,B,TC1,TC2 respectively.
2995          *
2996          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2997          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2998          */
2999         switch (devdata->child.aux_channel) {
3000         case DP_AUX_A:
3001                 aux_ch = AUX_CH_A;
3002                 break;
3003         case DP_AUX_B:
3004                 if (IS_ALDERLAKE_S(i915))
3005                         aux_ch = AUX_CH_USBC1;
3006                 else
3007                         aux_ch = AUX_CH_B;
3008                 break;
3009         case DP_AUX_C:
3010                 if (IS_ALDERLAKE_S(i915))
3011                         aux_ch = AUX_CH_USBC2;
3012                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3013                         aux_ch = AUX_CH_USBC1;
3014                 else
3015                         aux_ch = AUX_CH_C;
3016                 break;
3017         case DP_AUX_D:
3018                 if (DISPLAY_VER(i915) == 13)
3019                         aux_ch = AUX_CH_D_XELPD;
3020                 else if (IS_ALDERLAKE_S(i915))
3021                         aux_ch = AUX_CH_USBC3;
3022                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3023                         aux_ch = AUX_CH_USBC2;
3024                 else
3025                         aux_ch = AUX_CH_D;
3026                 break;
3027         case DP_AUX_E:
3028                 if (DISPLAY_VER(i915) == 13)
3029                         aux_ch = AUX_CH_E_XELPD;
3030                 else if (IS_ALDERLAKE_S(i915))
3031                         aux_ch = AUX_CH_USBC4;
3032                 else
3033                         aux_ch = AUX_CH_E;
3034                 break;
3035         case DP_AUX_F:
3036                 if (DISPLAY_VER(i915) == 13)
3037                         aux_ch = AUX_CH_USBC1;
3038                 else
3039                         aux_ch = AUX_CH_F;
3040                 break;
3041         case DP_AUX_G:
3042                 if (DISPLAY_VER(i915) == 13)
3043                         aux_ch = AUX_CH_USBC2;
3044                 else
3045                         aux_ch = AUX_CH_G;
3046                 break;
3047         case DP_AUX_H:
3048                 if (DISPLAY_VER(i915) == 13)
3049                         aux_ch = AUX_CH_USBC3;
3050                 else
3051                         aux_ch = AUX_CH_H;
3052                 break;
3053         case DP_AUX_I:
3054                 if (DISPLAY_VER(i915) == 13)
3055                         aux_ch = AUX_CH_USBC4;
3056                 else
3057                         aux_ch = AUX_CH_I;
3058                 break;
3059         default:
3060                 MISSING_CASE(devdata->child.aux_channel);
3061                 aux_ch = AUX_CH_A;
3062                 break;
3063         }
3064
3065         drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3066                     aux_ch_name(aux_ch), port_name(port));
3067
3068         return aux_ch;
3069 }
3070
3071 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3072 {
3073         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3074         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3075
3076         return _intel_bios_max_tmds_clock(devdata);
3077 }
3078
3079 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3080 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3081 {
3082         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3083         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3084
3085         return _intel_bios_hdmi_level_shift(devdata);
3086 }
3087
3088 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3089 {
3090         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3091                 return 0;
3092
3093         return translate_iboost(devdata->child.dp_iboost_level);
3094 }
3095
3096 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3097 {
3098         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3099                 return 0;
3100
3101         return translate_iboost(devdata->child.hdmi_iboost_level);
3102 }
3103
3104 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3105 {
3106         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3107         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3108
3109         return _intel_bios_dp_max_link_rate(devdata);
3110 }
3111
3112 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3113 {
3114         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3115         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3116
3117         if (!devdata || !devdata->child.ddc_pin)
3118                 return 0;
3119
3120         return map_ddc_pin(i915, devdata->child.ddc_pin);
3121 }
3122
3123 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3124 {
3125         return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3126 }
3127
3128 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3129 {
3130         return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3131 }
3132
3133 const struct intel_bios_encoder_data *
3134 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3135 {
3136         return i915->vbt.ports[port];
3137 }