Merge tag 'for-5.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/dp/drm_dp_helper.h>
35 #include <drm/drm_simple_kms_helper.h>
36
37 #include "gma_display.h"
38 #include "psb_drv.h"
39 #include "psb_intel_drv.h"
40 #include "psb_intel_reg.h"
41
42 /**
43  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44  *                               aux algorithm
45  * @running: set by the algo indicating whether an i2c is ongoing or whether
46  *           the i2c bus is quiescent
47  * @address: i2c target address for the currently ongoing transfer
48  * @aux_ch: driver callback to transfer a single byte of the i2c payload
49  */
50 struct i2c_algo_dp_aux_data {
51         bool running;
52         u16 address;
53         int (*aux_ch) (struct i2c_adapter *adapter,
54                        int mode, uint8_t write_byte,
55                        uint8_t *read_byte);
56 };
57
58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59 static int
60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61                             uint8_t write_byte, uint8_t *read_byte)
62 {
63         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64         int ret;
65
66         ret = (*algo_data->aux_ch)(adapter, mode,
67                                    write_byte, read_byte);
68         return ret;
69 }
70
71 /*
72  * I2C over AUX CH
73  */
74
75 /*
76  * Send the address. If the I2C link is running, this 'restarts'
77  * the connection with the new address, this is used for doing
78  * a write followed by a read (as needed for DDC)
79  */
80 static int
81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82 {
83         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84         int mode = MODE_I2C_START;
85
86         if (reading)
87                 mode |= MODE_I2C_READ;
88         else
89                 mode |= MODE_I2C_WRITE;
90         algo_data->address = address;
91         algo_data->running = true;
92         return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
93 }
94
95 /*
96  * Stop the I2C transaction. This closes out the link, sending
97  * a bare address packet with the MOT bit turned off
98  */
99 static void
100 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101 {
102         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103         int mode = MODE_I2C_STOP;
104
105         if (reading)
106                 mode |= MODE_I2C_READ;
107         else
108                 mode |= MODE_I2C_WRITE;
109         if (algo_data->running) {
110                 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111                 algo_data->running = false;
112         }
113 }
114
115 /*
116  * Write a single byte to the current I2C address, the
117  * the I2C link must be running or this returns -EIO
118  */
119 static int
120 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121 {
122         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123
124         if (!algo_data->running)
125                 return -EIO;
126
127         return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
128 }
129
130 /*
131  * Read a single byte from the current I2C address, the
132  * I2C link must be running or this returns -EIO
133  */
134 static int
135 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
136 {
137         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
138
139         if (!algo_data->running)
140                 return -EIO;
141
142         return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
143 }
144
145 static int
146 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
147                      struct i2c_msg *msgs,
148                      int num)
149 {
150         int ret = 0;
151         bool reading = false;
152         int m;
153         int b;
154
155         for (m = 0; m < num; m++) {
156                 u16 len = msgs[m].len;
157                 u8 *buf = msgs[m].buf;
158                 reading = (msgs[m].flags & I2C_M_RD) != 0;
159                 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
160                 if (ret < 0)
161                         break;
162                 if (reading) {
163                         for (b = 0; b < len; b++) {
164                                 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
165                                 if (ret < 0)
166                                         break;
167                         }
168                 } else {
169                         for (b = 0; b < len; b++) {
170                                 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
171                                 if (ret < 0)
172                                         break;
173                         }
174                 }
175                 if (ret < 0)
176                         break;
177         }
178         if (ret >= 0)
179                 ret = num;
180         i2c_algo_dp_aux_stop(adapter, reading);
181         DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
182         return ret;
183 }
184
185 static u32
186 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
187 {
188         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
189                I2C_FUNC_SMBUS_READ_BLOCK_DATA |
190                I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
191                I2C_FUNC_10BIT_ADDR;
192 }
193
194 static const struct i2c_algorithm i2c_dp_aux_algo = {
195         .master_xfer    = i2c_algo_dp_aux_xfer,
196         .functionality  = i2c_algo_dp_aux_functionality,
197 };
198
199 static void
200 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
201 {
202         (void) i2c_algo_dp_aux_address(adapter, 0, false);
203         (void) i2c_algo_dp_aux_stop(adapter, false);
204 }
205
206 static int
207 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
208 {
209         adapter->algo = &i2c_dp_aux_algo;
210         adapter->retries = 3;
211         i2c_dp_aux_reset_bus(adapter);
212         return 0;
213 }
214
215 /*
216  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
217  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
218  */
219 static int
220 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
221 {
222         int error;
223
224         error = i2c_dp_aux_prepare_bus(adapter);
225         if (error)
226                 return error;
227         error = i2c_add_adapter(adapter);
228         return error;
229 }
230
231 #define _wait_for(COND, MS, W) ({ \
232         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
233         int ret__ = 0;                                                  \
234         while (! (COND)) {                                              \
235                 if (time_after(jiffies, timeout__)) {                   \
236                         ret__ = -ETIMEDOUT;                             \
237                         break;                                          \
238                 }                                                       \
239                 if (W && !in_dbg_master()) msleep(W);                   \
240         }                                                               \
241         ret__;                                                          \
242 })
243
244 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
245
246 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
247
248 #define DP_LINK_CONFIGURATION_SIZE      9
249
250 #define CDV_FAST_LINK_TRAIN     1
251
252 struct cdv_intel_dp {
253         uint32_t output_reg;
254         uint32_t DP;
255         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
256         bool has_audio;
257         int force_audio;
258         uint32_t color_range;
259         uint8_t link_bw;
260         uint8_t lane_count;
261         uint8_t dpcd[4];
262         struct gma_encoder *encoder;
263         struct i2c_adapter adapter;
264         struct i2c_algo_dp_aux_data algo;
265         uint8_t train_set[4];
266         uint8_t link_status[DP_LINK_STATUS_SIZE];
267         int panel_power_up_delay;
268         int panel_power_down_delay;
269         int panel_power_cycle_delay;
270         int backlight_on_delay;
271         int backlight_off_delay;
272         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
273         bool panel_on;
274 };
275
276 struct ddi_regoff {
277         uint32_t        PreEmph1;
278         uint32_t        PreEmph2;
279         uint32_t        VSwing1;
280         uint32_t        VSwing2;
281         uint32_t        VSwing3;
282         uint32_t        VSwing4;
283         uint32_t        VSwing5;
284 };
285
286 static struct ddi_regoff ddi_DP_train_table[] = {
287         {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
288         .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
289         .VSwing5 = 0x8158,},
290         {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
291         .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
292         .VSwing5 = 0x8258,},
293 };
294
295 static uint32_t dp_vswing_premph_table[] = {
296         0x55338954,     0x4000,
297         0x554d8954,     0x2000,
298         0x55668954,     0,
299         0x559ac0d4,     0x6000,
300 };
301 /**
302  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
303  * @encoder: GMA encoder struct
304  *
305  * If a CPU or PCH DP output is attached to an eDP panel, this function
306  * will return true, and false otherwise.
307  */
308 static bool is_edp(struct gma_encoder *encoder)
309 {
310         return encoder->type == INTEL_OUTPUT_EDP;
311 }
312
313
314 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
315 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
316 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
317
318 static int
319 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
320 {
321         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
322         int max_lane_count = 4;
323
324         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
325                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
326                 switch (max_lane_count) {
327                 case 1: case 2: case 4:
328                         break;
329                 default:
330                         max_lane_count = 4;
331                 }
332         }
333         return max_lane_count;
334 }
335
336 static int
337 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
338 {
339         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
340         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
341
342         switch (max_link_bw) {
343         case DP_LINK_BW_1_62:
344         case DP_LINK_BW_2_7:
345                 break;
346         default:
347                 max_link_bw = DP_LINK_BW_1_62;
348                 break;
349         }
350         return max_link_bw;
351 }
352
353 static int
354 cdv_intel_dp_link_clock(uint8_t link_bw)
355 {
356         if (link_bw == DP_LINK_BW_2_7)
357                 return 270000;
358         else
359                 return 162000;
360 }
361
362 static int
363 cdv_intel_dp_link_required(int pixel_clock, int bpp)
364 {
365         return (pixel_clock * bpp + 7) / 8;
366 }
367
368 static int
369 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
370 {
371         return (max_link_clock * max_lanes * 19) / 20;
372 }
373
374 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
375 {
376         struct drm_device *dev = intel_encoder->base.dev;
377         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
378         u32 pp;
379
380         if (intel_dp->panel_on) {
381                 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
382                 return;
383         }
384         DRM_DEBUG_KMS("\n");
385
386         pp = REG_READ(PP_CONTROL);
387
388         pp |= EDP_FORCE_VDD;
389         REG_WRITE(PP_CONTROL, pp);
390         REG_READ(PP_CONTROL);
391         msleep(intel_dp->panel_power_up_delay);
392 }
393
394 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
395 {
396         struct drm_device *dev = intel_encoder->base.dev;
397         u32 pp;
398
399         DRM_DEBUG_KMS("\n");
400         pp = REG_READ(PP_CONTROL);
401
402         pp &= ~EDP_FORCE_VDD;
403         REG_WRITE(PP_CONTROL, pp);
404         REG_READ(PP_CONTROL);
405
406 }
407
408 /* Returns true if the panel was already on when called */
409 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
410 {
411         struct drm_device *dev = intel_encoder->base.dev;
412         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
413         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
414
415         if (intel_dp->panel_on)
416                 return true;
417
418         DRM_DEBUG_KMS("\n");
419         pp = REG_READ(PP_CONTROL);
420         pp &= ~PANEL_UNLOCK_MASK;
421
422         pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
423         REG_WRITE(PP_CONTROL, pp);
424         REG_READ(PP_CONTROL);
425
426         if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
427                 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
428                 intel_dp->panel_on = false;
429         } else
430                 intel_dp->panel_on = true;
431         msleep(intel_dp->panel_power_up_delay);
432
433         return false;
434 }
435
436 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
437 {
438         struct drm_device *dev = intel_encoder->base.dev;
439         u32 pp, idle_off_mask = PP_ON ;
440         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
441
442         DRM_DEBUG_KMS("\n");
443
444         pp = REG_READ(PP_CONTROL);
445
446         if ((pp & POWER_TARGET_ON) == 0)
447                 return;
448
449         intel_dp->panel_on = false;
450         pp &= ~PANEL_UNLOCK_MASK;
451         /* ILK workaround: disable reset around power sequence */
452
453         pp &= ~POWER_TARGET_ON;
454         pp &= ~EDP_FORCE_VDD;
455         pp &= ~EDP_BLC_ENABLE;
456         REG_WRITE(PP_CONTROL, pp);
457         REG_READ(PP_CONTROL);
458         DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
459
460         if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
461                 DRM_DEBUG_KMS("Error in turning off Panel\n");
462         }
463
464         msleep(intel_dp->panel_power_cycle_delay);
465         DRM_DEBUG_KMS("Over\n");
466 }
467
468 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
469 {
470         struct drm_device *dev = intel_encoder->base.dev;
471         u32 pp;
472
473         DRM_DEBUG_KMS("\n");
474         /*
475          * If we enable the backlight right away following a panel power
476          * on, we may see slight flicker as the panel syncs with the eDP
477          * link.  So delay a bit to make sure the image is solid before
478          * allowing it to appear.
479          */
480         msleep(300);
481         pp = REG_READ(PP_CONTROL);
482
483         pp |= EDP_BLC_ENABLE;
484         REG_WRITE(PP_CONTROL, pp);
485         gma_backlight_enable(dev);
486 }
487
488 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
489 {
490         struct drm_device *dev = intel_encoder->base.dev;
491         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
492         u32 pp;
493
494         DRM_DEBUG_KMS("\n");
495         gma_backlight_disable(dev);
496         msleep(10);
497         pp = REG_READ(PP_CONTROL);
498
499         pp &= ~EDP_BLC_ENABLE;
500         REG_WRITE(PP_CONTROL, pp);
501         msleep(intel_dp->backlight_off_delay);
502 }
503
504 static enum drm_mode_status
505 cdv_intel_dp_mode_valid(struct drm_connector *connector,
506                     struct drm_display_mode *mode)
507 {
508         struct gma_encoder *encoder = gma_attached_encoder(connector);
509         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
510         int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
511         int max_lanes = cdv_intel_dp_max_lane_count(encoder);
512         struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
513
514         if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
515                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
516                         return MODE_PANEL;
517                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
518                         return MODE_PANEL;
519         }
520
521         /* only refuse the mode on non eDP since we have seen some weird eDP panels
522            which are outside spec tolerances but somehow work by magic */
523         if (!is_edp(encoder) &&
524             (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
525              > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
526                 return MODE_CLOCK_HIGH;
527
528         if (is_edp(encoder)) {
529             if (cdv_intel_dp_link_required(mode->clock, 24)
530                 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
531                 return MODE_CLOCK_HIGH;
532
533         }
534         if (mode->clock < 10000)
535                 return MODE_CLOCK_LOW;
536
537         return MODE_OK;
538 }
539
540 static uint32_t
541 pack_aux(uint8_t *src, int src_bytes)
542 {
543         int     i;
544         uint32_t v = 0;
545
546         if (src_bytes > 4)
547                 src_bytes = 4;
548         for (i = 0; i < src_bytes; i++)
549                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
550         return v;
551 }
552
553 static void
554 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
555 {
556         int i;
557         if (dst_bytes > 4)
558                 dst_bytes = 4;
559         for (i = 0; i < dst_bytes; i++)
560                 dst[i] = src >> ((3-i) * 8);
561 }
562
563 static int
564 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
565                 uint8_t *send, int send_bytes,
566                 uint8_t *recv, int recv_size)
567 {
568         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
569         uint32_t output_reg = intel_dp->output_reg;
570         struct drm_device *dev = encoder->base.dev;
571         uint32_t ch_ctl = output_reg + 0x10;
572         uint32_t ch_data = ch_ctl + 4;
573         int i;
574         int recv_bytes;
575         uint32_t status;
576         uint32_t aux_clock_divider;
577         int try, precharge;
578
579         /* The clock divider is based off the hrawclk,
580          * and would like to run at 2MHz. So, take the
581          * hrawclk value and divide by 2 and use that
582          * On CDV platform it uses 200MHz as hrawclk.
583          *
584          */
585         aux_clock_divider = 200 / 2;
586
587         precharge = 4;
588         if (is_edp(encoder))
589                 precharge = 10;
590
591         if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
592                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
593                           REG_READ(ch_ctl));
594                 return -EBUSY;
595         }
596
597         /* Must try at least 3 times according to DP spec */
598         for (try = 0; try < 5; try++) {
599                 /* Load the send data into the aux channel data registers */
600                 for (i = 0; i < send_bytes; i += 4)
601                         REG_WRITE(ch_data + i,
602                                    pack_aux(send + i, send_bytes - i));
603
604                 /* Send the command and wait for it to complete */
605                 REG_WRITE(ch_ctl,
606                            DP_AUX_CH_CTL_SEND_BUSY |
607                            DP_AUX_CH_CTL_TIME_OUT_400us |
608                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
609                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
610                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
611                            DP_AUX_CH_CTL_DONE |
612                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
613                            DP_AUX_CH_CTL_RECEIVE_ERROR);
614                 for (;;) {
615                         status = REG_READ(ch_ctl);
616                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
617                                 break;
618                         udelay(100);
619                 }
620
621                 /* Clear done status and any errors */
622                 REG_WRITE(ch_ctl,
623                            status |
624                            DP_AUX_CH_CTL_DONE |
625                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
626                            DP_AUX_CH_CTL_RECEIVE_ERROR);
627                 if (status & DP_AUX_CH_CTL_DONE)
628                         break;
629         }
630
631         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
632                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
633                 return -EBUSY;
634         }
635
636         /* Check for timeout or receive error.
637          * Timeouts occur when the sink is not connected
638          */
639         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
640                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
641                 return -EIO;
642         }
643
644         /* Timeouts occur when the device isn't connected, so they're
645          * "normal" -- don't fill the kernel log with these */
646         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
647                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
648                 return -ETIMEDOUT;
649         }
650
651         /* Unload any bytes sent back from the other side */
652         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
653                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
654         if (recv_bytes > recv_size)
655                 recv_bytes = recv_size;
656
657         for (i = 0; i < recv_bytes; i += 4)
658                 unpack_aux(REG_READ(ch_data + i),
659                            recv + i, recv_bytes - i);
660
661         return recv_bytes;
662 }
663
664 /* Write data to the aux channel in native mode */
665 static int
666 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
667                           uint16_t address, uint8_t *send, int send_bytes)
668 {
669         int ret;
670         uint8_t msg[20];
671         int msg_bytes;
672         uint8_t ack;
673
674         if (send_bytes > 16)
675                 return -1;
676         msg[0] = DP_AUX_NATIVE_WRITE << 4;
677         msg[1] = address >> 8;
678         msg[2] = address & 0xff;
679         msg[3] = send_bytes - 1;
680         memcpy(&msg[4], send, send_bytes);
681         msg_bytes = send_bytes + 4;
682         for (;;) {
683                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
684                 if (ret < 0)
685                         return ret;
686                 ack >>= 4;
687                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
688                         break;
689                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
690                         udelay(100);
691                 else
692                         return -EIO;
693         }
694         return send_bytes;
695 }
696
697 /* Write a single byte to the aux channel in native mode */
698 static int
699 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
700                             uint16_t address, uint8_t byte)
701 {
702         return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
703 }
704
705 /* read bytes from a native aux channel */
706 static int
707 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
708                          uint16_t address, uint8_t *recv, int recv_bytes)
709 {
710         uint8_t msg[4];
711         int msg_bytes;
712         uint8_t reply[20];
713         int reply_bytes;
714         uint8_t ack;
715         int ret;
716
717         msg[0] = DP_AUX_NATIVE_READ << 4;
718         msg[1] = address >> 8;
719         msg[2] = address & 0xff;
720         msg[3] = recv_bytes - 1;
721
722         msg_bytes = 4;
723         reply_bytes = recv_bytes + 1;
724
725         for (;;) {
726                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
727                                       reply, reply_bytes);
728                 if (ret == 0)
729                         return -EPROTO;
730                 if (ret < 0)
731                         return ret;
732                 ack = reply[0] >> 4;
733                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
734                         memcpy(recv, reply + 1, ret - 1);
735                         return ret - 1;
736                 }
737                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
738                         udelay(100);
739                 else
740                         return -EIO;
741         }
742 }
743
744 static int
745 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
746                     uint8_t write_byte, uint8_t *read_byte)
747 {
748         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
749         struct cdv_intel_dp *intel_dp = container_of(adapter,
750                                                 struct cdv_intel_dp,
751                                                 adapter);
752         struct gma_encoder *encoder = intel_dp->encoder;
753         uint16_t address = algo_data->address;
754         uint8_t msg[5];
755         uint8_t reply[2];
756         unsigned retry;
757         int msg_bytes;
758         int reply_bytes;
759         int ret;
760
761         /* Set up the command byte */
762         if (mode & MODE_I2C_READ)
763                 msg[0] = DP_AUX_I2C_READ << 4;
764         else
765                 msg[0] = DP_AUX_I2C_WRITE << 4;
766
767         if (!(mode & MODE_I2C_STOP))
768                 msg[0] |= DP_AUX_I2C_MOT << 4;
769
770         msg[1] = address >> 8;
771         msg[2] = address;
772
773         switch (mode) {
774         case MODE_I2C_WRITE:
775                 msg[3] = 0;
776                 msg[4] = write_byte;
777                 msg_bytes = 5;
778                 reply_bytes = 1;
779                 break;
780         case MODE_I2C_READ:
781                 msg[3] = 0;
782                 msg_bytes = 4;
783                 reply_bytes = 2;
784                 break;
785         default:
786                 msg_bytes = 3;
787                 reply_bytes = 1;
788                 break;
789         }
790
791         for (retry = 0; retry < 5; retry++) {
792                 ret = cdv_intel_dp_aux_ch(encoder,
793                                       msg, msg_bytes,
794                                       reply, reply_bytes);
795                 if (ret < 0) {
796                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
797                         return ret;
798                 }
799
800                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
801                 case DP_AUX_NATIVE_REPLY_ACK:
802                         /* I2C-over-AUX Reply field is only valid
803                          * when paired with AUX ACK.
804                          */
805                         break;
806                 case DP_AUX_NATIVE_REPLY_NACK:
807                         DRM_DEBUG_KMS("aux_ch native nack\n");
808                         return -EREMOTEIO;
809                 case DP_AUX_NATIVE_REPLY_DEFER:
810                         udelay(100);
811                         continue;
812                 default:
813                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
814                                   reply[0]);
815                         return -EREMOTEIO;
816                 }
817
818                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
819                 case DP_AUX_I2C_REPLY_ACK:
820                         if (mode == MODE_I2C_READ) {
821                                 *read_byte = reply[1];
822                         }
823                         return reply_bytes - 1;
824                 case DP_AUX_I2C_REPLY_NACK:
825                         DRM_DEBUG_KMS("aux_i2c nack\n");
826                         return -EREMOTEIO;
827                 case DP_AUX_I2C_REPLY_DEFER:
828                         DRM_DEBUG_KMS("aux_i2c defer\n");
829                         udelay(100);
830                         break;
831                 default:
832                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
833                         return -EREMOTEIO;
834                 }
835         }
836
837         DRM_ERROR("too many retries, giving up\n");
838         return -EREMOTEIO;
839 }
840
841 static int
842 cdv_intel_dp_i2c_init(struct gma_connector *connector,
843                       struct gma_encoder *encoder, const char *name)
844 {
845         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
846         int ret;
847
848         DRM_DEBUG_KMS("i2c_init %s\n", name);
849
850         intel_dp->algo.running = false;
851         intel_dp->algo.address = 0;
852         intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
853
854         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
855         intel_dp->adapter.owner = THIS_MODULE;
856         intel_dp->adapter.class = I2C_CLASS_DDC;
857         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
858         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
859         intel_dp->adapter.algo_data = &intel_dp->algo;
860         intel_dp->adapter.dev.parent = connector->base.kdev;
861
862         if (is_edp(encoder))
863                 cdv_intel_edp_panel_vdd_on(encoder);
864         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
865         if (is_edp(encoder))
866                 cdv_intel_edp_panel_vdd_off(encoder);
867
868         return ret;
869 }
870
871 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
872         struct drm_display_mode *adjusted_mode)
873 {
874         adjusted_mode->hdisplay = fixed_mode->hdisplay;
875         adjusted_mode->hsync_start = fixed_mode->hsync_start;
876         adjusted_mode->hsync_end = fixed_mode->hsync_end;
877         adjusted_mode->htotal = fixed_mode->htotal;
878
879         adjusted_mode->vdisplay = fixed_mode->vdisplay;
880         adjusted_mode->vsync_start = fixed_mode->vsync_start;
881         adjusted_mode->vsync_end = fixed_mode->vsync_end;
882         adjusted_mode->vtotal = fixed_mode->vtotal;
883
884         adjusted_mode->clock = fixed_mode->clock;
885
886         drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
887 }
888
889 static bool
890 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
891                     struct drm_display_mode *adjusted_mode)
892 {
893         struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
894         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
895         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
896         int lane_count, clock;
897         int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
898         int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
899         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
900         int refclock = mode->clock;
901         int bpp = 24;
902
903         if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
904                 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
905                 refclock = intel_dp->panel_fixed_mode->clock;
906                 bpp = dev_priv->edp.bpp;
907         }
908
909         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
910                 for (clock = max_clock; clock >= 0; clock--) {
911                         int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
912
913                         if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
914                                 intel_dp->link_bw = bws[clock];
915                                 intel_dp->lane_count = lane_count;
916                                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
917                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
918                                                 "count %d clock %d\n",
919                                        intel_dp->link_bw, intel_dp->lane_count,
920                                        adjusted_mode->clock);
921                                 return true;
922                         }
923                 }
924         }
925         if (is_edp(intel_encoder)) {
926                 /* okay we failed just pick the highest */
927                 intel_dp->lane_count = max_lane_count;
928                 intel_dp->link_bw = bws[max_clock];
929                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
930                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
931                               "count %d clock %d\n",
932                               intel_dp->link_bw, intel_dp->lane_count,
933                               adjusted_mode->clock);
934
935                 return true;
936         }
937         return false;
938 }
939
940 struct cdv_intel_dp_m_n {
941         uint32_t        tu;
942         uint32_t        gmch_m;
943         uint32_t        gmch_n;
944         uint32_t        link_m;
945         uint32_t        link_n;
946 };
947
948 static void
949 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
950 {
951         /*
952         while (*num > 0xffffff || *den > 0xffffff) {
953                 *num >>= 1;
954                 *den >>= 1;
955         }*/
956         uint64_t value, m;
957         m = *num;
958         value = m * (0x800000);
959         m = do_div(value, *den);
960         *num = value;
961         *den = 0x800000;
962 }
963
964 static void
965 cdv_intel_dp_compute_m_n(int bpp,
966                      int nlanes,
967                      int pixel_clock,
968                      int link_clock,
969                      struct cdv_intel_dp_m_n *m_n)
970 {
971         m_n->tu = 64;
972         m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
973         m_n->gmch_n = link_clock * nlanes;
974         cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
975         m_n->link_m = pixel_clock;
976         m_n->link_n = link_clock;
977         cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
978 }
979
980 void
981 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
982                  struct drm_display_mode *adjusted_mode)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
986         struct drm_mode_config *mode_config = &dev->mode_config;
987         struct drm_encoder *encoder;
988         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
989         int lane_count = 4, bpp = 24;
990         struct cdv_intel_dp_m_n m_n;
991         int pipe = gma_crtc->pipe;
992
993         /*
994          * Find the lane count in the intel_encoder private
995          */
996         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
997                 struct gma_encoder *intel_encoder;
998                 struct cdv_intel_dp *intel_dp;
999
1000                 if (encoder->crtc != crtc)
1001                         continue;
1002
1003                 intel_encoder = to_gma_encoder(encoder);
1004                 intel_dp = intel_encoder->dev_priv;
1005                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1006                         lane_count = intel_dp->lane_count;
1007                         break;
1008                 } else if (is_edp(intel_encoder)) {
1009                         lane_count = intel_dp->lane_count;
1010                         bpp = dev_priv->edp.bpp;
1011                         break;
1012                 }
1013         }
1014
1015         /*
1016          * Compute the GMCH and Link ratios. The '3' here is
1017          * the number of bytes_per_pixel post-LUT, which we always
1018          * set up for 8-bits of R/G/B, or 3 bytes total.
1019          */
1020         cdv_intel_dp_compute_m_n(bpp, lane_count,
1021                              mode->clock, adjusted_mode->clock, &m_n);
1022
1023         {
1024                 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1025                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1026                            m_n.gmch_m);
1027                 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1028                 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1029                 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1030         }
1031 }
1032
1033 static void
1034 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1035                   struct drm_display_mode *adjusted_mode)
1036 {
1037         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1038         struct drm_crtc *crtc = encoder->crtc;
1039         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1040         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1041         struct drm_device *dev = encoder->dev;
1042
1043         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1044         intel_dp->DP |= intel_dp->color_range;
1045
1046         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1047                 intel_dp->DP |= DP_SYNC_HS_HIGH;
1048         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1049                 intel_dp->DP |= DP_SYNC_VS_HIGH;
1050
1051         intel_dp->DP |= DP_LINK_TRAIN_OFF;
1052
1053         switch (intel_dp->lane_count) {
1054         case 1:
1055                 intel_dp->DP |= DP_PORT_WIDTH_1;
1056                 break;
1057         case 2:
1058                 intel_dp->DP |= DP_PORT_WIDTH_2;
1059                 break;
1060         case 4:
1061                 intel_dp->DP |= DP_PORT_WIDTH_4;
1062                 break;
1063         }
1064         if (intel_dp->has_audio)
1065                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1066
1067         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1068         intel_dp->link_configuration[0] = intel_dp->link_bw;
1069         intel_dp->link_configuration[1] = intel_dp->lane_count;
1070
1071         /*
1072          * Check for DPCD version > 1.1 and enhanced framing support
1073          */
1074         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1075             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1076                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1077                 intel_dp->DP |= DP_ENHANCED_FRAMING;
1078         }
1079
1080         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1081         if (gma_crtc->pipe == 1)
1082                 intel_dp->DP |= DP_PIPEB_SELECT;
1083
1084         REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1085         DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1086         if (is_edp(intel_encoder)) {
1087                 uint32_t pfit_control;
1088                 cdv_intel_edp_panel_on(intel_encoder);
1089
1090                 if (mode->hdisplay != adjusted_mode->hdisplay ||
1091                             mode->vdisplay != adjusted_mode->vdisplay)
1092                         pfit_control = PFIT_ENABLE;
1093                 else
1094                         pfit_control = 0;
1095
1096                 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1097
1098                 REG_WRITE(PFIT_CONTROL, pfit_control);
1099         }
1100 }
1101
1102
1103 /* If the sink supports it, try to set the power state appropriately */
1104 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1105 {
1106         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1107         int ret, i;
1108
1109         /* Should have a valid DPCD by this point */
1110         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1111                 return;
1112
1113         if (mode != DRM_MODE_DPMS_ON) {
1114                 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1115                                                   DP_SET_POWER_D3);
1116                 if (ret != 1)
1117                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1118         } else {
1119                 /*
1120                  * When turning on, we need to retry for 1ms to give the sink
1121                  * time to wake up.
1122                  */
1123                 for (i = 0; i < 3; i++) {
1124                         ret = cdv_intel_dp_aux_native_write_1(encoder,
1125                                                           DP_SET_POWER,
1126                                                           DP_SET_POWER_D0);
1127                         if (ret == 1)
1128                                 break;
1129                         udelay(1000);
1130                 }
1131         }
1132 }
1133
1134 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1135 {
1136         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1137         int edp = is_edp(intel_encoder);
1138
1139         if (edp) {
1140                 cdv_intel_edp_backlight_off(intel_encoder);
1141                 cdv_intel_edp_panel_off(intel_encoder);
1142                 cdv_intel_edp_panel_vdd_on(intel_encoder);
1143         }
1144         /* Wake up the sink first */
1145         cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1146         cdv_intel_dp_link_down(intel_encoder);
1147         if (edp)
1148                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1149 }
1150
1151 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1152 {
1153         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1154         int edp = is_edp(intel_encoder);
1155
1156         if (edp)
1157                 cdv_intel_edp_panel_on(intel_encoder);
1158         cdv_intel_dp_start_link_train(intel_encoder);
1159         cdv_intel_dp_complete_link_train(intel_encoder);
1160         if (edp)
1161                 cdv_intel_edp_backlight_on(intel_encoder);
1162 }
1163
1164 static void
1165 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1166 {
1167         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1168         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1169         struct drm_device *dev = encoder->dev;
1170         uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1171         int edp = is_edp(intel_encoder);
1172
1173         if (mode != DRM_MODE_DPMS_ON) {
1174                 if (edp) {
1175                         cdv_intel_edp_backlight_off(intel_encoder);
1176                         cdv_intel_edp_panel_vdd_on(intel_encoder);
1177                 }
1178                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1179                 cdv_intel_dp_link_down(intel_encoder);
1180                 if (edp) {
1181                         cdv_intel_edp_panel_vdd_off(intel_encoder);
1182                         cdv_intel_edp_panel_off(intel_encoder);
1183                 }
1184         } else {
1185                 if (edp)
1186                         cdv_intel_edp_panel_on(intel_encoder);
1187                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1188                 if (!(dp_reg & DP_PORT_EN)) {
1189                         cdv_intel_dp_start_link_train(intel_encoder);
1190                         cdv_intel_dp_complete_link_train(intel_encoder);
1191                 }
1192                 if (edp)
1193                         cdv_intel_edp_backlight_on(intel_encoder);
1194         }
1195 }
1196
1197 /*
1198  * Native read with retry for link status and receiver capability reads for
1199  * cases where the sink may still be asleep.
1200  */
1201 static bool
1202 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1203                                uint8_t *recv, int recv_bytes)
1204 {
1205         int ret, i;
1206
1207         /*
1208          * Sinks are *supposed* to come up within 1ms from an off state,
1209          * but we're also supposed to retry 3 times per the spec.
1210          */
1211         for (i = 0; i < 3; i++) {
1212                 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1213                                                recv_bytes);
1214                 if (ret == recv_bytes)
1215                         return true;
1216                 udelay(1000);
1217         }
1218
1219         return false;
1220 }
1221
1222 /*
1223  * Fetch AUX CH registers 0x202 - 0x207 which contain
1224  * link status information
1225  */
1226 static bool
1227 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1228 {
1229         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1230         return cdv_intel_dp_aux_native_read_retry(encoder,
1231                                               DP_LANE0_1_STATUS,
1232                                               intel_dp->link_status,
1233                                               DP_LINK_STATUS_SIZE);
1234 }
1235
1236 static uint8_t
1237 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1238                      int r)
1239 {
1240         return link_status[r - DP_LANE0_1_STATUS];
1241 }
1242
1243 static uint8_t
1244 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1245                                  int lane)
1246 {
1247         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1248         int         s = ((lane & 1) ?
1249                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1250                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1251         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1252
1253         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1254 }
1255
1256 static uint8_t
1257 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1258                                       int lane)
1259 {
1260         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1261         int         s = ((lane & 1) ?
1262                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1263                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1264         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1265
1266         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1267 }
1268
1269 #define CDV_DP_VOLTAGE_MAX          DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1270
1271 static void
1272 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1273 {
1274         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1275         uint8_t v = 0;
1276         uint8_t p = 0;
1277         int lane;
1278
1279         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1280                 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1281                 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1282
1283                 if (this_v > v)
1284                         v = this_v;
1285                 if (this_p > p)
1286                         p = this_p;
1287         }
1288
1289         if (v >= CDV_DP_VOLTAGE_MAX)
1290                 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1291
1292         if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1293                 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1294
1295         for (lane = 0; lane < 4; lane++)
1296                 intel_dp->train_set[lane] = v | p;
1297 }
1298
1299
1300 static uint8_t
1301 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1302                       int lane)
1303 {
1304         int i = DP_LANE0_1_STATUS + (lane >> 1);
1305         int s = (lane & 1) * 4;
1306         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1307
1308         return (l >> s) & 0xf;
1309 }
1310
1311 /* Check for clock recovery is done on all channels */
1312 static bool
1313 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1314 {
1315         int lane;
1316         uint8_t lane_status;
1317
1318         for (lane = 0; lane < lane_count; lane++) {
1319                 lane_status = cdv_intel_get_lane_status(link_status, lane);
1320                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1321                         return false;
1322         }
1323         return true;
1324 }
1325
1326 /* Check to see if channel eq is done on all channels */
1327 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1328                          DP_LANE_CHANNEL_EQ_DONE|\
1329                          DP_LANE_SYMBOL_LOCKED)
1330 static bool
1331 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1332 {
1333         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1334         uint8_t lane_align;
1335         uint8_t lane_status;
1336         int lane;
1337
1338         lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1339                                           DP_LANE_ALIGN_STATUS_UPDATED);
1340         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1341                 return false;
1342         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1343                 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1344                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool
1351 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1352                         uint32_t dp_reg_value,
1353                         uint8_t dp_train_pat)
1354 {
1355         struct drm_device *dev = encoder->base.dev;
1356         int ret;
1357         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1358
1359         REG_WRITE(intel_dp->output_reg, dp_reg_value);
1360         REG_READ(intel_dp->output_reg);
1361
1362         ret = cdv_intel_dp_aux_native_write_1(encoder,
1363                                     DP_TRAINING_PATTERN_SET,
1364                                     dp_train_pat);
1365
1366         if (ret != 1) {
1367                 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1368                                 dp_train_pat);
1369                 return false;
1370         }
1371
1372         return true;
1373 }
1374
1375
1376 static bool
1377 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1378                         uint8_t dp_train_pat)
1379 {
1380         int ret;
1381         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1382
1383         ret = cdv_intel_dp_aux_native_write(encoder,
1384                                         DP_TRAINING_LANE0_SET,
1385                                         intel_dp->train_set,
1386                                         intel_dp->lane_count);
1387
1388         if (ret != intel_dp->lane_count) {
1389                 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1390                                 intel_dp->train_set[0], intel_dp->lane_count);
1391                 return false;
1392         }
1393         return true;
1394 }
1395
1396 static void
1397 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1398 {
1399         struct drm_device *dev = encoder->base.dev;
1400         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1401         struct ddi_regoff *ddi_reg;
1402         int vswing, premph, index;
1403
1404         if (intel_dp->output_reg == DP_B)
1405                 ddi_reg = &ddi_DP_train_table[0];
1406         else
1407                 ddi_reg = &ddi_DP_train_table[1];
1408
1409         vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1410         premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1411                                 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1412
1413         if (vswing + premph > 3)
1414                 return;
1415 #ifdef CDV_FAST_LINK_TRAIN
1416         return;
1417 #endif
1418         DRM_DEBUG_KMS("Test2\n");
1419         //return ;
1420         cdv_sb_reset(dev);
1421         /* ;Swing voltage programming
1422         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1423         cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1424
1425         /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1426         cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1427
1428         /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1429          * The VSwing_PreEmph table is also considered based on the vswing/premp
1430          */
1431         index = (vswing + premph) * 2;
1432         if (premph == 1 && vswing == 1) {
1433                 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1434         } else
1435                 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1436
1437         /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1438         if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1439                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1440         else
1441                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1442
1443         /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1444         /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1445
1446         /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1447         cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1448
1449         /* ;Pre emphasis programming
1450          * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1451          */
1452         cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1453
1454         /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1455         index = 2 * premph + 1;
1456         cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1457         return;
1458 }
1459
1460
1461 /* Enable corresponding port and start training pattern 1 */
1462 static void
1463 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1464 {
1465         struct drm_device *dev = encoder->base.dev;
1466         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1467         int i;
1468         uint8_t voltage;
1469         bool clock_recovery = false;
1470         int tries;
1471         u32 reg;
1472         uint32_t DP = intel_dp->DP;
1473
1474         DP |= DP_PORT_EN;
1475         DP &= ~DP_LINK_TRAIN_MASK;
1476
1477         reg = DP;
1478         reg |= DP_LINK_TRAIN_PAT_1;
1479         /* Enable output, wait for it to become active */
1480         REG_WRITE(intel_dp->output_reg, reg);
1481         REG_READ(intel_dp->output_reg);
1482         gma_wait_for_vblank(dev);
1483
1484         DRM_DEBUG_KMS("Link config\n");
1485         /* Write the link configuration data */
1486         cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1487                                   intel_dp->link_configuration,
1488                                   2);
1489
1490         memset(intel_dp->train_set, 0, 4);
1491         voltage = 0;
1492         tries = 0;
1493         clock_recovery = false;
1494
1495         DRM_DEBUG_KMS("Start train\n");
1496         reg = DP | DP_LINK_TRAIN_PAT_1;
1497
1498         for (;;) {
1499                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1500                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1501                                 intel_dp->train_set[0],
1502                                 intel_dp->link_configuration[0],
1503                                 intel_dp->link_configuration[1]);
1504
1505                 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1506                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1507                 }
1508                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1509                 /* Set training pattern 1 */
1510
1511                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1512
1513                 udelay(200);
1514                 if (!cdv_intel_dp_get_link_status(encoder))
1515                         break;
1516
1517                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1518                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1519                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1520
1521                 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1522                         DRM_DEBUG_KMS("PT1 train is done\n");
1523                         clock_recovery = true;
1524                         break;
1525                 }
1526
1527                 /* Check to see if we've tried the max voltage */
1528                 for (i = 0; i < intel_dp->lane_count; i++)
1529                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1530                                 break;
1531                 if (i == intel_dp->lane_count)
1532                         break;
1533
1534                 /* Check to see if we've tried the same voltage 5 times */
1535                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1536                         ++tries;
1537                         if (tries == 5)
1538                                 break;
1539                 } else
1540                         tries = 0;
1541                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1542
1543                 /* Compute new intel_dp->train_set as requested by target */
1544                 cdv_intel_get_adjust_train(encoder);
1545
1546         }
1547
1548         if (!clock_recovery) {
1549                 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1550         }
1551
1552         intel_dp->DP = DP;
1553 }
1554
1555 static void
1556 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1557 {
1558         struct drm_device *dev = encoder->base.dev;
1559         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1560         int tries, cr_tries;
1561         u32 reg;
1562         uint32_t DP = intel_dp->DP;
1563
1564         /* channel equalization */
1565         tries = 0;
1566         cr_tries = 0;
1567
1568         DRM_DEBUG_KMS("\n");
1569         reg = DP | DP_LINK_TRAIN_PAT_2;
1570
1571         for (;;) {
1572
1573                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1574                                 intel_dp->train_set[0],
1575                                 intel_dp->link_configuration[0],
1576                                 intel_dp->link_configuration[1]);
1577                 /* channel eq pattern */
1578
1579                 if (!cdv_intel_dp_set_link_train(encoder, reg,
1580                                              DP_TRAINING_PATTERN_2)) {
1581                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1582                 }
1583                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1584
1585                 if (cr_tries > 5) {
1586                         DRM_ERROR("failed to train DP, aborting\n");
1587                         cdv_intel_dp_link_down(encoder);
1588                         break;
1589                 }
1590
1591                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1592
1593                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1594
1595                 udelay(1000);
1596                 if (!cdv_intel_dp_get_link_status(encoder))
1597                         break;
1598
1599                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1600                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1601                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1602
1603                 /* Make sure clock is still ok */
1604                 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1605                         cdv_intel_dp_start_link_train(encoder);
1606                         cr_tries++;
1607                         continue;
1608                 }
1609
1610                 if (cdv_intel_channel_eq_ok(encoder)) {
1611                         DRM_DEBUG_KMS("PT2 train is done\n");
1612                         break;
1613                 }
1614
1615                 /* Try 5 times, then try clock recovery if that fails */
1616                 if (tries > 5) {
1617                         cdv_intel_dp_link_down(encoder);
1618                         cdv_intel_dp_start_link_train(encoder);
1619                         tries = 0;
1620                         cr_tries++;
1621                         continue;
1622                 }
1623
1624                 /* Compute new intel_dp->train_set as requested by target */
1625                 cdv_intel_get_adjust_train(encoder);
1626                 ++tries;
1627
1628         }
1629
1630         reg = DP | DP_LINK_TRAIN_OFF;
1631
1632         REG_WRITE(intel_dp->output_reg, reg);
1633         REG_READ(intel_dp->output_reg);
1634         cdv_intel_dp_aux_native_write_1(encoder,
1635                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1636 }
1637
1638 static void
1639 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1640 {
1641         struct drm_device *dev = encoder->base.dev;
1642         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1643         uint32_t DP = intel_dp->DP;
1644
1645         if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1646                 return;
1647
1648         DRM_DEBUG_KMS("\n");
1649
1650
1651         {
1652                 DP &= ~DP_LINK_TRAIN_MASK;
1653                 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1654         }
1655         REG_READ(intel_dp->output_reg);
1656
1657         msleep(17);
1658
1659         REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1660         REG_READ(intel_dp->output_reg);
1661 }
1662
1663 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1664 {
1665         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1666         enum drm_connector_status status;
1667
1668         status = connector_status_disconnected;
1669         if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1670                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1671         {
1672                 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1673                         status = connector_status_connected;
1674         }
1675         if (status == connector_status_connected)
1676                 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1677                         intel_dp->dpcd[0], intel_dp->dpcd[1],
1678                         intel_dp->dpcd[2], intel_dp->dpcd[3]);
1679         return status;
1680 }
1681
1682 /*
1683  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1684  *
1685  * \return true if DP port is connected.
1686  * \return false if DP port is disconnected.
1687  */
1688 static enum drm_connector_status
1689 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1690 {
1691         struct gma_encoder *encoder = gma_attached_encoder(connector);
1692         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1693         enum drm_connector_status status;
1694         struct edid *edid = NULL;
1695         int edp = is_edp(encoder);
1696
1697         intel_dp->has_audio = false;
1698
1699         if (edp)
1700                 cdv_intel_edp_panel_vdd_on(encoder);
1701         status = cdv_dp_detect(encoder);
1702         if (status != connector_status_connected) {
1703                 if (edp)
1704                         cdv_intel_edp_panel_vdd_off(encoder);
1705                 return status;
1706         }
1707
1708         if (intel_dp->force_audio) {
1709                 intel_dp->has_audio = intel_dp->force_audio > 0;
1710         } else {
1711                 edid = drm_get_edid(connector, &intel_dp->adapter);
1712                 if (edid) {
1713                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1714                         kfree(edid);
1715                 }
1716         }
1717         if (edp)
1718                 cdv_intel_edp_panel_vdd_off(encoder);
1719
1720         return connector_status_connected;
1721 }
1722
1723 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1724 {
1725         struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1726         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1727         struct edid *edid = NULL;
1728         int ret = 0;
1729         int edp = is_edp(intel_encoder);
1730
1731
1732         edid = drm_get_edid(connector, &intel_dp->adapter);
1733         if (edid) {
1734                 drm_connector_update_edid_property(connector, edid);
1735                 ret = drm_add_edid_modes(connector, edid);
1736                 kfree(edid);
1737         }
1738
1739         if (is_edp(intel_encoder)) {
1740                 struct drm_device *dev = connector->dev;
1741                 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1742
1743                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1744                 if (ret) {
1745                         if (edp && !intel_dp->panel_fixed_mode) {
1746                                 struct drm_display_mode *newmode;
1747                                 list_for_each_entry(newmode, &connector->probed_modes,
1748                                             head) {
1749                                         if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1750                                                 intel_dp->panel_fixed_mode =
1751                                                         drm_mode_duplicate(dev, newmode);
1752                                                 break;
1753                                         }
1754                                 }
1755                         }
1756
1757                         return ret;
1758                 }
1759                 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1760                         intel_dp->panel_fixed_mode =
1761                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1762                         if (intel_dp->panel_fixed_mode) {
1763                                 intel_dp->panel_fixed_mode->type |=
1764                                         DRM_MODE_TYPE_PREFERRED;
1765                         }
1766                 }
1767                 if (intel_dp->panel_fixed_mode != NULL) {
1768                         struct drm_display_mode *mode;
1769                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1770                         drm_mode_probed_add(connector, mode);
1771                         return 1;
1772                 }
1773         }
1774
1775         return ret;
1776 }
1777
1778 static bool
1779 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1780 {
1781         struct gma_encoder *encoder = gma_attached_encoder(connector);
1782         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1783         struct edid *edid;
1784         bool has_audio = false;
1785         int edp = is_edp(encoder);
1786
1787         if (edp)
1788                 cdv_intel_edp_panel_vdd_on(encoder);
1789
1790         edid = drm_get_edid(connector, &intel_dp->adapter);
1791         if (edid) {
1792                 has_audio = drm_detect_monitor_audio(edid);
1793                 kfree(edid);
1794         }
1795         if (edp)
1796                 cdv_intel_edp_panel_vdd_off(encoder);
1797
1798         return has_audio;
1799 }
1800
1801 static int
1802 cdv_intel_dp_set_property(struct drm_connector *connector,
1803                       struct drm_property *property,
1804                       uint64_t val)
1805 {
1806         struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1807         struct gma_encoder *encoder = gma_attached_encoder(connector);
1808         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1809         int ret;
1810
1811         ret = drm_object_property_set_value(&connector->base, property, val);
1812         if (ret)
1813                 return ret;
1814
1815         if (property == dev_priv->force_audio_property) {
1816                 int i = val;
1817                 bool has_audio;
1818
1819                 if (i == intel_dp->force_audio)
1820                         return 0;
1821
1822                 intel_dp->force_audio = i;
1823
1824                 if (i == 0)
1825                         has_audio = cdv_intel_dp_detect_audio(connector);
1826                 else
1827                         has_audio = i > 0;
1828
1829                 if (has_audio == intel_dp->has_audio)
1830                         return 0;
1831
1832                 intel_dp->has_audio = has_audio;
1833                 goto done;
1834         }
1835
1836         if (property == dev_priv->broadcast_rgb_property) {
1837                 if (val == !!intel_dp->color_range)
1838                         return 0;
1839
1840                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1841                 goto done;
1842         }
1843
1844         return -EINVAL;
1845
1846 done:
1847         if (encoder->base.crtc) {
1848                 struct drm_crtc *crtc = encoder->base.crtc;
1849                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1850                                          crtc->x, crtc->y,
1851                                          crtc->primary->fb);
1852         }
1853
1854         return 0;
1855 }
1856
1857 static void
1858 cdv_intel_dp_destroy(struct drm_connector *connector)
1859 {
1860         struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1861         struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1862
1863         if (is_edp(gma_encoder)) {
1864         /*      cdv_intel_panel_destroy_backlight(connector->dev); */
1865                 kfree(intel_dp->panel_fixed_mode);
1866                 intel_dp->panel_fixed_mode = NULL;
1867         }
1868         i2c_del_adapter(&intel_dp->adapter);
1869         drm_connector_unregister(connector);
1870         drm_connector_cleanup(connector);
1871         kfree(connector);
1872 }
1873
1874 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1875         .dpms = cdv_intel_dp_dpms,
1876         .mode_fixup = cdv_intel_dp_mode_fixup,
1877         .prepare = cdv_intel_dp_prepare,
1878         .mode_set = cdv_intel_dp_mode_set,
1879         .commit = cdv_intel_dp_commit,
1880 };
1881
1882 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1883         .dpms = drm_helper_connector_dpms,
1884         .detect = cdv_intel_dp_detect,
1885         .fill_modes = drm_helper_probe_single_connector_modes,
1886         .set_property = cdv_intel_dp_set_property,
1887         .destroy = cdv_intel_dp_destroy,
1888 };
1889
1890 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1891         .get_modes = cdv_intel_dp_get_modes,
1892         .mode_valid = cdv_intel_dp_mode_valid,
1893         .best_encoder = gma_best_encoder,
1894 };
1895
1896 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1897 {
1898         cdv_intel_attach_force_audio_property(connector);
1899         cdv_intel_attach_broadcast_rgb_property(connector);
1900 }
1901
1902 /* check the VBT to see whether the eDP is on DP-D port */
1903 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1904 {
1905         struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1906         struct child_device_config *p_child;
1907         int i;
1908
1909         if (!dev_priv->child_dev_num)
1910                 return false;
1911
1912         for (i = 0; i < dev_priv->child_dev_num; i++) {
1913                 p_child = dev_priv->child_dev + i;
1914
1915                 if (p_child->dvo_port == PORT_IDPC &&
1916                     p_child->device_type == DEVICE_TYPE_eDP)
1917                         return true;
1918         }
1919         return false;
1920 }
1921
1922 /* Cedarview display clock gating
1923
1924    We need this disable dot get correct behaviour while enabling
1925    DP/eDP. TODO - investigate if we can turn it back to normality
1926    after enabling */
1927 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1928 {
1929         u32 reg_value;
1930         reg_value = REG_READ(DSPCLK_GATE_D);
1931
1932         reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1933                         DPUNIT_PIPEA_GATE_DISABLE |
1934                         DPCUNIT_CLOCK_GATE_DISABLE |
1935                         DPLSUNIT_CLOCK_GATE_DISABLE |
1936                         DPOUNIT_CLOCK_GATE_DISABLE |
1937                         DPIOUNIT_CLOCK_GATE_DISABLE);
1938
1939         REG_WRITE(DSPCLK_GATE_D, reg_value);
1940
1941         udelay(500);
1942 }
1943
1944 void
1945 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1946 {
1947         struct gma_encoder *gma_encoder;
1948         struct gma_connector *gma_connector;
1949         struct drm_connector *connector;
1950         struct drm_encoder *encoder;
1951         struct cdv_intel_dp *intel_dp;
1952         const char *name = NULL;
1953         int type = DRM_MODE_CONNECTOR_DisplayPort;
1954
1955         gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1956         if (!gma_encoder)
1957                 return;
1958         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1959         if (!gma_connector)
1960                 goto err_connector;
1961         intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1962         if (!intel_dp)
1963                 goto err_priv;
1964
1965         if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1966                 type = DRM_MODE_CONNECTOR_eDP;
1967
1968         connector = &gma_connector->base;
1969         encoder = &gma_encoder->base;
1970
1971         drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1972         drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1973
1974         gma_connector_attach_encoder(gma_connector, gma_encoder);
1975
1976         if (type == DRM_MODE_CONNECTOR_DisplayPort)
1977                 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1978         else
1979                 gma_encoder->type = INTEL_OUTPUT_EDP;
1980
1981
1982         gma_encoder->dev_priv=intel_dp;
1983         intel_dp->encoder = gma_encoder;
1984         intel_dp->output_reg = output_reg;
1985
1986         drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1987         drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1988
1989         connector->polled = DRM_CONNECTOR_POLL_HPD;
1990         connector->interlace_allowed = false;
1991         connector->doublescan_allowed = false;
1992
1993         drm_connector_register(connector);
1994
1995         /* Set up the DDC bus. */
1996         switch (output_reg) {
1997                 case DP_B:
1998                         name = "DPDDC-B";
1999                         gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2000                         break;
2001                 case DP_C:
2002                         name = "DPDDC-C";
2003                         gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2004                         break;
2005         }
2006
2007         cdv_disable_intel_clock_gating(dev);
2008
2009         cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2010         /* FIXME:fail check */
2011         cdv_intel_dp_add_properties(connector);
2012
2013         if (is_edp(gma_encoder)) {
2014                 int ret;
2015                 struct edp_power_seq cur;
2016                 u32 pp_on, pp_off, pp_div;
2017                 u32 pwm_ctrl;
2018
2019                 pp_on = REG_READ(PP_CONTROL);
2020                 pp_on &= ~PANEL_UNLOCK_MASK;
2021                 pp_on |= PANEL_UNLOCK_REGS;
2022
2023                 REG_WRITE(PP_CONTROL, pp_on);
2024
2025                 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2026                 pwm_ctrl |= PWM_PIPE_B;
2027                 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2028
2029                 pp_on = REG_READ(PP_ON_DELAYS);
2030                 pp_off = REG_READ(PP_OFF_DELAYS);
2031                 pp_div = REG_READ(PP_DIVISOR);
2032
2033                 /* Pull timing values out of registers */
2034                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2035                         PANEL_POWER_UP_DELAY_SHIFT;
2036
2037                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2038                         PANEL_LIGHT_ON_DELAY_SHIFT;
2039
2040                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2041                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2042
2043                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2044                         PANEL_POWER_DOWN_DELAY_SHIFT;
2045
2046                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2047                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2048
2049                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2050                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2051
2052
2053                 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2054                 intel_dp->backlight_on_delay = cur.t8 / 10;
2055                 intel_dp->backlight_off_delay = cur.t9 / 10;
2056                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2057                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2058
2059                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2060                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2061                               intel_dp->panel_power_cycle_delay);
2062
2063                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2064                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2065
2066
2067                 cdv_intel_edp_panel_vdd_on(gma_encoder);
2068                 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2069                                                intel_dp->dpcd,
2070                                                sizeof(intel_dp->dpcd));
2071                 cdv_intel_edp_panel_vdd_off(gma_encoder);
2072                 if (ret <= 0) {
2073                         /* if this fails, presume the device is a ghost */
2074                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2075                         drm_encoder_cleanup(encoder);
2076                         cdv_intel_dp_destroy(connector);
2077                         goto err_connector;
2078                 } else {
2079                         DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2080                                 intel_dp->dpcd[0], intel_dp->dpcd[1],
2081                                 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2082
2083                 }
2084                 /* The CDV reference driver moves pnale backlight setup into the displays that
2085                    have a backlight: this is a good idea and one we should probably adopt, however
2086                    we need to migrate all the drivers before we can do that */
2087                 /*cdv_intel_panel_setup_backlight(dev); */
2088         }
2089         return;
2090
2091 err_priv:
2092         kfree(gma_connector);
2093 err_connector:
2094         kfree(gma_encoder);
2095 }