Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_dp_helper.h>
35 #include <drm/drm_simple_kms_helper.h>
36
37 #include "gma_display.h"
38 #include "psb_drv.h"
39 #include "psb_intel_drv.h"
40 #include "psb_intel_reg.h"
41
42 /**
43  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44  *                               aux algorithm
45  * @running: set by the algo indicating whether an i2c is ongoing or whether
46  *           the i2c bus is quiescent
47  * @address: i2c target address for the currently ongoing transfer
48  * @aux_ch: driver callback to transfer a single byte of the i2c payload
49  */
50 struct i2c_algo_dp_aux_data {
51         bool running;
52         u16 address;
53         int (*aux_ch) (struct i2c_adapter *adapter,
54                        int mode, uint8_t write_byte,
55                        uint8_t *read_byte);
56 };
57
58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59 static int
60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61                             uint8_t write_byte, uint8_t *read_byte)
62 {
63         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64         int ret;
65
66         ret = (*algo_data->aux_ch)(adapter, mode,
67                                    write_byte, read_byte);
68         return ret;
69 }
70
71 /*
72  * I2C over AUX CH
73  */
74
75 /*
76  * Send the address. If the I2C link is running, this 'restarts'
77  * the connection with the new address, this is used for doing
78  * a write followed by a read (as needed for DDC)
79  */
80 static int
81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82 {
83         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84         int mode = MODE_I2C_START;
85         int ret;
86
87         if (reading)
88                 mode |= MODE_I2C_READ;
89         else
90                 mode |= MODE_I2C_WRITE;
91         algo_data->address = address;
92         algo_data->running = true;
93         ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
94         return ret;
95 }
96
97 /*
98  * Stop the I2C transaction. This closes out the link, sending
99  * a bare address packet with the MOT bit turned off
100  */
101 static void
102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105         int mode = MODE_I2C_STOP;
106
107         if (reading)
108                 mode |= MODE_I2C_READ;
109         else
110                 mode |= MODE_I2C_WRITE;
111         if (algo_data->running) {
112                 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113                 algo_data->running = false;
114         }
115 }
116
117 /*
118  * Write a single byte to the current I2C address, the
119  * the I2C link must be running or this returns -EIO
120  */
121 static int
122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125         int ret;
126
127         if (!algo_data->running)
128                 return -EIO;
129
130         ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
131         return ret;
132 }
133
134 /*
135  * Read a single byte from the current I2C address, the
136  * I2C link must be running or this returns -EIO
137  */
138 static int
139 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
140 {
141         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
142         int ret;
143
144         if (!algo_data->running)
145                 return -EIO;
146
147         ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
148         return ret;
149 }
150
151 static int
152 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
153                      struct i2c_msg *msgs,
154                      int num)
155 {
156         int ret = 0;
157         bool reading = false;
158         int m;
159         int b;
160
161         for (m = 0; m < num; m++) {
162                 u16 len = msgs[m].len;
163                 u8 *buf = msgs[m].buf;
164                 reading = (msgs[m].flags & I2C_M_RD) != 0;
165                 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
166                 if (ret < 0)
167                         break;
168                 if (reading) {
169                         for (b = 0; b < len; b++) {
170                                 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
171                                 if (ret < 0)
172                                         break;
173                         }
174                 } else {
175                         for (b = 0; b < len; b++) {
176                                 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
177                                 if (ret < 0)
178                                         break;
179                         }
180                 }
181                 if (ret < 0)
182                         break;
183         }
184         if (ret >= 0)
185                 ret = num;
186         i2c_algo_dp_aux_stop(adapter, reading);
187         DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
188         return ret;
189 }
190
191 static u32
192 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
193 {
194         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
195                I2C_FUNC_SMBUS_READ_BLOCK_DATA |
196                I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
197                I2C_FUNC_10BIT_ADDR;
198 }
199
200 static const struct i2c_algorithm i2c_dp_aux_algo = {
201         .master_xfer    = i2c_algo_dp_aux_xfer,
202         .functionality  = i2c_algo_dp_aux_functionality,
203 };
204
205 static void
206 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
207 {
208         (void) i2c_algo_dp_aux_address(adapter, 0, false);
209         (void) i2c_algo_dp_aux_stop(adapter, false);
210 }
211
212 static int
213 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
214 {
215         adapter->algo = &i2c_dp_aux_algo;
216         adapter->retries = 3;
217         i2c_dp_aux_reset_bus(adapter);
218         return 0;
219 }
220
221 /*
222  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
223  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
224  */
225 static int
226 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
227 {
228         int error;
229
230         error = i2c_dp_aux_prepare_bus(adapter);
231         if (error)
232                 return error;
233         error = i2c_add_adapter(adapter);
234         return error;
235 }
236
237 #define _wait_for(COND, MS, W) ({ \
238         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
239         int ret__ = 0;                                                  \
240         while (! (COND)) {                                              \
241                 if (time_after(jiffies, timeout__)) {                   \
242                         ret__ = -ETIMEDOUT;                             \
243                         break;                                          \
244                 }                                                       \
245                 if (W && !in_dbg_master()) msleep(W);                   \
246         }                                                               \
247         ret__;                                                          \
248 })      
249
250 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
251
252 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
253
254 #define DP_LINK_CONFIGURATION_SIZE      9
255
256 #define CDV_FAST_LINK_TRAIN     1
257
258 struct cdv_intel_dp {
259         uint32_t output_reg;
260         uint32_t DP;
261         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
262         bool has_audio;
263         int force_audio;
264         uint32_t color_range;
265         uint8_t link_bw;
266         uint8_t lane_count;
267         uint8_t dpcd[4];
268         struct gma_encoder *encoder;
269         struct i2c_adapter adapter;
270         struct i2c_algo_dp_aux_data algo;
271         uint8_t train_set[4];
272         uint8_t link_status[DP_LINK_STATUS_SIZE];
273         int panel_power_up_delay;
274         int panel_power_down_delay;
275         int panel_power_cycle_delay;
276         int backlight_on_delay;
277         int backlight_off_delay;
278         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
279         bool panel_on;
280 };
281
282 struct ddi_regoff {
283         uint32_t        PreEmph1;
284         uint32_t        PreEmph2;
285         uint32_t        VSwing1;
286         uint32_t        VSwing2;
287         uint32_t        VSwing3;
288         uint32_t        VSwing4;
289         uint32_t        VSwing5;
290 };
291
292 static struct ddi_regoff ddi_DP_train_table[] = {
293         {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
294         .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
295         .VSwing5 = 0x8158,},
296         {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
297         .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
298         .VSwing5 = 0x8258,},
299 };
300
301 static uint32_t dp_vswing_premph_table[] = {
302         0x55338954,     0x4000,
303         0x554d8954,     0x2000,
304         0x55668954,     0,
305         0x559ac0d4,     0x6000,
306 };
307 /**
308  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
309  * @intel_dp: DP struct
310  *
311  * If a CPU or PCH DP output is attached to an eDP panel, this function
312  * will return true, and false otherwise.
313  */
314 static bool is_edp(struct gma_encoder *encoder)
315 {
316         return encoder->type == INTEL_OUTPUT_EDP;
317 }
318
319
320 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
322 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
323
324 static int
325 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
326 {
327         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
328         int max_lane_count = 4;
329
330         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
331                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
332                 switch (max_lane_count) {
333                 case 1: case 2: case 4:
334                         break;
335                 default:
336                         max_lane_count = 4;
337                 }
338         }
339         return max_lane_count;
340 }
341
342 static int
343 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
344 {
345         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
346         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
347
348         switch (max_link_bw) {
349         case DP_LINK_BW_1_62:
350         case DP_LINK_BW_2_7:
351                 break;
352         default:
353                 max_link_bw = DP_LINK_BW_1_62;
354                 break;
355         }
356         return max_link_bw;
357 }
358
359 static int
360 cdv_intel_dp_link_clock(uint8_t link_bw)
361 {
362         if (link_bw == DP_LINK_BW_2_7)
363                 return 270000;
364         else
365                 return 162000;
366 }
367
368 static int
369 cdv_intel_dp_link_required(int pixel_clock, int bpp)
370 {
371         return (pixel_clock * bpp + 7) / 8;
372 }
373
374 static int
375 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
376 {
377         return (max_link_clock * max_lanes * 19) / 20;
378 }
379
380 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
381 {
382         struct drm_device *dev = intel_encoder->base.dev;
383         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
384         u32 pp;
385
386         if (intel_dp->panel_on) {
387                 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
388                 return;
389         }       
390         DRM_DEBUG_KMS("\n");
391
392         pp = REG_READ(PP_CONTROL);
393
394         pp |= EDP_FORCE_VDD;
395         REG_WRITE(PP_CONTROL, pp);
396         REG_READ(PP_CONTROL);
397         msleep(intel_dp->panel_power_up_delay);
398 }
399
400 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
401 {
402         struct drm_device *dev = intel_encoder->base.dev;
403         u32 pp;
404
405         DRM_DEBUG_KMS("\n");
406         pp = REG_READ(PP_CONTROL);
407
408         pp &= ~EDP_FORCE_VDD;
409         REG_WRITE(PP_CONTROL, pp);
410         REG_READ(PP_CONTROL);
411
412 }
413
414 /* Returns true if the panel was already on when called */
415 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
416 {
417         struct drm_device *dev = intel_encoder->base.dev;
418         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
419         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
420
421         if (intel_dp->panel_on)
422                 return true;
423
424         DRM_DEBUG_KMS("\n");
425         pp = REG_READ(PP_CONTROL);
426         pp &= ~PANEL_UNLOCK_MASK;
427
428         pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
429         REG_WRITE(PP_CONTROL, pp);
430         REG_READ(PP_CONTROL);
431
432         if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
433                 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
434                 intel_dp->panel_on = false;
435         } else
436                 intel_dp->panel_on = true;      
437         msleep(intel_dp->panel_power_up_delay);
438
439         return false;
440 }
441
442 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
443 {
444         struct drm_device *dev = intel_encoder->base.dev;
445         u32 pp, idle_off_mask = PP_ON ;
446         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
447
448         DRM_DEBUG_KMS("\n");
449
450         pp = REG_READ(PP_CONTROL);
451
452         if ((pp & POWER_TARGET_ON) == 0) 
453                 return;
454
455         intel_dp->panel_on = false;
456         pp &= ~PANEL_UNLOCK_MASK;
457         /* ILK workaround: disable reset around power sequence */
458
459         pp &= ~POWER_TARGET_ON;
460         pp &= ~EDP_FORCE_VDD;
461         pp &= ~EDP_BLC_ENABLE;
462         REG_WRITE(PP_CONTROL, pp);
463         REG_READ(PP_CONTROL);
464         DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
465
466         if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
467                 DRM_DEBUG_KMS("Error in turning off Panel\n");  
468         }
469
470         msleep(intel_dp->panel_power_cycle_delay);
471         DRM_DEBUG_KMS("Over\n");
472 }
473
474 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
475 {
476         struct drm_device *dev = intel_encoder->base.dev;
477         u32 pp;
478
479         DRM_DEBUG_KMS("\n");
480         /*
481          * If we enable the backlight right away following a panel power
482          * on, we may see slight flicker as the panel syncs with the eDP
483          * link.  So delay a bit to make sure the image is solid before
484          * allowing it to appear.
485          */
486         msleep(300);
487         pp = REG_READ(PP_CONTROL);
488
489         pp |= EDP_BLC_ENABLE;
490         REG_WRITE(PP_CONTROL, pp);
491         gma_backlight_enable(dev);
492 }
493
494 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
495 {
496         struct drm_device *dev = intel_encoder->base.dev;
497         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
498         u32 pp;
499
500         DRM_DEBUG_KMS("\n");
501         gma_backlight_disable(dev);
502         msleep(10);
503         pp = REG_READ(PP_CONTROL);
504
505         pp &= ~EDP_BLC_ENABLE;
506         REG_WRITE(PP_CONTROL, pp);
507         msleep(intel_dp->backlight_off_delay);
508 }
509
510 static enum drm_mode_status
511 cdv_intel_dp_mode_valid(struct drm_connector *connector,
512                     struct drm_display_mode *mode)
513 {
514         struct gma_encoder *encoder = gma_attached_encoder(connector);
515         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
516         int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
517         int max_lanes = cdv_intel_dp_max_lane_count(encoder);
518         struct drm_psb_private *dev_priv = connector->dev->dev_private;
519
520         if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
521                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
522                         return MODE_PANEL;
523                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
524                         return MODE_PANEL;
525         }
526
527         /* only refuse the mode on non eDP since we have seen some weird eDP panels
528            which are outside spec tolerances but somehow work by magic */
529         if (!is_edp(encoder) &&
530             (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
531              > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
532                 return MODE_CLOCK_HIGH;
533
534         if (is_edp(encoder)) {
535             if (cdv_intel_dp_link_required(mode->clock, 24)
536                 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
537                 return MODE_CLOCK_HIGH;
538                 
539         }
540         if (mode->clock < 10000)
541                 return MODE_CLOCK_LOW;
542
543         return MODE_OK;
544 }
545
546 static uint32_t
547 pack_aux(uint8_t *src, int src_bytes)
548 {
549         int     i;
550         uint32_t v = 0;
551
552         if (src_bytes > 4)
553                 src_bytes = 4;
554         for (i = 0; i < src_bytes; i++)
555                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
556         return v;
557 }
558
559 static void
560 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
561 {
562         int i;
563         if (dst_bytes > 4)
564                 dst_bytes = 4;
565         for (i = 0; i < dst_bytes; i++)
566                 dst[i] = src >> ((3-i) * 8);
567 }
568
569 static int
570 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
571                 uint8_t *send, int send_bytes,
572                 uint8_t *recv, int recv_size)
573 {
574         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
575         uint32_t output_reg = intel_dp->output_reg;
576         struct drm_device *dev = encoder->base.dev;
577         uint32_t ch_ctl = output_reg + 0x10;
578         uint32_t ch_data = ch_ctl + 4;
579         int i;
580         int recv_bytes;
581         uint32_t status;
582         uint32_t aux_clock_divider;
583         int try, precharge;
584
585         /* The clock divider is based off the hrawclk,
586          * and would like to run at 2MHz. So, take the
587          * hrawclk value and divide by 2 and use that
588          * On CDV platform it uses 200MHz as hrawclk.
589          *
590          */
591         aux_clock_divider = 200 / 2;
592
593         precharge = 4;
594         if (is_edp(encoder))
595                 precharge = 10;
596
597         if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
598                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
599                           REG_READ(ch_ctl));
600                 return -EBUSY;
601         }
602
603         /* Must try at least 3 times according to DP spec */
604         for (try = 0; try < 5; try++) {
605                 /* Load the send data into the aux channel data registers */
606                 for (i = 0; i < send_bytes; i += 4)
607                         REG_WRITE(ch_data + i,
608                                    pack_aux(send + i, send_bytes - i));
609         
610                 /* Send the command and wait for it to complete */
611                 REG_WRITE(ch_ctl,
612                            DP_AUX_CH_CTL_SEND_BUSY |
613                            DP_AUX_CH_CTL_TIME_OUT_400us |
614                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
615                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
616                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
617                            DP_AUX_CH_CTL_DONE |
618                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
619                            DP_AUX_CH_CTL_RECEIVE_ERROR);
620                 for (;;) {
621                         status = REG_READ(ch_ctl);
622                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
623                                 break;
624                         udelay(100);
625                 }
626         
627                 /* Clear done status and any errors */
628                 REG_WRITE(ch_ctl,
629                            status |
630                            DP_AUX_CH_CTL_DONE |
631                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
632                            DP_AUX_CH_CTL_RECEIVE_ERROR);
633                 if (status & DP_AUX_CH_CTL_DONE)
634                         break;
635         }
636
637         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
638                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
639                 return -EBUSY;
640         }
641
642         /* Check for timeout or receive error.
643          * Timeouts occur when the sink is not connected
644          */
645         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
646                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
647                 return -EIO;
648         }
649
650         /* Timeouts occur when the device isn't connected, so they're
651          * "normal" -- don't fill the kernel log with these */
652         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
653                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
654                 return -ETIMEDOUT;
655         }
656
657         /* Unload any bytes sent back from the other side */
658         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
659                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
660         if (recv_bytes > recv_size)
661                 recv_bytes = recv_size;
662         
663         for (i = 0; i < recv_bytes; i += 4)
664                 unpack_aux(REG_READ(ch_data + i),
665                            recv + i, recv_bytes - i);
666
667         return recv_bytes;
668 }
669
670 /* Write data to the aux channel in native mode */
671 static int
672 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
673                           uint16_t address, uint8_t *send, int send_bytes)
674 {
675         int ret;
676         uint8_t msg[20];
677         int msg_bytes;
678         uint8_t ack;
679
680         if (send_bytes > 16)
681                 return -1;
682         msg[0] = DP_AUX_NATIVE_WRITE << 4;
683         msg[1] = address >> 8;
684         msg[2] = address & 0xff;
685         msg[3] = send_bytes - 1;
686         memcpy(&msg[4], send, send_bytes);
687         msg_bytes = send_bytes + 4;
688         for (;;) {
689                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
690                 if (ret < 0)
691                         return ret;
692                 ack >>= 4;
693                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
694                         break;
695                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
696                         udelay(100);
697                 else
698                         return -EIO;
699         }
700         return send_bytes;
701 }
702
703 /* Write a single byte to the aux channel in native mode */
704 static int
705 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
706                             uint16_t address, uint8_t byte)
707 {
708         return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
709 }
710
711 /* read bytes from a native aux channel */
712 static int
713 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
714                          uint16_t address, uint8_t *recv, int recv_bytes)
715 {
716         uint8_t msg[4];
717         int msg_bytes;
718         uint8_t reply[20];
719         int reply_bytes;
720         uint8_t ack;
721         int ret;
722
723         msg[0] = DP_AUX_NATIVE_READ << 4;
724         msg[1] = address >> 8;
725         msg[2] = address & 0xff;
726         msg[3] = recv_bytes - 1;
727
728         msg_bytes = 4;
729         reply_bytes = recv_bytes + 1;
730
731         for (;;) {
732                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
733                                       reply, reply_bytes);
734                 if (ret == 0)
735                         return -EPROTO;
736                 if (ret < 0)
737                         return ret;
738                 ack = reply[0] >> 4;
739                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
740                         memcpy(recv, reply + 1, ret - 1);
741                         return ret - 1;
742                 }
743                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
744                         udelay(100);
745                 else
746                         return -EIO;
747         }
748 }
749
750 static int
751 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
752                     uint8_t write_byte, uint8_t *read_byte)
753 {
754         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
755         struct cdv_intel_dp *intel_dp = container_of(adapter,
756                                                 struct cdv_intel_dp,
757                                                 adapter);
758         struct gma_encoder *encoder = intel_dp->encoder;
759         uint16_t address = algo_data->address;
760         uint8_t msg[5];
761         uint8_t reply[2];
762         unsigned retry;
763         int msg_bytes;
764         int reply_bytes;
765         int ret;
766
767         /* Set up the command byte */
768         if (mode & MODE_I2C_READ)
769                 msg[0] = DP_AUX_I2C_READ << 4;
770         else
771                 msg[0] = DP_AUX_I2C_WRITE << 4;
772
773         if (!(mode & MODE_I2C_STOP))
774                 msg[0] |= DP_AUX_I2C_MOT << 4;
775
776         msg[1] = address >> 8;
777         msg[2] = address;
778
779         switch (mode) {
780         case MODE_I2C_WRITE:
781                 msg[3] = 0;
782                 msg[4] = write_byte;
783                 msg_bytes = 5;
784                 reply_bytes = 1;
785                 break;
786         case MODE_I2C_READ:
787                 msg[3] = 0;
788                 msg_bytes = 4;
789                 reply_bytes = 2;
790                 break;
791         default:
792                 msg_bytes = 3;
793                 reply_bytes = 1;
794                 break;
795         }
796
797         for (retry = 0; retry < 5; retry++) {
798                 ret = cdv_intel_dp_aux_ch(encoder,
799                                       msg, msg_bytes,
800                                       reply, reply_bytes);
801                 if (ret < 0) {
802                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
803                         return ret;
804                 }
805
806                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
807                 case DP_AUX_NATIVE_REPLY_ACK:
808                         /* I2C-over-AUX Reply field is only valid
809                          * when paired with AUX ACK.
810                          */
811                         break;
812                 case DP_AUX_NATIVE_REPLY_NACK:
813                         DRM_DEBUG_KMS("aux_ch native nack\n");
814                         return -EREMOTEIO;
815                 case DP_AUX_NATIVE_REPLY_DEFER:
816                         udelay(100);
817                         continue;
818                 default:
819                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
820                                   reply[0]);
821                         return -EREMOTEIO;
822                 }
823
824                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
825                 case DP_AUX_I2C_REPLY_ACK:
826                         if (mode == MODE_I2C_READ) {
827                                 *read_byte = reply[1];
828                         }
829                         return reply_bytes - 1;
830                 case DP_AUX_I2C_REPLY_NACK:
831                         DRM_DEBUG_KMS("aux_i2c nack\n");
832                         return -EREMOTEIO;
833                 case DP_AUX_I2C_REPLY_DEFER:
834                         DRM_DEBUG_KMS("aux_i2c defer\n");
835                         udelay(100);
836                         break;
837                 default:
838                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
839                         return -EREMOTEIO;
840                 }
841         }
842
843         DRM_ERROR("too many retries, giving up\n");
844         return -EREMOTEIO;
845 }
846
847 static int
848 cdv_intel_dp_i2c_init(struct gma_connector *connector,
849                       struct gma_encoder *encoder, const char *name)
850 {
851         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
852         int ret;
853
854         DRM_DEBUG_KMS("i2c_init %s\n", name);
855
856         intel_dp->algo.running = false;
857         intel_dp->algo.address = 0;
858         intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
859
860         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
861         intel_dp->adapter.owner = THIS_MODULE;
862         intel_dp->adapter.class = I2C_CLASS_DDC;
863         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
864         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
865         intel_dp->adapter.algo_data = &intel_dp->algo;
866         intel_dp->adapter.dev.parent = connector->base.kdev;
867
868         if (is_edp(encoder))
869                 cdv_intel_edp_panel_vdd_on(encoder);
870         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
871         if (is_edp(encoder))
872                 cdv_intel_edp_panel_vdd_off(encoder);
873         
874         return ret;
875 }
876
877 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
878         struct drm_display_mode *adjusted_mode)
879 {
880         adjusted_mode->hdisplay = fixed_mode->hdisplay;
881         adjusted_mode->hsync_start = fixed_mode->hsync_start;
882         adjusted_mode->hsync_end = fixed_mode->hsync_end;
883         adjusted_mode->htotal = fixed_mode->htotal;
884
885         adjusted_mode->vdisplay = fixed_mode->vdisplay;
886         adjusted_mode->vsync_start = fixed_mode->vsync_start;
887         adjusted_mode->vsync_end = fixed_mode->vsync_end;
888         adjusted_mode->vtotal = fixed_mode->vtotal;
889
890         adjusted_mode->clock = fixed_mode->clock;
891
892         drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
893 }
894
895 static bool
896 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
897                     struct drm_display_mode *adjusted_mode)
898 {
899         struct drm_psb_private *dev_priv = encoder->dev->dev_private;
900         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
901         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
902         int lane_count, clock;
903         int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
904         int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
905         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
906         int refclock = mode->clock;
907         int bpp = 24;
908
909         if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
910                 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
911                 refclock = intel_dp->panel_fixed_mode->clock;
912                 bpp = dev_priv->edp.bpp;
913         }
914
915         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
916                 for (clock = max_clock; clock >= 0; clock--) {
917                         int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
918
919                         if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
920                                 intel_dp->link_bw = bws[clock];
921                                 intel_dp->lane_count = lane_count;
922                                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
923                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
924                                                 "count %d clock %d\n",
925                                        intel_dp->link_bw, intel_dp->lane_count,
926                                        adjusted_mode->clock);
927                                 return true;
928                         }
929                 }
930         }
931         if (is_edp(intel_encoder)) {
932                 /* okay we failed just pick the highest */
933                 intel_dp->lane_count = max_lane_count;
934                 intel_dp->link_bw = bws[max_clock];
935                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
936                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
937                               "count %d clock %d\n",
938                               intel_dp->link_bw, intel_dp->lane_count,
939                               adjusted_mode->clock);
940
941                 return true;
942         }
943         return false;
944 }
945
946 struct cdv_intel_dp_m_n {
947         uint32_t        tu;
948         uint32_t        gmch_m;
949         uint32_t        gmch_n;
950         uint32_t        link_m;
951         uint32_t        link_n;
952 };
953
954 static void
955 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
956 {
957         /*
958         while (*num > 0xffffff || *den > 0xffffff) {
959                 *num >>= 1;
960                 *den >>= 1;
961         }*/
962         uint64_t value, m;
963         m = *num;
964         value = m * (0x800000);
965         m = do_div(value, *den);
966         *num = value;
967         *den = 0x800000;
968 }
969
970 static void
971 cdv_intel_dp_compute_m_n(int bpp,
972                      int nlanes,
973                      int pixel_clock,
974                      int link_clock,
975                      struct cdv_intel_dp_m_n *m_n)
976 {
977         m_n->tu = 64;
978         m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
979         m_n->gmch_n = link_clock * nlanes;
980         cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
981         m_n->link_m = pixel_clock;
982         m_n->link_n = link_clock;
983         cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
984 }
985
986 void
987 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
988                  struct drm_display_mode *adjusted_mode)
989 {
990         struct drm_device *dev = crtc->dev;
991         struct drm_psb_private *dev_priv = dev->dev_private;
992         struct drm_mode_config *mode_config = &dev->mode_config;
993         struct drm_encoder *encoder;
994         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
995         int lane_count = 4, bpp = 24;
996         struct cdv_intel_dp_m_n m_n;
997         int pipe = gma_crtc->pipe;
998
999         /*
1000          * Find the lane count in the intel_encoder private
1001          */
1002         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1003                 struct gma_encoder *intel_encoder;
1004                 struct cdv_intel_dp *intel_dp;
1005
1006                 if (encoder->crtc != crtc)
1007                         continue;
1008
1009                 intel_encoder = to_gma_encoder(encoder);
1010                 intel_dp = intel_encoder->dev_priv;
1011                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1012                         lane_count = intel_dp->lane_count;
1013                         break;
1014                 } else if (is_edp(intel_encoder)) {
1015                         lane_count = intel_dp->lane_count;
1016                         bpp = dev_priv->edp.bpp;
1017                         break;
1018                 }
1019         }
1020
1021         /*
1022          * Compute the GMCH and Link ratios. The '3' here is
1023          * the number of bytes_per_pixel post-LUT, which we always
1024          * set up for 8-bits of R/G/B, or 3 bytes total.
1025          */
1026         cdv_intel_dp_compute_m_n(bpp, lane_count,
1027                              mode->clock, adjusted_mode->clock, &m_n);
1028
1029         {
1030                 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1031                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1032                            m_n.gmch_m);
1033                 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1034                 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1035                 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1036         }
1037 }
1038
1039 static void
1040 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1041                   struct drm_display_mode *adjusted_mode)
1042 {
1043         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1044         struct drm_crtc *crtc = encoder->crtc;
1045         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1046         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1047         struct drm_device *dev = encoder->dev;
1048
1049         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050         intel_dp->DP |= intel_dp->color_range;
1051
1052         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1053                 intel_dp->DP |= DP_SYNC_HS_HIGH;
1054         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1055                 intel_dp->DP |= DP_SYNC_VS_HIGH;
1056
1057         intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058
1059         switch (intel_dp->lane_count) {
1060         case 1:
1061                 intel_dp->DP |= DP_PORT_WIDTH_1;
1062                 break;
1063         case 2:
1064                 intel_dp->DP |= DP_PORT_WIDTH_2;
1065                 break;
1066         case 4:
1067                 intel_dp->DP |= DP_PORT_WIDTH_4;
1068                 break;
1069         }
1070         if (intel_dp->has_audio)
1071                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1072
1073         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1074         intel_dp->link_configuration[0] = intel_dp->link_bw;
1075         intel_dp->link_configuration[1] = intel_dp->lane_count;
1076
1077         /*
1078          * Check for DPCD version > 1.1 and enhanced framing support
1079          */
1080         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1081             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1082                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1083                 intel_dp->DP |= DP_ENHANCED_FRAMING;
1084         }
1085
1086         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1087         if (gma_crtc->pipe == 1)
1088                 intel_dp->DP |= DP_PIPEB_SELECT;
1089
1090         REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1091         DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1092         if (is_edp(intel_encoder)) {
1093                 uint32_t pfit_control;
1094                 cdv_intel_edp_panel_on(intel_encoder);
1095
1096                 if (mode->hdisplay != adjusted_mode->hdisplay ||
1097                             mode->vdisplay != adjusted_mode->vdisplay)
1098                         pfit_control = PFIT_ENABLE;
1099                 else
1100                         pfit_control = 0;
1101
1102                 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1103
1104                 REG_WRITE(PFIT_CONTROL, pfit_control);
1105         }
1106 }
1107
1108
1109 /* If the sink supports it, try to set the power state appropriately */
1110 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1111 {
1112         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113         int ret, i;
1114
1115         /* Should have a valid DPCD by this point */
1116         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1117                 return;
1118
1119         if (mode != DRM_MODE_DPMS_ON) {
1120                 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1121                                                   DP_SET_POWER_D3);
1122                 if (ret != 1)
1123                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1124         } else {
1125                 /*
1126                  * When turning on, we need to retry for 1ms to give the sink
1127                  * time to wake up.
1128                  */
1129                 for (i = 0; i < 3; i++) {
1130                         ret = cdv_intel_dp_aux_native_write_1(encoder,
1131                                                           DP_SET_POWER,
1132                                                           DP_SET_POWER_D0);
1133                         if (ret == 1)
1134                                 break;
1135                         udelay(1000);
1136                 }
1137         }
1138 }
1139
1140 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1141 {
1142         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1143         int edp = is_edp(intel_encoder);
1144
1145         if (edp) {
1146                 cdv_intel_edp_backlight_off(intel_encoder);
1147                 cdv_intel_edp_panel_off(intel_encoder);
1148                 cdv_intel_edp_panel_vdd_on(intel_encoder);
1149         }
1150         /* Wake up the sink first */
1151         cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1152         cdv_intel_dp_link_down(intel_encoder);
1153         if (edp)
1154                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1155 }
1156
1157 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1158 {
1159         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1160         int edp = is_edp(intel_encoder);
1161
1162         if (edp)
1163                 cdv_intel_edp_panel_on(intel_encoder);
1164         cdv_intel_dp_start_link_train(intel_encoder);
1165         cdv_intel_dp_complete_link_train(intel_encoder);
1166         if (edp)
1167                 cdv_intel_edp_backlight_on(intel_encoder);
1168 }
1169
1170 static void
1171 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1172 {
1173         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1174         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1175         struct drm_device *dev = encoder->dev;
1176         uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1177         int edp = is_edp(intel_encoder);
1178
1179         if (mode != DRM_MODE_DPMS_ON) {
1180                 if (edp) {
1181                         cdv_intel_edp_backlight_off(intel_encoder);
1182                         cdv_intel_edp_panel_vdd_on(intel_encoder);
1183                 }
1184                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1185                 cdv_intel_dp_link_down(intel_encoder);
1186                 if (edp) {
1187                         cdv_intel_edp_panel_vdd_off(intel_encoder);
1188                         cdv_intel_edp_panel_off(intel_encoder);
1189                 }
1190         } else {
1191                 if (edp)
1192                         cdv_intel_edp_panel_on(intel_encoder);
1193                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1194                 if (!(dp_reg & DP_PORT_EN)) {
1195                         cdv_intel_dp_start_link_train(intel_encoder);
1196                         cdv_intel_dp_complete_link_train(intel_encoder);
1197                 }
1198                 if (edp)
1199                         cdv_intel_edp_backlight_on(intel_encoder);
1200         }
1201 }
1202
1203 /*
1204  * Native read with retry for link status and receiver capability reads for
1205  * cases where the sink may still be asleep.
1206  */
1207 static bool
1208 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1209                                uint8_t *recv, int recv_bytes)
1210 {
1211         int ret, i;
1212
1213         /*
1214          * Sinks are *supposed* to come up within 1ms from an off state,
1215          * but we're also supposed to retry 3 times per the spec.
1216          */
1217         for (i = 0; i < 3; i++) {
1218                 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1219                                                recv_bytes);
1220                 if (ret == recv_bytes)
1221                         return true;
1222                 udelay(1000);
1223         }
1224
1225         return false;
1226 }
1227
1228 /*
1229  * Fetch AUX CH registers 0x202 - 0x207 which contain
1230  * link status information
1231  */
1232 static bool
1233 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1234 {
1235         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1236         return cdv_intel_dp_aux_native_read_retry(encoder,
1237                                               DP_LANE0_1_STATUS,
1238                                               intel_dp->link_status,
1239                                               DP_LINK_STATUS_SIZE);
1240 }
1241
1242 static uint8_t
1243 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1244                      int r)
1245 {
1246         return link_status[r - DP_LANE0_1_STATUS];
1247 }
1248
1249 static uint8_t
1250 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1251                                  int lane)
1252 {
1253         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1254         int         s = ((lane & 1) ?
1255                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1256                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1257         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1258
1259         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1260 }
1261
1262 static uint8_t
1263 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264                                       int lane)
1265 {
1266         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1267         int         s = ((lane & 1) ?
1268                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1269                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1270         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1271
1272         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1273 }
1274
1275 #define CDV_DP_VOLTAGE_MAX          DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1276
1277 static void
1278 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1279 {
1280         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1281         uint8_t v = 0;
1282         uint8_t p = 0;
1283         int lane;
1284
1285         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1286                 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1287                 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1288
1289                 if (this_v > v)
1290                         v = this_v;
1291                 if (this_p > p)
1292                         p = this_p;
1293         }
1294         
1295         if (v >= CDV_DP_VOLTAGE_MAX)
1296                 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1297
1298         if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1299                 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1300                 
1301         for (lane = 0; lane < 4; lane++)
1302                 intel_dp->train_set[lane] = v | p;
1303 }
1304
1305
1306 static uint8_t
1307 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1308                       int lane)
1309 {
1310         int i = DP_LANE0_1_STATUS + (lane >> 1);
1311         int s = (lane & 1) * 4;
1312         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1313
1314         return (l >> s) & 0xf;
1315 }
1316
1317 /* Check for clock recovery is done on all channels */
1318 static bool
1319 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1320 {
1321         int lane;
1322         uint8_t lane_status;
1323
1324         for (lane = 0; lane < lane_count; lane++) {
1325                 lane_status = cdv_intel_get_lane_status(link_status, lane);
1326                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1327                         return false;
1328         }
1329         return true;
1330 }
1331
1332 /* Check to see if channel eq is done on all channels */
1333 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1334                          DP_LANE_CHANNEL_EQ_DONE|\
1335                          DP_LANE_SYMBOL_LOCKED)
1336 static bool
1337 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1338 {
1339         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1340         uint8_t lane_align;
1341         uint8_t lane_status;
1342         int lane;
1343
1344         lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1345                                           DP_LANE_ALIGN_STATUS_UPDATED);
1346         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1347                 return false;
1348         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1349                 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1350                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool
1357 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1358                         uint32_t dp_reg_value,
1359                         uint8_t dp_train_pat)
1360 {
1361         
1362         struct drm_device *dev = encoder->base.dev;
1363         int ret;
1364         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1365
1366         REG_WRITE(intel_dp->output_reg, dp_reg_value);
1367         REG_READ(intel_dp->output_reg);
1368
1369         ret = cdv_intel_dp_aux_native_write_1(encoder,
1370                                     DP_TRAINING_PATTERN_SET,
1371                                     dp_train_pat);
1372
1373         if (ret != 1) {
1374                 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1375                                 dp_train_pat);
1376                 return false;
1377         }
1378
1379         return true;
1380 }
1381
1382
1383 static bool
1384 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1385                         uint8_t dp_train_pat)
1386 {
1387         
1388         int ret;
1389         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1390
1391         ret = cdv_intel_dp_aux_native_write(encoder,
1392                                         DP_TRAINING_LANE0_SET,
1393                                         intel_dp->train_set,
1394                                         intel_dp->lane_count);
1395
1396         if (ret != intel_dp->lane_count) {
1397                 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1398                                 intel_dp->train_set[0], intel_dp->lane_count);
1399                 return false;
1400         }
1401         return true;
1402 }
1403
1404 static void
1405 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1406 {
1407         struct drm_device *dev = encoder->base.dev;
1408         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1409         struct ddi_regoff *ddi_reg;
1410         int vswing, premph, index;
1411
1412         if (intel_dp->output_reg == DP_B)
1413                 ddi_reg = &ddi_DP_train_table[0];
1414         else
1415                 ddi_reg = &ddi_DP_train_table[1];
1416
1417         vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1418         premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1419                                 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1420
1421         if (vswing + premph > 3)
1422                 return;
1423 #ifdef CDV_FAST_LINK_TRAIN
1424         return;
1425 #endif
1426         DRM_DEBUG_KMS("Test2\n");
1427         //return ;
1428         cdv_sb_reset(dev);
1429         /* ;Swing voltage programming
1430         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1431         cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1432
1433         /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1434         cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1435
1436         /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1437          * The VSwing_PreEmph table is also considered based on the vswing/premp
1438          */
1439         index = (vswing + premph) * 2;
1440         if (premph == 1 && vswing == 1) {
1441                 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1442         } else
1443                 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1444
1445         /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1446         if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1447                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1448         else
1449                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1450
1451         /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1452         /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1453
1454         /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1455         cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1456
1457         /* ;Pre emphasis programming
1458          * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1459          */
1460         cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1461
1462         /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1463         index = 2 * premph + 1;
1464         cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1465         return; 
1466 }
1467
1468
1469 /* Enable corresponding port and start training pattern 1 */
1470 static void
1471 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1472 {
1473         struct drm_device *dev = encoder->base.dev;
1474         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1475         int i;
1476         uint8_t voltage;
1477         bool clock_recovery = false;
1478         int tries;
1479         u32 reg;
1480         uint32_t DP = intel_dp->DP;
1481
1482         DP |= DP_PORT_EN;
1483         DP &= ~DP_LINK_TRAIN_MASK;
1484                 
1485         reg = DP;       
1486         reg |= DP_LINK_TRAIN_PAT_1;
1487         /* Enable output, wait for it to become active */
1488         REG_WRITE(intel_dp->output_reg, reg);
1489         REG_READ(intel_dp->output_reg);
1490         gma_wait_for_vblank(dev);
1491
1492         DRM_DEBUG_KMS("Link config\n");
1493         /* Write the link configuration data */
1494         cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1495                                   intel_dp->link_configuration,
1496                                   2);
1497
1498         memset(intel_dp->train_set, 0, 4);
1499         voltage = 0;
1500         tries = 0;
1501         clock_recovery = false;
1502
1503         DRM_DEBUG_KMS("Start train\n");
1504                 reg = DP | DP_LINK_TRAIN_PAT_1;
1505
1506
1507         for (;;) {
1508                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1509                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1510                                 intel_dp->train_set[0],
1511                                 intel_dp->link_configuration[0],
1512                                 intel_dp->link_configuration[1]);
1513
1514                 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1515                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1516                 }
1517                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1518                 /* Set training pattern 1 */
1519
1520                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1521
1522                 udelay(200);
1523                 if (!cdv_intel_dp_get_link_status(encoder))
1524                         break;
1525
1526                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1527                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1528                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1529
1530                 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1531                         DRM_DEBUG_KMS("PT1 train is done\n");
1532                         clock_recovery = true;
1533                         break;
1534                 }
1535
1536                 /* Check to see if we've tried the max voltage */
1537                 for (i = 0; i < intel_dp->lane_count; i++)
1538                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1539                                 break;
1540                 if (i == intel_dp->lane_count)
1541                         break;
1542
1543                 /* Check to see if we've tried the same voltage 5 times */
1544                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1545                         ++tries;
1546                         if (tries == 5)
1547                                 break;
1548                 } else
1549                         tries = 0;
1550                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1551
1552                 /* Compute new intel_dp->train_set as requested by target */
1553                 cdv_intel_get_adjust_train(encoder);
1554
1555         }
1556
1557         if (!clock_recovery) {
1558                 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1559         }
1560         
1561         intel_dp->DP = DP;
1562 }
1563
1564 static void
1565 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1566 {
1567         struct drm_device *dev = encoder->base.dev;
1568         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1569         int tries, cr_tries;
1570         u32 reg;
1571         uint32_t DP = intel_dp->DP;
1572
1573         /* channel equalization */
1574         tries = 0;
1575         cr_tries = 0;
1576
1577         DRM_DEBUG_KMS("\n");
1578                 reg = DP | DP_LINK_TRAIN_PAT_2;
1579
1580         for (;;) {
1581
1582                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1583                                 intel_dp->train_set[0],
1584                                 intel_dp->link_configuration[0],
1585                                 intel_dp->link_configuration[1]);
1586                 /* channel eq pattern */
1587
1588                 if (!cdv_intel_dp_set_link_train(encoder, reg,
1589                                              DP_TRAINING_PATTERN_2)) {
1590                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1591                 }
1592                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1593
1594                 if (cr_tries > 5) {
1595                         DRM_ERROR("failed to train DP, aborting\n");
1596                         cdv_intel_dp_link_down(encoder);
1597                         break;
1598                 }
1599
1600                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1601
1602                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1603
1604                 udelay(1000);
1605                 if (!cdv_intel_dp_get_link_status(encoder))
1606                         break;
1607
1608                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1609                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1610                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1611
1612                 /* Make sure clock is still ok */
1613                 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1614                         cdv_intel_dp_start_link_train(encoder);
1615                         cr_tries++;
1616                         continue;
1617                 }
1618
1619                 if (cdv_intel_channel_eq_ok(encoder)) {
1620                         DRM_DEBUG_KMS("PT2 train is done\n");
1621                         break;
1622                 }
1623
1624                 /* Try 5 times, then try clock recovery if that fails */
1625                 if (tries > 5) {
1626                         cdv_intel_dp_link_down(encoder);
1627                         cdv_intel_dp_start_link_train(encoder);
1628                         tries = 0;
1629                         cr_tries++;
1630                         continue;
1631                 }
1632
1633                 /* Compute new intel_dp->train_set as requested by target */
1634                 cdv_intel_get_adjust_train(encoder);
1635                 ++tries;
1636
1637         }
1638
1639         reg = DP | DP_LINK_TRAIN_OFF;
1640
1641         REG_WRITE(intel_dp->output_reg, reg);
1642         REG_READ(intel_dp->output_reg);
1643         cdv_intel_dp_aux_native_write_1(encoder,
1644                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1645 }
1646
1647 static void
1648 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1649 {
1650         struct drm_device *dev = encoder->base.dev;
1651         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652         uint32_t DP = intel_dp->DP;
1653
1654         if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1655                 return;
1656
1657         DRM_DEBUG_KMS("\n");
1658
1659
1660         {
1661                 DP &= ~DP_LINK_TRAIN_MASK;
1662                 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1663         }
1664         REG_READ(intel_dp->output_reg);
1665
1666         msleep(17);
1667
1668         REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1669         REG_READ(intel_dp->output_reg);
1670 }
1671
1672 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1673 {
1674         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1675         enum drm_connector_status status;
1676
1677         status = connector_status_disconnected;
1678         if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1679                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1680         {
1681                 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1682                         status = connector_status_connected;
1683         }
1684         if (status == connector_status_connected)
1685                 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1686                         intel_dp->dpcd[0], intel_dp->dpcd[1],
1687                         intel_dp->dpcd[2], intel_dp->dpcd[3]);
1688         return status;
1689 }
1690
1691 /**
1692  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1693  *
1694  * \return true if DP port is connected.
1695  * \return false if DP port is disconnected.
1696  */
1697 static enum drm_connector_status
1698 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1699 {
1700         struct gma_encoder *encoder = gma_attached_encoder(connector);
1701         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1702         enum drm_connector_status status;
1703         struct edid *edid = NULL;
1704         int edp = is_edp(encoder);
1705
1706         intel_dp->has_audio = false;
1707
1708         if (edp)
1709                 cdv_intel_edp_panel_vdd_on(encoder);
1710         status = cdv_dp_detect(encoder);
1711         if (status != connector_status_connected) {
1712                 if (edp)
1713                         cdv_intel_edp_panel_vdd_off(encoder);
1714                 return status;
1715         }
1716
1717         if (intel_dp->force_audio) {
1718                 intel_dp->has_audio = intel_dp->force_audio > 0;
1719         } else {
1720                 edid = drm_get_edid(connector, &intel_dp->adapter);
1721                 if (edid) {
1722                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1723                         kfree(edid);
1724                 }
1725         }
1726         if (edp)
1727                 cdv_intel_edp_panel_vdd_off(encoder);
1728
1729         return connector_status_connected;
1730 }
1731
1732 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1733 {
1734         struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1735         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1736         struct edid *edid = NULL;
1737         int ret = 0;
1738         int edp = is_edp(intel_encoder);
1739
1740
1741         edid = drm_get_edid(connector, &intel_dp->adapter);
1742         if (edid) {
1743                 drm_connector_update_edid_property(connector, edid);
1744                 ret = drm_add_edid_modes(connector, edid);
1745                 kfree(edid);
1746         }
1747
1748         if (is_edp(intel_encoder)) {
1749                 struct drm_device *dev = connector->dev;
1750                 struct drm_psb_private *dev_priv = dev->dev_private;
1751                 
1752                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1753                 if (ret) {
1754                         if (edp && !intel_dp->panel_fixed_mode) {
1755                                 struct drm_display_mode *newmode;
1756                                 list_for_each_entry(newmode, &connector->probed_modes,
1757                                             head) {
1758                                         if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1759                                                 intel_dp->panel_fixed_mode =
1760                                                         drm_mode_duplicate(dev, newmode);
1761                                                 break;
1762                                         }
1763                                 }
1764                         }
1765
1766                         return ret;
1767                 }
1768                 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1769                         intel_dp->panel_fixed_mode =
1770                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1771                         if (intel_dp->panel_fixed_mode) {
1772                                 intel_dp->panel_fixed_mode->type |=
1773                                         DRM_MODE_TYPE_PREFERRED;
1774                         }
1775                 }
1776                 if (intel_dp->panel_fixed_mode != NULL) {
1777                         struct drm_display_mode *mode;
1778                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1779                         drm_mode_probed_add(connector, mode);
1780                         return 1;
1781                 }
1782         }
1783
1784         return ret;
1785 }
1786
1787 static bool
1788 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1789 {
1790         struct gma_encoder *encoder = gma_attached_encoder(connector);
1791         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1792         struct edid *edid;
1793         bool has_audio = false;
1794         int edp = is_edp(encoder);
1795
1796         if (edp)
1797                 cdv_intel_edp_panel_vdd_on(encoder);
1798
1799         edid = drm_get_edid(connector, &intel_dp->adapter);
1800         if (edid) {
1801                 has_audio = drm_detect_monitor_audio(edid);
1802                 kfree(edid);
1803         }
1804         if (edp)
1805                 cdv_intel_edp_panel_vdd_off(encoder);
1806
1807         return has_audio;
1808 }
1809
1810 static int
1811 cdv_intel_dp_set_property(struct drm_connector *connector,
1812                       struct drm_property *property,
1813                       uint64_t val)
1814 {
1815         struct drm_psb_private *dev_priv = connector->dev->dev_private;
1816         struct gma_encoder *encoder = gma_attached_encoder(connector);
1817         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1818         int ret;
1819
1820         ret = drm_object_property_set_value(&connector->base, property, val);
1821         if (ret)
1822                 return ret;
1823
1824         if (property == dev_priv->force_audio_property) {
1825                 int i = val;
1826                 bool has_audio;
1827
1828                 if (i == intel_dp->force_audio)
1829                         return 0;
1830
1831                 intel_dp->force_audio = i;
1832
1833                 if (i == 0)
1834                         has_audio = cdv_intel_dp_detect_audio(connector);
1835                 else
1836                         has_audio = i > 0;
1837
1838                 if (has_audio == intel_dp->has_audio)
1839                         return 0;
1840
1841                 intel_dp->has_audio = has_audio;
1842                 goto done;
1843         }
1844
1845         if (property == dev_priv->broadcast_rgb_property) {
1846                 if (val == !!intel_dp->color_range)
1847                         return 0;
1848
1849                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1850                 goto done;
1851         }
1852
1853         return -EINVAL;
1854
1855 done:
1856         if (encoder->base.crtc) {
1857                 struct drm_crtc *crtc = encoder->base.crtc;
1858                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1859                                          crtc->x, crtc->y,
1860                                          crtc->primary->fb);
1861         }
1862
1863         return 0;
1864 }
1865
1866 static void
1867 cdv_intel_dp_destroy(struct drm_connector *connector)
1868 {
1869         struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1870         struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1871
1872         if (is_edp(gma_encoder)) {
1873         /*      cdv_intel_panel_destroy_backlight(connector->dev); */
1874                 kfree(intel_dp->panel_fixed_mode);
1875                 intel_dp->panel_fixed_mode = NULL;
1876         }
1877         i2c_del_adapter(&intel_dp->adapter);
1878         drm_connector_unregister(connector);
1879         drm_connector_cleanup(connector);
1880         kfree(connector);
1881 }
1882
1883 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1884         .dpms = cdv_intel_dp_dpms,
1885         .mode_fixup = cdv_intel_dp_mode_fixup,
1886         .prepare = cdv_intel_dp_prepare,
1887         .mode_set = cdv_intel_dp_mode_set,
1888         .commit = cdv_intel_dp_commit,
1889 };
1890
1891 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1892         .dpms = drm_helper_connector_dpms,
1893         .detect = cdv_intel_dp_detect,
1894         .fill_modes = drm_helper_probe_single_connector_modes,
1895         .set_property = cdv_intel_dp_set_property,
1896         .destroy = cdv_intel_dp_destroy,
1897 };
1898
1899 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1900         .get_modes = cdv_intel_dp_get_modes,
1901         .mode_valid = cdv_intel_dp_mode_valid,
1902         .best_encoder = gma_best_encoder,
1903 };
1904
1905 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1906 {
1907         cdv_intel_attach_force_audio_property(connector);
1908         cdv_intel_attach_broadcast_rgb_property(connector);
1909 }
1910
1911 /* check the VBT to see whether the eDP is on DP-D port */
1912 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1913 {
1914         struct drm_psb_private *dev_priv = dev->dev_private;
1915         struct child_device_config *p_child;
1916         int i;
1917
1918         if (!dev_priv->child_dev_num)
1919                 return false;
1920
1921         for (i = 0; i < dev_priv->child_dev_num; i++) {
1922                 p_child = dev_priv->child_dev + i;
1923
1924                 if (p_child->dvo_port == PORT_IDPC &&
1925                     p_child->device_type == DEVICE_TYPE_eDP)
1926                         return true;
1927         }
1928         return false;
1929 }
1930
1931 /* Cedarview display clock gating
1932
1933    We need this disable dot get correct behaviour while enabling
1934    DP/eDP. TODO - investigate if we can turn it back to normality
1935    after enabling */
1936 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1937 {
1938         u32 reg_value;
1939         reg_value = REG_READ(DSPCLK_GATE_D);
1940
1941         reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1942                         DPUNIT_PIPEA_GATE_DISABLE |
1943                         DPCUNIT_CLOCK_GATE_DISABLE |
1944                         DPLSUNIT_CLOCK_GATE_DISABLE |
1945                         DPOUNIT_CLOCK_GATE_DISABLE |
1946                         DPIOUNIT_CLOCK_GATE_DISABLE);   
1947
1948         REG_WRITE(DSPCLK_GATE_D, reg_value);
1949
1950         udelay(500);            
1951 }
1952
1953 void
1954 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1955 {
1956         struct gma_encoder *gma_encoder;
1957         struct gma_connector *gma_connector;
1958         struct drm_connector *connector;
1959         struct drm_encoder *encoder;
1960         struct cdv_intel_dp *intel_dp;
1961         const char *name = NULL;
1962         int type = DRM_MODE_CONNECTOR_DisplayPort;
1963
1964         gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1965         if (!gma_encoder)
1966                 return;
1967         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1968         if (!gma_connector)
1969                 goto err_connector;
1970         intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1971         if (!intel_dp)
1972                 goto err_priv;
1973
1974         if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1975                 type = DRM_MODE_CONNECTOR_eDP;
1976
1977         connector = &gma_connector->base;
1978         encoder = &gma_encoder->base;
1979
1980         drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1981         drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1982
1983         gma_connector_attach_encoder(gma_connector, gma_encoder);
1984
1985         if (type == DRM_MODE_CONNECTOR_DisplayPort)
1986                 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1987         else
1988                 gma_encoder->type = INTEL_OUTPUT_EDP;
1989
1990
1991         gma_encoder->dev_priv=intel_dp;
1992         intel_dp->encoder = gma_encoder;
1993         intel_dp->output_reg = output_reg;
1994         
1995         drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1996         drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1997
1998         connector->polled = DRM_CONNECTOR_POLL_HPD;
1999         connector->interlace_allowed = false;
2000         connector->doublescan_allowed = false;
2001
2002         drm_connector_register(connector);
2003
2004         /* Set up the DDC bus. */
2005         switch (output_reg) {
2006                 case DP_B:
2007                         name = "DPDDC-B";
2008                         gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2009                         break;
2010                 case DP_C:
2011                         name = "DPDDC-C";
2012                         gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2013                         break;
2014         }
2015
2016         cdv_disable_intel_clock_gating(dev);
2017
2018         cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2019         /* FIXME:fail check */
2020         cdv_intel_dp_add_properties(connector);
2021
2022         if (is_edp(gma_encoder)) {
2023                 int ret;
2024                 struct edp_power_seq cur;
2025                 u32 pp_on, pp_off, pp_div;
2026                 u32 pwm_ctrl;
2027
2028                 pp_on = REG_READ(PP_CONTROL);
2029                 pp_on &= ~PANEL_UNLOCK_MASK;
2030                 pp_on |= PANEL_UNLOCK_REGS;
2031                 
2032                 REG_WRITE(PP_CONTROL, pp_on);
2033
2034                 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2035                 pwm_ctrl |= PWM_PIPE_B;
2036                 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2037
2038                 pp_on = REG_READ(PP_ON_DELAYS);
2039                 pp_off = REG_READ(PP_OFF_DELAYS);
2040                 pp_div = REG_READ(PP_DIVISOR);
2041         
2042                 /* Pull timing values out of registers */
2043                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2044                         PANEL_POWER_UP_DELAY_SHIFT;
2045
2046                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2047                         PANEL_LIGHT_ON_DELAY_SHIFT;
2048
2049                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2050                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2051
2052                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2053                         PANEL_POWER_DOWN_DELAY_SHIFT;
2054
2055                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2056                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2057
2058                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2059                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2060
2061
2062                 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2063                 intel_dp->backlight_on_delay = cur.t8 / 10;
2064                 intel_dp->backlight_off_delay = cur.t9 / 10;
2065                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2066                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2067
2068                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2069                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2070                               intel_dp->panel_power_cycle_delay);
2071
2072                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2073                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2074
2075
2076                 cdv_intel_edp_panel_vdd_on(gma_encoder);
2077                 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2078                                                intel_dp->dpcd,
2079                                                sizeof(intel_dp->dpcd));
2080                 cdv_intel_edp_panel_vdd_off(gma_encoder);
2081                 if (ret <= 0) {
2082                         /* if this fails, presume the device is a ghost */
2083                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2084                         drm_encoder_cleanup(encoder);
2085                         cdv_intel_dp_destroy(connector);
2086                         goto err_priv;
2087                 } else {
2088                         DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2089                                 intel_dp->dpcd[0], intel_dp->dpcd[1], 
2090                                 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2091                         
2092                 }
2093                 /* The CDV reference driver moves pnale backlight setup into the displays that
2094                    have a backlight: this is a good idea and one we should probably adopt, however
2095                    we need to migrate all the drivers before we can do that */
2096                 /*cdv_intel_panel_setup_backlight(dev); */
2097         }
2098         return;
2099
2100 err_priv:
2101         kfree(gma_connector);
2102 err_connector:
2103         kfree(gma_encoder);
2104 }