Merge branch 'address-masking'
[linux-2.6-microblaze.git] / drivers / gpu / drm / arm / malidp_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
4  * Author: Liviu Dudau <Liviu.Dudau@arm.com>
5  *
6  * ARM Mali DP500/DP550/DP650 driver (crtc operations)
7  */
8
9 #include <linux/clk.h>
10 #include <linux/pm_runtime.h>
11
12 #include <video/videomode.h>
13
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_framebuffer.h>
18 #include <drm/drm_print.h>
19 #include <drm/drm_probe_helper.h>
20 #include <drm/drm_vblank.h>
21
22 #include "malidp_drv.h"
23 #include "malidp_hw.h"
24
25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
26                                                    const struct drm_display_mode *mode)
27 {
28         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
29         struct malidp_hw_device *hwdev = malidp->dev;
30
31         /*
32          * check that the hardware can drive the required clock rate,
33          * but skip the check if the clock is meant to be disabled (req_rate = 0)
34          */
35         long rate, req_rate = mode->crtc_clock * 1000;
36
37         if (req_rate) {
38                 rate = clk_round_rate(hwdev->pxlclk, req_rate);
39                 if (rate != req_rate) {
40                         DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
41                                          req_rate);
42                         return MODE_NOCLOCK;
43                 }
44         }
45
46         return MODE_OK;
47 }
48
49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
50                                       struct drm_atomic_state *state)
51 {
52         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
53         struct malidp_hw_device *hwdev = malidp->dev;
54         struct videomode vm;
55         int err = pm_runtime_get_sync(crtc->dev->dev);
56
57         if (err < 0) {
58                 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
59                 return;
60         }
61
62         drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
63         clk_prepare_enable(hwdev->pxlclk);
64
65         /* We rely on firmware to set mclk to a sensible level. */
66         clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
67
68         hwdev->hw->modeset(hwdev, &vm);
69         hwdev->hw->leave_config_mode(hwdev);
70         drm_crtc_vblank_on(crtc);
71 }
72
73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
74                                        struct drm_atomic_state *state)
75 {
76         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
77                                                                          crtc);
78         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
79         struct malidp_hw_device *hwdev = malidp->dev;
80         int err;
81
82         /* always disable planes on the CRTC that is being turned off */
83         drm_atomic_helper_disable_planes_on_crtc(old_state, false);
84
85         drm_crtc_vblank_off(crtc);
86         hwdev->hw->enter_config_mode(hwdev);
87
88         clk_disable_unprepare(hwdev->pxlclk);
89
90         err = pm_runtime_put(crtc->dev->dev);
91         if (err < 0) {
92                 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
93         }
94 }
95
96 static const struct gamma_curve_segment {
97         u16 start;
98         u16 end;
99 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
100         /* sector 0 */
101         {    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
102         {    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
103         {    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
104         {   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
105         /* sector 1 */
106         {   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
107         /* sector 2 */
108         {   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
109         /* sector 3 */
110         {   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
111         /* sector 4 */
112         {  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
113         /* sector 5 */
114         {  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
115         /* sector 6 */
116         {  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
117         { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
118         { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
119         { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
120         { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
121         { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
122         { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
123 };
124
125 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
126
127 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
128                                         u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
129 {
130         struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
131         int i;
132
133         for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
134                 u32 a, b, delta_in, out_start, out_end;
135
136                 delta_in = segments[i].end - segments[i].start;
137                 /* DP has 12-bit internal precision for its LUTs. */
138                 out_start = drm_color_lut_extract(lut[segments[i].start].green,
139                                                   12);
140                 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
141                 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
142                 b = out_start;
143                 coeffs[i] = DE_COEFTAB_DATA(a, b);
144         }
145 }
146
147 /*
148  * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
149  * reject any LUTs that use distinct red, green, and blue curves.
150  */
151 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
152                                           struct drm_crtc_state *state)
153 {
154         struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
155         struct drm_color_lut *lut;
156         size_t lut_size;
157         int i;
158
159         if (!state->color_mgmt_changed || !state->gamma_lut)
160                 return 0;
161
162         if (crtc->state->gamma_lut &&
163             (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
164                 return 0;
165
166         if (state->gamma_lut->length % sizeof(struct drm_color_lut))
167                 return -EINVAL;
168
169         lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
170         if (lut_size != MALIDP_GAMMA_LUT_SIZE)
171                 return -EINVAL;
172
173         lut = (struct drm_color_lut *)state->gamma_lut->data;
174         for (i = 0; i < lut_size; ++i)
175                 if (!((lut[i].red == lut[i].green) &&
176                       (lut[i].red == lut[i].blue)))
177                         return -EINVAL;
178
179         if (!state->mode_changed) {
180                 int ret;
181
182                 state->mode_changed = true;
183                 /*
184                  * Kerneldoc for drm_atomic_helper_check_modeset mandates that
185                  * it be invoked when the driver sets ->mode_changed. Since
186                  * changing the gamma LUT doesn't depend on any external
187                  * resources, it is safe to call it only once.
188                  */
189                 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
190                 if (ret)
191                         return ret;
192         }
193
194         malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
195         return 0;
196 }
197
198 /*
199  * Check if there is a new CTM and if it contains valid input. Valid here means
200  * that the number is inside the representable range for a Q3.12 number,
201  * excluding truncating the fractional part of the input data.
202  *
203  * The COLORADJ registers can be changed atomically.
204  */
205 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
206                                         struct drm_crtc_state *state)
207 {
208         struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
209         struct drm_color_ctm *ctm;
210         int i;
211
212         if (!state->color_mgmt_changed)
213                 return 0;
214
215         if (!state->ctm)
216                 return 0;
217
218         if (crtc->state->ctm && (crtc->state->ctm->base.id ==
219                                  state->ctm->base.id))
220                 return 0;
221
222         /*
223          * The size of the ctm is checked in
224          * drm_property_replace_blob_from_id.
225          */
226         ctm = (struct drm_color_ctm *)state->ctm->data;
227         for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
228                 /* Convert from S31.32 to Q3.12. */
229                 s64 val = ctm->matrix[i];
230                 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
231                           GENMASK_ULL(14, 0);
232
233                 /*
234                  * Convert to 2s complement and check the destination's top bit
235                  * for overflow. NB: Can't check before converting or it'd
236                  * incorrectly reject the case:
237                  * sign == 1
238                  * mag == 0x2000
239                  */
240                 if (val & BIT_ULL(63))
241                         mag = ~mag + 1;
242                 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
243                         return -EINVAL;
244                 mc->coloradj_coeffs[i] = mag;
245         }
246
247         return 0;
248 }
249
250 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
251                                             struct drm_crtc_state *state)
252 {
253         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
254         struct malidp_hw_device *hwdev = malidp->dev;
255         struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
256         struct malidp_se_config *s = &cs->scaler_config;
257         struct drm_plane *plane;
258         struct videomode vm;
259         const struct drm_plane_state *pstate;
260         u32 h_upscale_factor = 0; /* U16.16 */
261         u32 v_upscale_factor = 0; /* U16.16 */
262         u8 scaling = cs->scaled_planes_mask;
263         int ret;
264
265         if (!scaling) {
266                 s->scale_enable = false;
267                 goto mclk_calc;
268         }
269
270         /* The scaling engine can only handle one plane at a time. */
271         if (scaling & (scaling - 1))
272                 return -EINVAL;
273
274         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
275                 struct malidp_plane *mp = to_malidp_plane(plane);
276                 u32 phase;
277
278                 if (!(mp->layer->id & scaling))
279                         continue;
280
281                 /*
282                  * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
283                  * to get the U16.16 result.
284                  */
285                 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
286                                            pstate->src_w);
287                 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
288                                            pstate->src_h);
289
290                 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
291                                       (v_upscale_factor >> 16) >= 2);
292
293                 if (pstate->rotation & MALIDP_ROTATED_MASK) {
294                         s->input_w = pstate->src_h >> 16;
295                         s->input_h = pstate->src_w >> 16;
296                 } else {
297                         s->input_w = pstate->src_w >> 16;
298                         s->input_h = pstate->src_h >> 16;
299                 }
300
301                 s->output_w = pstate->crtc_w;
302                 s->output_h = pstate->crtc_h;
303
304 #define SE_N_PHASE 4
305 #define SE_SHIFT_N_PHASE 12
306                 /* Calculate initial_phase and delta_phase for horizontal. */
307                 phase = s->input_w;
308                 s->h_init_phase =
309                                 ((phase << SE_N_PHASE) / s->output_w + 1) / 2;
310
311                 phase = s->input_w;
312                 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
313                 s->h_delta_phase = phase / s->output_w;
314
315                 /* Same for vertical. */
316                 phase = s->input_h;
317                 s->v_init_phase =
318                                 ((phase << SE_N_PHASE) / s->output_h + 1) / 2;
319
320                 phase = s->input_h;
321                 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
322                 s->v_delta_phase = phase / s->output_h;
323 #undef SE_N_PHASE
324 #undef SE_SHIFT_N_PHASE
325                 s->plane_src_id = mp->layer->id;
326         }
327
328         s->scale_enable = true;
329         s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
330         s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
331
332 mclk_calc:
333         drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
334         ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
335         if (ret < 0)
336                 return -EINVAL;
337         return 0;
338 }
339
340 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
341                                     struct drm_atomic_state *state)
342 {
343         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
344                                                                           crtc);
345         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
346         struct malidp_hw_device *hwdev = malidp->dev;
347         struct drm_plane *plane;
348         const struct drm_plane_state *pstate;
349         u32 rot_mem_free, rot_mem_usable;
350         int rotated_planes = 0;
351         int ret;
352
353         /*
354          * check if there is enough rotation memory available for planes
355          * that need 90° and 270° rotion or planes that are compressed.
356          * Each plane has set its required memory size in the ->plane_check()
357          * callback, here we only make sure that the sums are less that the
358          * total usable memory.
359          *
360          * The rotation memory allocation algorithm (for each plane):
361          *  a. If no more rotated or compressed planes exist, all remaining
362          *     rotate memory in the bank is available for use by the plane.
363          *  b. If other rotated or compressed planes exist, and plane's
364          *     layer ID is DE_VIDEO1, it can use all the memory from first bank
365          *     if secondary rotation memory bank is available, otherwise it can
366          *     use up to half the bank's memory.
367          *  c. If other rotated or compressed planes exist, and plane's layer ID
368          *     is not DE_VIDEO1, it can use half of the available memory.
369          *
370          * Note: this algorithm assumes that the order in which the planes are
371          * checked always has DE_VIDEO1 plane first in the list if it is
372          * rotated. Because that is how we create the planes in the first
373          * place, under current DRM version things work, but if ever the order
374          * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
375          * changes, we need to pre-sort the planes before validation.
376          */
377
378         /* first count the number of rotated planes */
379         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
380                 struct drm_framebuffer *fb = pstate->fb;
381
382                 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
383                         rotated_planes++;
384         }
385
386         rot_mem_free = hwdev->rotation_memory[0];
387         /*
388          * if we have more than 1 plane using rotation memory, use the second
389          * block of rotation memory as well
390          */
391         if (rotated_planes > 1)
392                 rot_mem_free += hwdev->rotation_memory[1];
393
394         /* now validate the rotation memory requirements */
395         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
396                 struct malidp_plane *mp = to_malidp_plane(plane);
397                 struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
398                 struct drm_framebuffer *fb = pstate->fb;
399
400                 if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
401                         /* process current plane */
402                         rotated_planes--;
403
404                         if (!rotated_planes) {
405                                 /* no more rotated planes, we can use what's left */
406                                 rot_mem_usable = rot_mem_free;
407                         } else {
408                                 if ((mp->layer->id != DE_VIDEO1) ||
409                                     (hwdev->rotation_memory[1] == 0))
410                                         rot_mem_usable = rot_mem_free / 2;
411                                 else
412                                         rot_mem_usable = hwdev->rotation_memory[0];
413                         }
414
415                         rot_mem_free -= rot_mem_usable;
416
417                         if (ms->rotmem_size > rot_mem_usable)
418                                 return -EINVAL;
419                 }
420         }
421
422         /* If only the writeback routing has changed, we don't need a modeset */
423         if (crtc_state->connectors_changed) {
424                 u32 old_mask = crtc->state->connector_mask;
425                 u32 new_mask = crtc_state->connector_mask;
426
427                 if ((old_mask ^ new_mask) ==
428                     (1 << drm_connector_index(&malidp->mw_connector.base)))
429                         crtc_state->connectors_changed = false;
430         }
431
432         ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state);
433         ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state);
434         ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state);
435
436         return ret;
437 }
438
439 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
440         .mode_valid = malidp_crtc_mode_valid,
441         .atomic_check = malidp_crtc_atomic_check,
442         .atomic_enable = malidp_crtc_atomic_enable,
443         .atomic_disable = malidp_crtc_atomic_disable,
444 };
445
446 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
447 {
448         struct malidp_crtc_state *state, *old_state;
449
450         if (WARN_ON(!crtc->state))
451                 return NULL;
452
453         old_state = to_malidp_crtc_state(crtc->state);
454         state = kmalloc(sizeof(*state), GFP_KERNEL);
455         if (!state)
456                 return NULL;
457
458         __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
459         memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
460                sizeof(state->gamma_coeffs));
461         memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
462                sizeof(state->coloradj_coeffs));
463         memcpy(&state->scaler_config, &old_state->scaler_config,
464                sizeof(state->scaler_config));
465         state->scaled_planes_mask = 0;
466
467         return &state->base;
468 }
469
470 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
471                                       struct drm_crtc_state *state)
472 {
473         struct malidp_crtc_state *mali_state = NULL;
474
475         if (state) {
476                 mali_state = to_malidp_crtc_state(state);
477                 __drm_atomic_helper_crtc_destroy_state(state);
478         }
479
480         kfree(mali_state);
481 }
482
483 static void malidp_crtc_reset(struct drm_crtc *crtc)
484 {
485         struct malidp_crtc_state *state =
486                 kzalloc(sizeof(*state), GFP_KERNEL);
487
488         if (crtc->state)
489                 malidp_crtc_destroy_state(crtc, crtc->state);
490
491         if (state)
492                 __drm_atomic_helper_crtc_reset(crtc, &state->base);
493         else
494                 __drm_atomic_helper_crtc_reset(crtc, NULL);
495 }
496
497 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
498 {
499         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
500         struct malidp_hw_device *hwdev = malidp->dev;
501
502         malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
503                              hwdev->hw->map.de_irq_map.vsync_irq);
504         return 0;
505 }
506
507 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
508 {
509         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
510         struct malidp_hw_device *hwdev = malidp->dev;
511
512         malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
513                               hwdev->hw->map.de_irq_map.vsync_irq);
514 }
515
516 static const struct drm_crtc_funcs malidp_crtc_funcs = {
517         .set_config = drm_atomic_helper_set_config,
518         .page_flip = drm_atomic_helper_page_flip,
519         .reset = malidp_crtc_reset,
520         .atomic_duplicate_state = malidp_crtc_duplicate_state,
521         .atomic_destroy_state = malidp_crtc_destroy_state,
522         .enable_vblank = malidp_crtc_enable_vblank,
523         .disable_vblank = malidp_crtc_disable_vblank,
524 };
525
526 int malidp_crtc_init(struct drm_device *drm)
527 {
528         struct malidp_drm *malidp = drm_to_malidp(drm);
529         struct drm_plane *primary = NULL, *plane;
530         int ret;
531
532         ret = malidp_de_planes_init(drm);
533         if (ret < 0) {
534                 DRM_ERROR("Failed to initialise planes\n");
535                 return ret;
536         }
537
538         drm_for_each_plane(plane, drm) {
539                 if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
540                         primary = plane;
541                         break;
542                 }
543         }
544
545         if (!primary) {
546                 DRM_ERROR("no primary plane found\n");
547                 return -EINVAL;
548         }
549
550         ret = drmm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
551                                          &malidp_crtc_funcs, NULL);
552         if (ret)
553                 return ret;
554
555         drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
556         drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
557         /* No inverse-gamma: it is per-plane. */
558         drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
559
560         malidp_se_set_enh_coeffs(malidp->dev);
561
562         return 0;
563 }