0ecc18b55ffb2e304e0daf4638e2e0b964aa7725
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / powerplay / smumgr / vegam_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38
39 #include "smu7_dyn_defaults.h"
40
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
48
49 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
50
51 #define VOLTAGE_VID_OFFSET_SCALE1   625
52 #define VOLTAGE_VID_OFFSET_SCALE2   100
53 #define POWERTUNE_DEFAULT_SET_MAX    1
54 #define VDDC_VDDCI_DELTA            200
55 #define MC_CG_ARB_FREQ_F1           0x0b
56
57 #define STRAP_ASIC_RO_LSB    2168
58 #define STRAP_ASIC_RO_MSB    2175
59
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
62
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65         /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
67         { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68         { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
70 };
71
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73                         {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
74                         {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75                         {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
76                         {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
77                         {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
78                         {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
79                         {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
80                         {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
81
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
83 {
84         struct vegam_smumgr *smu_data;
85
86         smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87         if (smu_data == NULL)
88                 return -ENOMEM;
89
90         hwmgr->smu_backend = smu_data;
91
92         if (smu7_init(hwmgr)) {
93                 kfree(smu_data);
94                 return -EINVAL;
95         }
96
97         return 0;
98 }
99
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 {
102         int result = 0;
103
104         /* Wait for smc boot up */
105         /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
106
107         /* Assert reset */
108         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110
111         result = smu7_upload_smu_firmware_image(hwmgr);
112         if (result != 0)
113                 return result;
114
115         /* Clear status */
116         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
117
118         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121         /* De-assert reset */
122         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125
126         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
127
128
129         /* Call Test SMU message with 0x20000 offset to trigger SMU start */
130         smu7_send_msg_to_smc_offset(hwmgr);
131
132         /* Wait done bit to be set */
133         /* Check pass/failed indicator */
134
135         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
136
137         if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138                                                 SMU_STATUS, SMU_PASS))
139                 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
140
141         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
142
143         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
145
146         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
148
149         /* Wait for firmware to initialize */
150         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151
152         return result;
153 }
154
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157         int result = 0;
158
159         /* wait for smc boot up */
160         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
161
162         /* Clear firmware interrupt enable flag */
163         /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
164         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165                                 ixFIRMWARE_FLAGS, 0);
166
167         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168                                         SMC_SYSCON_RESET_CNTL,
169                                         rst_reg, 1);
170
171         result = smu7_upload_smu_firmware_image(hwmgr);
172         if (result != 0)
173                 return result;
174
175         /* Set smc instruct start point at 0x0 */
176         smu7_program_jump_on_start(hwmgr);
177
178         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
180
181         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
183
184         /* Wait for firmware to initialize */
185
186         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187                                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
188
189         return result;
190 }
191
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
193 {
194         int result = 0;
195         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
196
197         /* Only start SMC if SMC RAM is not running */
198         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199                 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200                                 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201                 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202                                 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
203
204                 /* Check if SMU is running in protected mode */
205                 if (smu_data->protected_mode == 0)
206                         result = vegam_start_smu_in_non_protection_mode(hwmgr);
207                 else
208                         result = vegam_start_smu_in_protection_mode(hwmgr);
209
210                 if (result != 0)
211                         PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
212         }
213
214         /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
215         smu7_read_smc_sram_dword(hwmgr,
216                         SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217                         &(smu_data->smu7_data.soft_regs_start),
218                         0x40000);
219
220         result = smu7_request_smu_load_fw(hwmgr);
221
222         return result;
223 }
224
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
226 {
227         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229         uint32_t tmp;
230         int result;
231         bool error = false;
232
233         result = smu7_read_smc_sram_dword(hwmgr,
234                         SMU7_FIRMWARE_HEADER_LOCATION +
235                         offsetof(SMU75_Firmware_Header, DpmTable),
236                         &tmp, SMC_RAM_END);
237
238         if (0 == result)
239                 smu_data->smu7_data.dpm_table_start = tmp;
240
241         error |= (0 != result);
242
243         result = smu7_read_smc_sram_dword(hwmgr,
244                         SMU7_FIRMWARE_HEADER_LOCATION +
245                         offsetof(SMU75_Firmware_Header, SoftRegisters),
246                         &tmp, SMC_RAM_END);
247
248         if (!result) {
249                 data->soft_regs_start = tmp;
250                 smu_data->smu7_data.soft_regs_start = tmp;
251         }
252
253         error |= (0 != result);
254
255         result = smu7_read_smc_sram_dword(hwmgr,
256                         SMU7_FIRMWARE_HEADER_LOCATION +
257                         offsetof(SMU75_Firmware_Header, mcRegisterTable),
258                         &tmp, SMC_RAM_END);
259
260         if (!result)
261                 smu_data->smu7_data.mc_reg_table_start = tmp;
262
263         result = smu7_read_smc_sram_dword(hwmgr,
264                         SMU7_FIRMWARE_HEADER_LOCATION +
265                         offsetof(SMU75_Firmware_Header, FanTable),
266                         &tmp, SMC_RAM_END);
267
268         if (!result)
269                 smu_data->smu7_data.fan_table_start = tmp;
270
271         error |= (0 != result);
272
273         result = smu7_read_smc_sram_dword(hwmgr,
274                         SMU7_FIRMWARE_HEADER_LOCATION +
275                         offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276                         &tmp, SMC_RAM_END);
277
278         if (!result)
279                 smu_data->smu7_data.arb_table_start = tmp;
280
281         error |= (0 != result);
282
283         result = smu7_read_smc_sram_dword(hwmgr,
284                         SMU7_FIRMWARE_HEADER_LOCATION +
285                         offsetof(SMU75_Firmware_Header, Version),
286                         &tmp, SMC_RAM_END);
287
288         if (!result)
289                 hwmgr->microcode_version_info.SMC = tmp;
290
291         error |= (0 != result);
292
293         return error ? -1 : 0;
294 }
295
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
297 {
298         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
300                         ? true : false;
301 }
302
303 static uint32_t vegam_get_mac_definition(uint32_t value)
304 {
305         switch (value) {
306         case SMU_MAX_LEVELS_GRAPHICS:
307                 return SMU75_MAX_LEVELS_GRAPHICS;
308         case SMU_MAX_LEVELS_MEMORY:
309                 return SMU75_MAX_LEVELS_MEMORY;
310         case SMU_MAX_LEVELS_LINK:
311                 return SMU75_MAX_LEVELS_LINK;
312         case SMU_MAX_ENTRIES_SMIO:
313                 return SMU75_MAX_ENTRIES_SMIO;
314         case SMU_MAX_LEVELS_VDDC:
315                 return SMU75_MAX_LEVELS_VDDC;
316         case SMU_MAX_LEVELS_VDDGFX:
317                 return SMU75_MAX_LEVELS_VDDGFX;
318         case SMU_MAX_LEVELS_VDDCI:
319                 return SMU75_MAX_LEVELS_VDDCI;
320         case SMU_MAX_LEVELS_MVDD:
321                 return SMU75_MAX_LEVELS_MVDD;
322         case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
323                 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
324                                 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
325         }
326
327         pr_warn("can't get the mac of %x\n", value);
328         return 0;
329 }
330
331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
332 {
333         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
334         uint32_t mm_boot_level_offset, mm_boot_level_value;
335         struct phm_ppt_v1_information *table_info =
336                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
337
338         smu_data->smc_state_table.UvdBootLevel = 0;
339         if (table_info->mm_dep_table->count > 0)
340                 smu_data->smc_state_table.UvdBootLevel =
341                                 (uint8_t) (table_info->mm_dep_table->count - 1);
342         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
343                                                 UvdBootLevel);
344         mm_boot_level_offset /= 4;
345         mm_boot_level_offset *= 4;
346         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
347                         CGS_IND_REG__SMC, mm_boot_level_offset);
348         mm_boot_level_value &= 0x00FFFFFF;
349         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
350         cgs_write_ind_register(hwmgr->device,
351                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
352
353         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
354                         PHM_PlatformCaps_UVDDPM) ||
355                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
356                         PHM_PlatformCaps_StablePState))
357                 smum_send_msg_to_smc_with_parameter(hwmgr,
358                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
359                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
360                                 NULL);
361         return 0;
362 }
363
364 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
365 {
366         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
367         uint32_t mm_boot_level_offset, mm_boot_level_value;
368         struct phm_ppt_v1_information *table_info =
369                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
370
371         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
372                                         PHM_PlatformCaps_StablePState))
373                 smu_data->smc_state_table.VceBootLevel =
374                         (uint8_t) (table_info->mm_dep_table->count - 1);
375         else
376                 smu_data->smc_state_table.VceBootLevel = 0;
377
378         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
379                                         offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
380         mm_boot_level_offset /= 4;
381         mm_boot_level_offset *= 4;
382         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
383                         CGS_IND_REG__SMC, mm_boot_level_offset);
384         mm_boot_level_value &= 0xFF00FFFF;
385         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
386         cgs_write_ind_register(hwmgr->device,
387                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
388
389         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
390                 smum_send_msg_to_smc_with_parameter(hwmgr,
391                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
392                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
393                                 NULL);
394         return 0;
395 }
396
397 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
398 {
399         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
400         struct phm_ppt_v1_information *table_info =
401                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
402         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
403         int max_entry, i;
404
405         max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
406                                                 SMU75_MAX_LEVELS_LINK :
407                                                 pcie_table->count;
408         /* Setup BIF_SCLK levels */
409         for (i = 0; i < max_entry; i++)
410                 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
411         return 0;
412 }
413
414 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
415 {
416         switch (type) {
417         case SMU_UVD_TABLE:
418                 vegam_update_uvd_smc_table(hwmgr);
419                 break;
420         case SMU_VCE_TABLE:
421                 vegam_update_vce_smc_table(hwmgr);
422                 break;
423         case SMU_BIF_TABLE:
424                 vegam_update_bif_smc_table(hwmgr);
425                 break;
426         default:
427                 break;
428         }
429         return 0;
430 }
431
432 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
433 {
434         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
435         struct  phm_ppt_v1_information *table_info =
436                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
437
438         if (table_info &&
439                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
440                         table_info->cac_dtp_table->usPowerTuneDataSetID)
441                 smu_data->power_tune_defaults =
442                                 &vegam_power_tune_data_set_array
443                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
444         else
445                 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
446
447 }
448
449 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
450                         SMU75_Discrete_DpmTable *table)
451 {
452         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
453         uint32_t count, level;
454
455         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
456                 count = data->mvdd_voltage_table.count;
457                 if (count > SMU_MAX_SMIO_LEVELS)
458                         count = SMU_MAX_SMIO_LEVELS;
459                 for (level = 0; level < count; level++) {
460                         table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
461                                         data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
462                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
463                         table->SmioTable2.Pattern[level].Smio =
464                                 (uint8_t) level;
465                         table->Smio[level] |=
466                                 data->mvdd_voltage_table.entries[level].smio_low;
467                 }
468                 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
469
470                 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
471         }
472
473         return 0;
474 }
475
476 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
477                                         struct SMU75_Discrete_DpmTable *table)
478 {
479         uint32_t count, level;
480         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
481
482         count = data->vddci_voltage_table.count;
483
484         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
485                 if (count > SMU_MAX_SMIO_LEVELS)
486                         count = SMU_MAX_SMIO_LEVELS;
487                 for (level = 0; level < count; ++level) {
488                         table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
489                                         data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
490                         table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
491
492                         table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
493                 }
494         }
495
496         table->SmioMask1 = data->vddci_voltage_table.mask_low;
497
498         return 0;
499 }
500
501 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
502                 struct SMU75_Discrete_DpmTable *table)
503 {
504         uint32_t count;
505         uint8_t index;
506         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
507         struct phm_ppt_v1_information *table_info =
508                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
509         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
510                         table_info->vddc_lookup_table;
511         /* tables is already swapped, so in order to use the value from it,
512          * we need to swap it back.
513          * We are populating vddc CAC data to BapmVddc table
514          * in split and merged mode
515          */
516         for (count = 0; count < lookup_table->count; count++) {
517                 index = phm_get_voltage_index(lookup_table,
518                                 data->vddc_voltage_table.entries[count].value);
519                 table->BapmVddcVidLoSidd[count] =
520                                 convert_to_vid(lookup_table->entries[index].us_cac_low);
521                 table->BapmVddcVidHiSidd[count] =
522                                 convert_to_vid(lookup_table->entries[index].us_cac_mid);
523                 table->BapmVddcVidHiSidd2[count] =
524                                 convert_to_vid(lookup_table->entries[index].us_cac_high);
525         }
526
527         return 0;
528 }
529
530 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
531                 struct SMU75_Discrete_DpmTable *table)
532 {
533         vegam_populate_smc_vddci_table(hwmgr, table);
534         vegam_populate_smc_mvdd_table(hwmgr, table);
535         vegam_populate_cac_table(hwmgr, table);
536
537         return 0;
538 }
539
540 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
541                 struct SMU75_Discrete_Ulv *state)
542 {
543         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
544         struct phm_ppt_v1_information *table_info =
545                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
546
547         state->CcPwrDynRm = 0;
548         state->CcPwrDynRm1 = 0;
549
550         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
551         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
552                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
553
554         state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
555
556         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
557         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
558         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
559
560         return 0;
561 }
562
563 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
564                 struct SMU75_Discrete_DpmTable *table)
565 {
566         return vegam_populate_ulv_level(hwmgr, &table->Ulv);
567 }
568
569 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
570                 struct SMU75_Discrete_DpmTable *table)
571 {
572         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
573         struct vegam_smumgr *smu_data =
574                         (struct vegam_smumgr *)(hwmgr->smu_backend);
575         struct smu7_dpm_table *dpm_table = &data->dpm_table;
576         int i;
577
578         /* Index (dpm_table->pcie_speed_table.count)
579          * is reserved for PCIE boot level. */
580         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
581                 table->LinkLevel[i].PcieGenSpeed  =
582                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
583                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
584                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
585                 table->LinkLevel[i].EnabledForActivity = 1;
586                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
587                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
588                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
589         }
590
591         smu_data->smc_state_table.LinkLevelCount =
592                         (uint8_t)dpm_table->pcie_speed_table.count;
593
594 /* To Do move to hwmgr */
595         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
596                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
597
598         return 0;
599 }
600
601 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
602                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
603                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
604 {
605         uint32_t i;
606         uint16_t vddci;
607         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
608
609         *voltage = *mvdd = 0;
610
611         /* clock - voltage dependency table is empty table */
612         if (dep_table->count == 0)
613                 return -EINVAL;
614
615         for (i = 0; i < dep_table->count; i++) {
616                 /* find first sclk bigger than request */
617                 if (dep_table->entries[i].clk >= clock) {
618                         *voltage |= (dep_table->entries[i].vddc *
619                                         VOLTAGE_SCALE) << VDDC_SHIFT;
620                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
621                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
622                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
623                         else if (dep_table->entries[i].vddci)
624                                 *voltage |= (dep_table->entries[i].vddci *
625                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
626                         else {
627                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
628                                                 (dep_table->entries[i].vddc -
629                                                                 (uint16_t)VDDC_VDDCI_DELTA));
630                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
631                         }
632
633                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
634                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
635                                         VOLTAGE_SCALE;
636                         else if (dep_table->entries[i].mvdd)
637                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
638                                         VOLTAGE_SCALE;
639
640                         *voltage |= 1 << PHASES_SHIFT;
641                         return 0;
642                 }
643         }
644
645         /* sclk is bigger than max sclk in the dependence table */
646         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
647
648         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
649                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
650                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
651         else if (dep_table->entries[i - 1].vddci)
652                 *voltage |= (dep_table->entries[i - 1].vddci *
653                                 VOLTAGE_SCALE) << VDDC_SHIFT;
654         else {
655                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
656                                 (dep_table->entries[i - 1].vddc -
657                                                 (uint16_t)VDDC_VDDCI_DELTA));
658
659                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
660         }
661
662         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
663                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
664         else if (dep_table->entries[i].mvdd)
665                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
666
667         return 0;
668 }
669
670 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
671                                    SMU75_Discrete_DpmTable  *table)
672 {
673         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
674         uint32_t i, ref_clk;
675
676         struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
677
678         ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
679
680         if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
681                 for (i = 0; i < NUM_SCLK_RANGE; i++) {
682                         table->SclkFcwRangeTable[i].vco_setting =
683                                         range_table_from_vbios.entry[i].ucVco_setting;
684                         table->SclkFcwRangeTable[i].postdiv =
685                                         range_table_from_vbios.entry[i].ucPostdiv;
686                         table->SclkFcwRangeTable[i].fcw_pcc =
687                                         range_table_from_vbios.entry[i].usFcw_pcc;
688
689                         table->SclkFcwRangeTable[i].fcw_trans_upper =
690                                         range_table_from_vbios.entry[i].usFcw_trans_upper;
691                         table->SclkFcwRangeTable[i].fcw_trans_lower =
692                                         range_table_from_vbios.entry[i].usRcw_trans_lower;
693
694                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
695                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
696                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
697                 }
698                 return;
699         }
700
701         for (i = 0; i < NUM_SCLK_RANGE; i++) {
702                 smu_data->range_table[i].trans_lower_frequency =
703                                 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
704                 smu_data->range_table[i].trans_upper_frequency =
705                                 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
706
707                 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
708                 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
709                 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
710
711                 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
712                 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
713
714                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
715                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
716                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
717         }
718 }
719
720 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
721                 uint32_t clock, SMU_SclkSetting *sclk_setting)
722 {
723         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
724         const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
725         struct pp_atomctrl_clock_dividers_ai dividers;
726         uint32_t ref_clock;
727         uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
728         uint8_t i;
729         int result;
730         uint64_t temp;
731
732         sclk_setting->SclkFrequency = clock;
733         /* get the engine clock dividers for this clock value */
734         result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
735         if (result == 0) {
736                 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
737                 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
738                 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
739                 sclk_setting->PllRange = dividers.ucSclkPllRange;
740                 sclk_setting->Sclk_slew_rate = 0x400;
741                 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
742                 sclk_setting->Pcc_down_slew_rate = 0xffff;
743                 sclk_setting->SSc_En = dividers.ucSscEnable;
744                 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
745                 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
746                 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
747                 return result;
748         }
749
750         ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
751
752         for (i = 0; i < NUM_SCLK_RANGE; i++) {
753                 if (clock > smu_data->range_table[i].trans_lower_frequency
754                 && clock <= smu_data->range_table[i].trans_upper_frequency) {
755                         sclk_setting->PllRange = i;
756                         break;
757                 }
758         }
759
760         sclk_setting->Fcw_int = (uint16_t)
761                         ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
762                                         ref_clock);
763         temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
764         temp <<= 0x10;
765         do_div(temp, ref_clock);
766         sclk_setting->Fcw_frac = temp & 0xffff;
767
768         pcc_target_percent = 10; /*  Hardcode 10% for now. */
769         pcc_target_freq = clock - (clock * pcc_target_percent / 100);
770         sclk_setting->Pcc_fcw_int = (uint16_t)
771                         ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
772                                         ref_clock);
773
774         ss_target_percent = 2; /*  Hardcode 2% for now. */
775         sclk_setting->SSc_En = 0;
776         if (ss_target_percent) {
777                 sclk_setting->SSc_En = 1;
778                 ss_target_freq = clock - (clock * ss_target_percent / 100);
779                 sclk_setting->Fcw1_int = (uint16_t)
780                                 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
781                                                 ref_clock);
782                 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
783                 temp <<= 0x10;
784                 do_div(temp, ref_clock);
785                 sclk_setting->Fcw1_frac = temp & 0xffff;
786         }
787
788         return 0;
789 }
790
791 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
792                 uint32_t clock_insr)
793 {
794         uint8_t i;
795         uint32_t temp;
796         uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
797
798         PP_ASSERT_WITH_CODE((clock >= min),
799                         "Engine clock can't satisfy stutter requirement!",
800                         return 0);
801         for (i = 31;  ; i--) {
802                 temp = clock / (i + 1);
803
804                 if (temp >= min || i == 0)
805                         break;
806         }
807         return i;
808 }
809
810 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
811                 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
812 {
813         int result;
814         /* PP_Clocks minClocks; */
815         uint32_t mvdd;
816         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
817         struct phm_ppt_v1_information *table_info =
818                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
819         SMU_SclkSetting curr_sclk_setting = { 0 };
820
821         result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
822
823         /* populate graphics levels */
824         result = vegam_get_dependency_volt_by_clk(hwmgr,
825                         table_info->vdd_dep_on_sclk, clock,
826                         &level->MinVoltage, &mvdd);
827
828         PP_ASSERT_WITH_CODE((0 == result),
829                         "can not find VDDC voltage value for "
830                         "VDDC engine clock dependency table",
831                         return result);
832         level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
833
834         level->CcPwrDynRm = 0;
835         level->CcPwrDynRm1 = 0;
836         level->EnabledForActivity = 0;
837         level->EnabledForThrottle = 1;
838         level->VoltageDownHyst = 0;
839         level->PowerThrottle = 0;
840         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
841
842         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
843                 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
844                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
845
846         level->SclkSetting = curr_sclk_setting;
847
848         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
849         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
850         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
851         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
852         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
853         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
854         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
855         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
856         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
857         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
858         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
859         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
860         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
861         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
862         return 0;
863 }
864
865 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
866 {
867         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
868         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
869         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
870         struct phm_ppt_v1_information *table_info =
871                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
872         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
873         uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
874         int result = 0;
875         uint32_t array = smu_data->smu7_data.dpm_table_start +
876                         offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
877         uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
878                         SMU75_MAX_LEVELS_GRAPHICS;
879         struct SMU75_Discrete_GraphicsLevel *levels =
880                         smu_data->smc_state_table.GraphicsLevel;
881         uint32_t i, max_entry;
882         uint8_t hightest_pcie_level_enabled = 0,
883                 lowest_pcie_level_enabled = 0,
884                 mid_pcie_level_enabled = 0,
885                 count = 0;
886
887         vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
888
889         for (i = 0; i < dpm_table->sclk_table.count; i++) {
890
891                 result = vegam_populate_single_graphic_level(hwmgr,
892                                 dpm_table->sclk_table.dpm_levels[i].value,
893                                 &(smu_data->smc_state_table.GraphicsLevel[i]));
894                 if (result)
895                         return result;
896
897                 levels[i].UpHyst = (uint8_t)
898                                 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
899                 levels[i].DownHyst = (uint8_t)
900                                 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
901                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
902                 if (i > 1)
903                         levels[i].DeepSleepDivId = 0;
904         }
905         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
906                                         PHM_PlatformCaps_SPLLShutdownSupport))
907                 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
908
909         smu_data->smc_state_table.GraphicsDpmLevelCount =
910                         (uint8_t)dpm_table->sclk_table.count;
911         hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
912                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
913
914         for (i = 0; i < dpm_table->sclk_table.count; i++)
915                 levels[i].EnabledForActivity =
916                                 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
917
918         if (pcie_table != NULL) {
919                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
920                                 "There must be 1 or more PCIE levels defined in PPTable.",
921                                 return -EINVAL);
922                 max_entry = pcie_entry_cnt - 1;
923                 for (i = 0; i < dpm_table->sclk_table.count; i++)
924                         levels[i].pcieDpmLevel =
925                                         (uint8_t) ((i < max_entry) ? i : max_entry);
926         } else {
927                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
928                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
929                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
930                         hightest_pcie_level_enabled++;
931
932                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
933                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
934                                                 (1 << lowest_pcie_level_enabled)) == 0))
935                         lowest_pcie_level_enabled++;
936
937                 while ((count < hightest_pcie_level_enabled) &&
938                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
939                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
940                         count++;
941
942                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
943                                 hightest_pcie_level_enabled ?
944                                                 (lowest_pcie_level_enabled + 1 + count) :
945                                                 hightest_pcie_level_enabled;
946
947                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
948                 for (i = 2; i < dpm_table->sclk_table.count; i++)
949                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
950
951                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
952                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
953
954                 /* set pcieDpmLevel to mid_pcie_level_enabled */
955                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
956         }
957         /* level count will send to smc once at init smc table and never change */
958         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
959                         (uint32_t)array_size, SMC_RAM_END);
960
961         return result;
962 }
963
964 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
965                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
966 {
967         struct pp_atomctrl_memory_clock_param_ai mpll_param;
968
969         PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
970                         clock, &mpll_param),
971                         "Failed to retrieve memory pll parameter.",
972                         return -EINVAL);
973
974         mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
975         mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
976         mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
977         mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
978
979         return 0;
980 }
981
982 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
983                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
984 {
985         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
986         struct phm_ppt_v1_information *table_info =
987                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
988         int result = 0;
989         uint32_t mclk_stutter_mode_threshold = 60000;
990
991
992         if (table_info->vdd_dep_on_mclk) {
993                 result = vegam_get_dependency_volt_by_clk(hwmgr,
994                                 table_info->vdd_dep_on_mclk, clock,
995                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
996                 PP_ASSERT_WITH_CODE(!result,
997                                 "can not find MinVddc voltage value from memory "
998                                 "VDDC voltage dependency table", return result);
999         }
1000
1001         result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1002         PP_ASSERT_WITH_CODE(!result,
1003                         "Failed to calculate mclk params.",
1004                         return -EINVAL);
1005
1006         mem_level->EnabledForThrottle = 1;
1007         mem_level->EnabledForActivity = 0;
1008         mem_level->VoltageDownHyst = 0;
1009         mem_level->ActivityLevel = (uint16_t)
1010                         (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1011         mem_level->StutterEnable = false;
1012         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1013
1014         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1015         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1016
1017         if (mclk_stutter_mode_threshold &&
1018                 (clock <= mclk_stutter_mode_threshold) &&
1019                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1020                                 STUTTER_ENABLE) & 0x1))
1021                 mem_level->StutterEnable = true;
1022
1023         if (!result) {
1024                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1025                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1026                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1027                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1028                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1029                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1030         }
1031
1032         return result;
1033 }
1034
1035 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1036 {
1037         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1038         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1039         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1040         int result;
1041         /* populate MCLK dpm table to SMU7 */
1042         uint32_t array = smu_data->smu7_data.dpm_table_start +
1043                         offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1044         uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1045                         SMU75_MAX_LEVELS_MEMORY;
1046         struct SMU75_Discrete_MemoryLevel *levels =
1047                         smu_data->smc_state_table.MemoryLevel;
1048         uint32_t i;
1049
1050         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1051                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1052                                 "can not populate memory level as memory clock is zero",
1053                                 return -EINVAL);
1054                 result = vegam_populate_single_memory_level(hwmgr,
1055                                 dpm_table->mclk_table.dpm_levels[i].value,
1056                                 &levels[i]);
1057
1058                 if (result)
1059                         return result;
1060
1061                 levels[i].UpHyst = (uint8_t)
1062                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1063                 levels[i].DownHyst = (uint8_t)
1064                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1065         }
1066
1067         smu_data->smc_state_table.MemoryDpmLevelCount =
1068                         (uint8_t)dpm_table->mclk_table.count;
1069         hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1070                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1071
1072         for (i = 0; i < dpm_table->mclk_table.count; i++)
1073                 levels[i].EnabledForActivity =
1074                                 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1075
1076         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1077                         PPSMC_DISPLAY_WATERMARK_HIGH;
1078
1079         /* level count will send to smc once at init smc table and never change */
1080         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1081                         (uint32_t)array_size, SMC_RAM_END);
1082
1083         return result;
1084 }
1085
1086 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1087                 uint32_t mclk, SMIO_Pattern *smio_pat)
1088 {
1089         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1090         struct phm_ppt_v1_information *table_info =
1091                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1092         uint32_t i = 0;
1093
1094         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1095                 /* find mvdd value which clock is more than request */
1096                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1097                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1098                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1099                                 break;
1100                         }
1101                 }
1102                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1103                                 "MVDD Voltage is outside the supported range.",
1104                                 return -EINVAL);
1105         } else
1106                 return -EINVAL;
1107
1108         return 0;
1109 }
1110
1111 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1112                 SMU75_Discrete_DpmTable *table)
1113 {
1114         int result = 0;
1115         uint32_t sclk_frequency;
1116         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1117         struct phm_ppt_v1_information *table_info =
1118                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1119         SMIO_Pattern vol_level;
1120         uint32_t mvdd;
1121
1122         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1123
1124         /* Get MinVoltage and Frequency from DPM0,
1125          * already converted to SMC_UL */
1126         sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1127         result = vegam_get_dependency_volt_by_clk(hwmgr,
1128                         table_info->vdd_dep_on_sclk,
1129                         sclk_frequency,
1130                         &table->ACPILevel.MinVoltage, &mvdd);
1131         PP_ASSERT_WITH_CODE(!result,
1132                         "Cannot find ACPI VDDC voltage value "
1133                         "in Clock Dependency Table",
1134                         );
1135
1136         result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1137                         &(table->ACPILevel.SclkSetting));
1138         PP_ASSERT_WITH_CODE(!result,
1139                         "Error retrieving Engine Clock dividers from VBIOS.",
1140                         return result);
1141
1142         table->ACPILevel.DeepSleepDivId = 0;
1143         table->ACPILevel.CcPwrDynRm = 0;
1144         table->ACPILevel.CcPwrDynRm1 = 0;
1145
1146         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1147         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1148         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1149         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1150
1151         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1152         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1153         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1154         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1155         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1156         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1157         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1158         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1159         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1160         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1161
1162
1163         /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1164         table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1165         result = vegam_get_dependency_volt_by_clk(hwmgr,
1166                         table_info->vdd_dep_on_mclk,
1167                         table->MemoryACPILevel.MclkFrequency,
1168                         &table->MemoryACPILevel.MinVoltage, &mvdd);
1169         PP_ASSERT_WITH_CODE((0 == result),
1170                         "Cannot find ACPI VDDCI voltage value "
1171                         "in Clock Dependency Table",
1172                         );
1173
1174         if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1175                 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1176         else
1177                 table->MemoryACPILevel.MinMvdd = 0;
1178
1179         table->MemoryACPILevel.StutterEnable = false;
1180
1181         table->MemoryACPILevel.EnabledForThrottle = 0;
1182         table->MemoryACPILevel.EnabledForActivity = 0;
1183         table->MemoryACPILevel.UpHyst = 0;
1184         table->MemoryACPILevel.DownHyst = 100;
1185         table->MemoryACPILevel.VoltageDownHyst = 0;
1186         table->MemoryACPILevel.ActivityLevel =
1187                 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1188
1189         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1190         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1191
1192         return result;
1193 }
1194
1195 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1196                 SMU75_Discrete_DpmTable *table)
1197 {
1198         int result = -EINVAL;
1199         uint8_t count;
1200         struct pp_atomctrl_clock_dividers_vi dividers;
1201         struct phm_ppt_v1_information *table_info =
1202                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1203         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1204                         table_info->mm_dep_table;
1205         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1206         uint32_t vddci;
1207
1208         table->VceLevelCount = (uint8_t)(mm_table->count);
1209         table->VceBootLevel = 0;
1210
1211         for (count = 0; count < table->VceLevelCount; count++) {
1212                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1213                 table->VceLevel[count].MinVoltage = 0;
1214                 table->VceLevel[count].MinVoltage |=
1215                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1216
1217                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1218                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1219                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1220                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1221                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1222                 else
1223                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1224
1225
1226                 table->VceLevel[count].MinVoltage |=
1227                                 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1228                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1229
1230                 /*retrieve divider value for VBIOS */
1231                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1232                                 table->VceLevel[count].Frequency, &dividers);
1233                 PP_ASSERT_WITH_CODE((0 == result),
1234                                 "can not find divide id for VCE engine clock",
1235                                 return result);
1236
1237                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1238
1239                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1240                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1241         }
1242         return result;
1243 }
1244
1245 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1246                 int32_t eng_clock, int32_t mem_clock,
1247                 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1248 {
1249         uint32_t dram_timing;
1250         uint32_t dram_timing2;
1251         uint32_t burst_time;
1252         uint32_t rfsh_rate;
1253         uint32_t misc3;
1254
1255         int result;
1256
1257         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1258                         eng_clock, mem_clock);
1259         PP_ASSERT_WITH_CODE(result == 0,
1260                         "Error calling VBIOS to set DRAM_TIMING.",
1261                         return result);
1262
1263         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1264         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1265         burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1266         rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1267         misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1268
1269         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1270         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1271         arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1272         arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1273         arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1274
1275         return 0;
1276 }
1277
1278 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1279 {
1280         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1281         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1282         struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1283         uint32_t i, j;
1284         int result = 0;
1285
1286         memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1287
1288         for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1289                 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1290                         result = vegam_populate_memory_timing_parameters(hwmgr,
1291                                         hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1292                                         hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1293                                         &arb_regs.entries[i][j]);
1294                         if (result)
1295                                 return result;
1296                 }
1297         }
1298
1299         result = smu7_copy_bytes_to_smc(
1300                         hwmgr,
1301                         smu_data->smu7_data.arb_table_start,
1302                         (uint8_t *)&arb_regs,
1303                         sizeof(SMU75_Discrete_MCArbDramTimingTable),
1304                         SMC_RAM_END);
1305         return result;
1306 }
1307
1308 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1309                 struct SMU75_Discrete_DpmTable *table)
1310 {
1311         int result = -EINVAL;
1312         uint8_t count;
1313         struct pp_atomctrl_clock_dividers_vi dividers;
1314         struct phm_ppt_v1_information *table_info =
1315                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1316         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1317                         table_info->mm_dep_table;
1318         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1319         uint32_t vddci;
1320
1321         table->UvdLevelCount = (uint8_t)(mm_table->count);
1322         table->UvdBootLevel = 0;
1323
1324         for (count = 0; count < table->UvdLevelCount; count++) {
1325                 table->UvdLevel[count].MinVoltage = 0;
1326                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1327                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1328                 table->UvdLevel[count].MinVoltage |=
1329                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1330
1331                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1332                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1333                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1334                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1335                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1336                 else
1337                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1338
1339                 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1340                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1341
1342                 /* retrieve divider value for VBIOS */
1343                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1344                                 table->UvdLevel[count].VclkFrequency, &dividers);
1345                 PP_ASSERT_WITH_CODE((0 == result),
1346                                 "can not find divide id for Vclk clock", return result);
1347
1348                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1349
1350                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1351                                 table->UvdLevel[count].DclkFrequency, &dividers);
1352                 PP_ASSERT_WITH_CODE((0 == result),
1353                                 "can not find divide id for Dclk clock", return result);
1354
1355                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1356
1357                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1358                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1359                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1360         }
1361
1362         return result;
1363 }
1364
1365 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1366                 struct SMU75_Discrete_DpmTable *table)
1367 {
1368         int result = 0;
1369         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1370
1371         table->GraphicsBootLevel = 0;
1372         table->MemoryBootLevel = 0;
1373
1374         /* find boot level from dpm table */
1375         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1376                         data->vbios_boot_state.sclk_bootup_value,
1377                         (uint32_t *)&(table->GraphicsBootLevel));
1378         if (result)
1379                 return result;
1380
1381         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1382                         data->vbios_boot_state.mclk_bootup_value,
1383                         (uint32_t *)&(table->MemoryBootLevel));
1384
1385         if (result)
1386                 return result;
1387
1388         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1389                         VOLTAGE_SCALE;
1390         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1391                         VOLTAGE_SCALE;
1392         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1393                         VOLTAGE_SCALE;
1394
1395         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1396         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1397         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1398
1399         return 0;
1400 }
1401
1402 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1403 {
1404         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1405         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1406         struct phm_ppt_v1_information *table_info =
1407                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1408         uint8_t count, level;
1409
1410         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1411
1412         for (level = 0; level < count; level++) {
1413                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1414                                 hw_data->vbios_boot_state.sclk_bootup_value) {
1415                         smu_data->smc_state_table.GraphicsBootLevel = level;
1416                         break;
1417                 }
1418         }
1419
1420         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1421         for (level = 0; level < count; level++) {
1422                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1423                                 hw_data->vbios_boot_state.mclk_bootup_value) {
1424                         smu_data->smc_state_table.MemoryBootLevel = level;
1425                         break;
1426                 }
1427         }
1428
1429         return 0;
1430 }
1431
1432 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1433 {
1434         uint32_t tmp;
1435         tmp = raw_setting * 4096 / 100;
1436         return (uint16_t)tmp;
1437 }
1438
1439 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1440 {
1441         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1442
1443         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1444         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1445         struct phm_ppt_v1_information *table_info =
1446                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1447         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1448         struct pp_advance_fan_control_parameters *fan_table =
1449                         &hwmgr->thermal_controller.advanceFanControlParameters;
1450         int i, j, k;
1451         const uint16_t *pdef1;
1452         const uint16_t *pdef2;
1453
1454         table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1455         table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1456
1457         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1458                                 "Target Operating Temp is out of Range!",
1459                                 );
1460
1461         table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1462                         cac_dtp_table->usTargetOperatingTemp * 256);
1463         table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1464                         cac_dtp_table->usTemperatureLimitHotspot * 256);
1465         table->FanGainEdge = PP_HOST_TO_SMC_US(
1466                         scale_fan_gain_settings(fan_table->usFanGainEdge));
1467         table->FanGainHotspot = PP_HOST_TO_SMC_US(
1468                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
1469
1470         pdef1 = defaults->BAPMTI_R;
1471         pdef2 = defaults->BAPMTI_RC;
1472
1473         for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1474                 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1475                         for (k = 0; k < SMU75_DTE_SINKS; k++) {
1476                                 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1477                                 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1478                                 pdef1++;
1479                                 pdef2++;
1480                         }
1481                 }
1482         }
1483
1484         return 0;
1485 }
1486
1487 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1488 {
1489         uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1490         struct vegam_smumgr *smu_data =
1491                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1492
1493         uint8_t i, stretch_amount, volt_offset = 0;
1494         struct phm_ppt_v1_information *table_info =
1495                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1496         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1497                         table_info->vdd_dep_on_sclk;
1498         uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1499
1500         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1501
1502         atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1503                         mask, &efuse);
1504
1505         min = 1200;
1506         max = 2500;
1507
1508         ro = efuse * (max - min) / 255 + min;
1509
1510         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1511         for (i = 0; i < sclk_table->count; i++) {
1512                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1513                                 sclk_table->entries[i].cks_enable << i;
1514                 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1515                                 136418 - (ro - 70) * 1000000) /
1516                                 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1517                 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1518                                 3232 - (ro - 65) * 1000000) /
1519                                 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1520
1521                 if (volt_without_cks >= volt_with_cks)
1522                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1523                                         sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1524
1525                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1526         }
1527
1528         smu_data->smc_state_table.LdoRefSel =
1529                         (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1530                         table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1531         /* Populate CKS Lookup Table */
1532         if (!(stretch_amount == 1 || stretch_amount == 2 ||
1533               stretch_amount == 5 || stretch_amount == 3 ||
1534               stretch_amount == 4)) {
1535                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1536                                 PHM_PlatformCaps_ClockStretcher);
1537                 PP_ASSERT_WITH_CODE(false,
1538                                 "Stretch Amount in PPTable not supported\n",
1539                                 return -EINVAL);
1540         }
1541
1542         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1543         value &= 0xFFFFFFFE;
1544         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1545
1546         return 0;
1547 }
1548
1549 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1550 {
1551         uint32_t efuse;
1552
1553         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1554                         ixSMU_EFUSE_0 + (49 * 4));
1555         efuse &= 0x00000001;
1556
1557         if (efuse)
1558                 return true;
1559
1560         return false;
1561 }
1562
1563 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1564 {
1565         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1566         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1567
1568         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1569         int result = 0;
1570         struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1571         AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1572         AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1573         uint32_t tmp, i;
1574
1575         struct phm_ppt_v1_information *table_info =
1576                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1577         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1578                         table_info->vdd_dep_on_sclk;
1579
1580         if (!hwmgr->avfs_supported)
1581                 return 0;
1582
1583         result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1584
1585         if (0 == result) {
1586                 table->BTCGB_VDROOP_TABLE[0].a0 =
1587                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1588                 table->BTCGB_VDROOP_TABLE[0].a1 =
1589                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1590                 table->BTCGB_VDROOP_TABLE[0].a2 =
1591                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1592                 table->BTCGB_VDROOP_TABLE[1].a0 =
1593                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1594                 table->BTCGB_VDROOP_TABLE[1].a1 =
1595                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1596                 table->BTCGB_VDROOP_TABLE[1].a2 =
1597                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1598                 table->AVFSGB_FUSE_TABLE[0].m1 =
1599                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1600                 table->AVFSGB_FUSE_TABLE[0].m2 =
1601                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1602                 table->AVFSGB_FUSE_TABLE[0].b =
1603                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1604                 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1605                 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1606                 table->AVFSGB_FUSE_TABLE[1].m1 =
1607                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1608                 table->AVFSGB_FUSE_TABLE[1].m2 =
1609                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1610                 table->AVFSGB_FUSE_TABLE[1].b =
1611                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1612                 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1613                 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1614                 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1615                 AVFS_meanNsigma.Aconstant[0] =
1616                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1617                 AVFS_meanNsigma.Aconstant[1] =
1618                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1619                 AVFS_meanNsigma.Aconstant[2] =
1620                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1621                 AVFS_meanNsigma.DC_tol_sigma =
1622                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1623                 AVFS_meanNsigma.Platform_mean =
1624                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1625                 AVFS_meanNsigma.PSM_Age_CompFactor =
1626                                 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1627                 AVFS_meanNsigma.Platform_sigma =
1628                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1629
1630                 for (i = 0; i < sclk_table->count; i++) {
1631                         AVFS_meanNsigma.Static_Voltage_Offset[i] =
1632                                         (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1633                         AVFS_SclkOffset.Sclk_Offset[i] =
1634                                         PP_HOST_TO_SMC_US((uint16_t)
1635                                                         (sclk_table->entries[i].sclk_offset) / 100);
1636                 }
1637
1638                 result = smu7_read_smc_sram_dword(hwmgr,
1639                                 SMU7_FIRMWARE_HEADER_LOCATION +
1640                                 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1641                                 &tmp, SMC_RAM_END);
1642                 smu7_copy_bytes_to_smc(hwmgr,
1643                                         tmp,
1644                                         (uint8_t *)&AVFS_meanNsigma,
1645                                         sizeof(AVFS_meanNsigma_t),
1646                                         SMC_RAM_END);
1647
1648                 result = smu7_read_smc_sram_dword(hwmgr,
1649                                 SMU7_FIRMWARE_HEADER_LOCATION +
1650                                 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1651                                 &tmp, SMC_RAM_END);
1652                 smu7_copy_bytes_to_smc(hwmgr,
1653                                         tmp,
1654                                         (uint8_t *)&AVFS_SclkOffset,
1655                                         sizeof(AVFS_Sclk_Offset_t),
1656                                         SMC_RAM_END);
1657
1658                 data->avfs_vdroop_override_setting =
1659                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1660                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1661                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1662                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1663                 data->apply_avfs_cks_off_voltage =
1664                                 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1665         }
1666         return result;
1667 }
1668
1669 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1670                 struct SMU75_Discrete_DpmTable *table)
1671 {
1672         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1673         struct vegam_smumgr *smu_data =
1674                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1675         uint16_t config;
1676
1677         config = VR_MERGED_WITH_VDDC;
1678         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1679
1680         /* Set Vddc Voltage Controller */
1681         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1682                 config = VR_SVI2_PLANE_1;
1683                 table->VRConfig |= config;
1684         } else {
1685                 PP_ASSERT_WITH_CODE(false,
1686                                 "VDDC should be on SVI2 control in merged mode!",
1687                                 );
1688         }
1689         /* Set Vddci Voltage Controller */
1690         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1691                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1692                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1693         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1694                 config = VR_SMIO_PATTERN_1;
1695                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1696         } else {
1697                 config = VR_STATIC_VOLTAGE;
1698                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1699         }
1700         /* Set Mvdd Voltage Controller */
1701         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1702                 if (config != VR_SVI2_PLANE_2) {
1703                         config = VR_SVI2_PLANE_2;
1704                         table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1705                         cgs_write_ind_register(hwmgr->device,
1706                                         CGS_IND_REG__SMC,
1707                                         smu_data->smu7_data.soft_regs_start +
1708                                         offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1709                                         0x1);
1710                 } else {
1711                         PP_ASSERT_WITH_CODE(false,
1712                                         "SVI2 Plane 2 is already taken, set MVDD as Static",);
1713                         config = VR_STATIC_VOLTAGE;
1714                         table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1715                 }
1716         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1717                 config = VR_SMIO_PATTERN_2;
1718                 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1719                 cgs_write_ind_register(hwmgr->device,
1720                                 CGS_IND_REG__SMC,
1721                                 smu_data->smu7_data.soft_regs_start +
1722                                 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1723                                 0x1);
1724         } else {
1725                 config = VR_STATIC_VOLTAGE;
1726                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1727         }
1728
1729         return 0;
1730 }
1731
1732 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1733 {
1734         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1735         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1736
1737         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1738         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1739         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1740         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1741
1742         return 0;
1743 }
1744
1745 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1746 {
1747         uint16_t tdc_limit;
1748         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1749         struct phm_ppt_v1_information *table_info =
1750                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1751         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1752
1753         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1754         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1755                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1756         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1757                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1758         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1759
1760         return 0;
1761 }
1762
1763 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1764 {
1765         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1766         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1767         uint32_t temp;
1768
1769         if (smu7_read_smc_sram_dword(hwmgr,
1770                         fuse_table_offset +
1771                         offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1772                         (uint32_t *)&temp, SMC_RAM_END))
1773                 PP_ASSERT_WITH_CODE(false,
1774                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1775                                 return -EINVAL);
1776         else {
1777                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1778                 smu_data->power_tune_table.LPMLTemperatureMin =
1779                                 (uint8_t)((temp >> 16) & 0xff);
1780                 smu_data->power_tune_table.LPMLTemperatureMax =
1781                                 (uint8_t)((temp >> 8) & 0xff);
1782                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1783         }
1784         return 0;
1785 }
1786
1787 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1788 {
1789         int i;
1790         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1791
1792         /* Currently not used. Set all to zero. */
1793         for (i = 0; i < 16; i++)
1794                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1795
1796         return 0;
1797 }
1798
1799 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1800 {
1801         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1802
1803 /* TO DO move to hwmgr */
1804         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1805                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1806                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1807                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1808
1809         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1810                                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1811         return 0;
1812 }
1813
1814 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1815 {
1816         int i;
1817         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1818
1819         /* Currently not used. Set all to zero. */
1820         for (i = 0; i < 16; i++)
1821                 smu_data->power_tune_table.GnbLPML[i] = 0;
1822
1823         return 0;
1824 }
1825
1826 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1827 {
1828         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1829         struct phm_ppt_v1_information *table_info =
1830                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1831         uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1832         uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1833         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1834
1835         hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1836         lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1837
1838         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1839                         CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1840         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1841                         CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1842
1843         return 0;
1844 }
1845
1846 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1847 {
1848         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1849         uint32_t pm_fuse_table_offset;
1850
1851         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1852                         PHM_PlatformCaps_PowerContainment)) {
1853                 if (smu7_read_smc_sram_dword(hwmgr,
1854                                 SMU7_FIRMWARE_HEADER_LOCATION +
1855                                 offsetof(SMU75_Firmware_Header, PmFuseTable),
1856                                 &pm_fuse_table_offset, SMC_RAM_END))
1857                         PP_ASSERT_WITH_CODE(false,
1858                                         "Attempt to get pm_fuse_table_offset Failed!",
1859                                         return -EINVAL);
1860
1861                 if (vegam_populate_svi_load_line(hwmgr))
1862                         PP_ASSERT_WITH_CODE(false,
1863                                         "Attempt to populate SviLoadLine Failed!",
1864                                         return -EINVAL);
1865
1866                 if (vegam_populate_tdc_limit(hwmgr))
1867                         PP_ASSERT_WITH_CODE(false,
1868                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
1869
1870                 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1871                         PP_ASSERT_WITH_CODE(false,
1872                                         "Attempt to populate TdcWaterfallCtl, "
1873                                         "LPMLTemperature Min and Max Failed!",
1874                                         return -EINVAL);
1875
1876                 if (0 != vegam_populate_temperature_scaler(hwmgr))
1877                         PP_ASSERT_WITH_CODE(false,
1878                                         "Attempt to populate LPMLTemperatureScaler Failed!",
1879                                         return -EINVAL);
1880
1881                 if (vegam_populate_fuzzy_fan(hwmgr))
1882                         PP_ASSERT_WITH_CODE(false,
1883                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
1884                                         return -EINVAL);
1885
1886                 if (vegam_populate_gnb_lpml(hwmgr))
1887                         PP_ASSERT_WITH_CODE(false,
1888                                         "Attempt to populate GnbLPML Failed!",
1889                                         return -EINVAL);
1890
1891                 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1892                         PP_ASSERT_WITH_CODE(false,
1893                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1894                                         "Sidd Failed!", return -EINVAL);
1895
1896                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1897                                 (uint8_t *)&smu_data->power_tune_table,
1898                                 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1899                                 SMC_RAM_END))
1900                         PP_ASSERT_WITH_CODE(false,
1901                                         "Attempt to download PmFuseTable Failed!",
1902                                         return -EINVAL);
1903         }
1904         return 0;
1905 }
1906
1907 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1908 {
1909         struct amdgpu_device *adev = hwmgr->adev;
1910
1911         smum_send_msg_to_smc_with_parameter(hwmgr,
1912                                             PPSMC_MSG_EnableModeSwitchRLCNotification,
1913                                             adev->gfx.cu_info.number,
1914                                             NULL);
1915
1916         return 0;
1917 }
1918
1919 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1920 {
1921         int result;
1922         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1923         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1924
1925         struct phm_ppt_v1_information *table_info =
1926                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1927         struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1928         uint8_t i;
1929         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1930         struct phm_ppt_v1_gpio_table *gpio_table =
1931                         (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1932         pp_atomctrl_clock_dividers_vi dividers;
1933
1934         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1935                         PHM_PlatformCaps_AutomaticDCTransition);
1936
1937         vegam_initialize_power_tune_defaults(hwmgr);
1938
1939         if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1940                 vegam_populate_smc_voltage_tables(hwmgr, table);
1941
1942         table->SystemFlags = 0;
1943         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1944                         PHM_PlatformCaps_AutomaticDCTransition))
1945                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1946
1947         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1948                         PHM_PlatformCaps_StepVddc))
1949                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1950
1951         if (hw_data->is_memory_gddr5)
1952                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1953
1954         if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1955                 result = vegam_populate_ulv_state(hwmgr, table);
1956                 PP_ASSERT_WITH_CODE(!result,
1957                                 "Failed to initialize ULV state!", return result);
1958                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1959                                 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1960         }
1961
1962         result = vegam_populate_smc_link_level(hwmgr, table);
1963         PP_ASSERT_WITH_CODE(!result,
1964                         "Failed to initialize Link Level!", return result);
1965
1966         result = vegam_populate_all_graphic_levels(hwmgr);
1967         PP_ASSERT_WITH_CODE(!result,
1968                         "Failed to initialize Graphics Level!", return result);
1969
1970         result = vegam_populate_all_memory_levels(hwmgr);
1971         PP_ASSERT_WITH_CODE(!result,
1972                         "Failed to initialize Memory Level!", return result);
1973
1974         result = vegam_populate_smc_acpi_level(hwmgr, table);
1975         PP_ASSERT_WITH_CODE(!result,
1976                         "Failed to initialize ACPI Level!", return result);
1977
1978         result = vegam_populate_smc_vce_level(hwmgr, table);
1979         PP_ASSERT_WITH_CODE(!result,
1980                         "Failed to initialize VCE Level!", return result);
1981
1982         /* Since only the initial state is completely set up at this point
1983          * (the other states are just copies of the boot state) we only
1984          * need to populate the  ARB settings for the initial state.
1985          */
1986         result = vegam_program_memory_timing_parameters(hwmgr);
1987         PP_ASSERT_WITH_CODE(!result,
1988                         "Failed to Write ARB settings for the initial state.", return result);
1989
1990         result = vegam_populate_smc_uvd_level(hwmgr, table);
1991         PP_ASSERT_WITH_CODE(!result,
1992                         "Failed to initialize UVD Level!", return result);
1993
1994         result = vegam_populate_smc_boot_level(hwmgr, table);
1995         PP_ASSERT_WITH_CODE(!result,
1996                         "Failed to initialize Boot Level!", return result);
1997
1998         result = vegam_populate_smc_initial_state(hwmgr);
1999         PP_ASSERT_WITH_CODE(!result,
2000                         "Failed to initialize Boot State!", return result);
2001
2002         result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2003         PP_ASSERT_WITH_CODE(!result,
2004                         "Failed to populate BAPM Parameters!", return result);
2005
2006         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2007                         PHM_PlatformCaps_ClockStretcher)) {
2008                 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2009                 PP_ASSERT_WITH_CODE(!result,
2010                                 "Failed to populate Clock Stretcher Data Table!",
2011                                 return result);
2012         }
2013
2014         result = vegam_populate_avfs_parameters(hwmgr);
2015         PP_ASSERT_WITH_CODE(!result,
2016                         "Failed to populate AVFS Parameters!", return result;);
2017
2018         table->CurrSclkPllRange = 0xff;
2019         table->GraphicsVoltageChangeEnable  = 1;
2020         table->GraphicsThermThrottleEnable  = 1;
2021         table->GraphicsInterval = 1;
2022         table->VoltageInterval  = 1;
2023         table->ThermalInterval  = 1;
2024         table->TemperatureLimitHigh =
2025                         table_info->cac_dtp_table->usTargetOperatingTemp *
2026                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027         table->TemperatureLimitLow  =
2028                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2029                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2030         table->MemoryVoltageChangeEnable = 1;
2031         table->MemoryInterval = 1;
2032         table->VoltageResponseTime = 0;
2033         table->PhaseResponseTime = 0;
2034         table->MemoryThermThrottleEnable = 1;
2035
2036         PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2037                         "There must be 1 or more PCIE levels defined in PPTable.",
2038                         return -EINVAL);
2039         table->PCIeBootLinkLevel =
2040                         hw_data->dpm_table.pcie_speed_table.count;
2041         table->PCIeGenInterval = 1;
2042         table->VRConfig = 0;
2043
2044         result = vegam_populate_vr_config(hwmgr, table);
2045         PP_ASSERT_WITH_CODE(!result,
2046                         "Failed to populate VRConfig setting!", return result);
2047
2048         table->ThermGpio = 17;
2049         table->SclkStepSize = 0x4000;
2050
2051         if (atomctrl_get_pp_assign_pin(hwmgr,
2052                         VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2053                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2054                 if (gpio_table)
2055                         table->VRHotLevel =
2056                                         table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2057         } else {
2058                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2059                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2060                                 PHM_PlatformCaps_RegulatorHot);
2061         }
2062
2063         if (atomctrl_get_pp_assign_pin(hwmgr,
2064                         PP_AC_DC_SWITCH_GPIO_PINID,     &gpio_pin)) {
2065                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2067                                 PHM_PlatformCaps_AutomaticDCTransition) &&
2068                                 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme, NULL))
2069                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2070                                         PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2071         } else {
2072                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2073                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2074                                 PHM_PlatformCaps_AutomaticDCTransition);
2075         }
2076
2077         /* Thermal Output GPIO */
2078         if (atomctrl_get_pp_assign_pin(hwmgr,
2079                         THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2080                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2081
2082                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2083                  * since VBIOS will program this register to set 'inactive state',
2084                  * driver can then determine 'active state' from this and
2085                  * program SMU with correct polarity
2086                  */
2087                 table->ThermOutPolarity =
2088                                 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2089                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2090                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2091
2092                 /* if required, combine VRHot/PCC with thermal out GPIO */
2093                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094                                 PHM_PlatformCaps_RegulatorHot) &&
2095                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2096                                 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2097                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2098         } else {
2099                 table->ThermOutGpio = 17;
2100                 table->ThermOutPolarity = 1;
2101                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2102         }
2103
2104         /* Populate BIF_SCLK levels into SMC DPM table */
2105         for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2106                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2107                                 smu_data->bif_sclk_table[i], &dividers);
2108                 PP_ASSERT_WITH_CODE(!result,
2109                                 "Can not find DFS divide id for Sclk",
2110                                 return result);
2111
2112                 if (i == 0)
2113                         table->Ulv.BifSclkDfs =
2114                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2115                 else
2116                         table->LinkLevel[i - 1].BifSclkDfs =
2117                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2118         }
2119
2120         for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2121                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2122
2123         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2124         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2125         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2126         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2127         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2128         CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2129         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2130         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2131         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2132         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2133
2134         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2135         result = smu7_copy_bytes_to_smc(hwmgr,
2136                         smu_data->smu7_data.dpm_table_start +
2137                         offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2138                         (uint8_t *)&(table->SystemFlags),
2139                         sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2140                         SMC_RAM_END);
2141         PP_ASSERT_WITH_CODE(!result,
2142                         "Failed to upload dpm data to SMC memory!", return result);
2143
2144         result = vegam_populate_pm_fuses(hwmgr);
2145         PP_ASSERT_WITH_CODE(!result,
2146                         "Failed to  populate PM fuses to SMC memory!", return result);
2147
2148         result = vegam_enable_reconfig_cus(hwmgr);
2149         PP_ASSERT_WITH_CODE(!result,
2150                         "Failed to enable reconfigurable CUs!", return result);
2151
2152         return 0;
2153 }
2154
2155 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2156 {
2157         switch (type) {
2158         case SMU_SoftRegisters:
2159                 switch (member) {
2160                 case HandshakeDisables:
2161                         return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2162                 case VoltageChangeTimeout:
2163                         return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2164                 case AverageGraphicsActivity:
2165                         return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2166                 case AverageMemoryActivity:
2167                         return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2168                 case PreVBlankGap:
2169                         return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2170                 case VBlankTimeout:
2171                         return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2172                 case UcodeLoadStatus:
2173                         return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2174                 case DRAM_LOG_ADDR_H:
2175                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2176                 case DRAM_LOG_ADDR_L:
2177                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2178                 case DRAM_LOG_PHY_ADDR_H:
2179                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2180                 case DRAM_LOG_PHY_ADDR_L:
2181                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2182                 case DRAM_LOG_BUFF_SIZE:
2183                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2184                 }
2185                 break;
2186         case SMU_Discrete_DpmTable:
2187                 switch (member) {
2188                 case UvdBootLevel:
2189                         return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2190                 case VceBootLevel:
2191                         return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2192                 case LowSclkInterruptThreshold:
2193                         return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2194                 }
2195                 break;
2196         }
2197         pr_warn("can't get the offset of type %x member %x\n", type, member);
2198         return 0;
2199 }
2200
2201 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2202 {
2203         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204
2205         if (data->need_update_smu7_dpm_table &
2206                 (DPMTABLE_OD_UPDATE_SCLK +
2207                 DPMTABLE_UPDATE_SCLK +
2208                 DPMTABLE_UPDATE_MCLK))
2209                 return vegam_program_memory_timing_parameters(hwmgr);
2210
2211         return 0;
2212 }
2213
2214 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2215 {
2216         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2217         struct vegam_smumgr *smu_data =
2218                         (struct vegam_smumgr *)(hwmgr->smu_backend);
2219         int result = 0;
2220         uint32_t low_sclk_interrupt_threshold = 0;
2221
2222         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2223                         PHM_PlatformCaps_SclkThrottleLowNotification)
2224             && (data->low_sclk_interrupt_threshold != 0)) {
2225                 low_sclk_interrupt_threshold =
2226                                 data->low_sclk_interrupt_threshold;
2227
2228                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2229
2230                 result = smu7_copy_bytes_to_smc(
2231                                 hwmgr,
2232                                 smu_data->smu7_data.dpm_table_start +
2233                                 offsetof(SMU75_Discrete_DpmTable,
2234                                         LowSclkInterruptThreshold),
2235                                 (uint8_t *)&low_sclk_interrupt_threshold,
2236                                 sizeof(uint32_t),
2237                                 SMC_RAM_END);
2238         }
2239         PP_ASSERT_WITH_CODE((result == 0),
2240                         "Failed to update SCLK threshold!", return result);
2241
2242         result = vegam_program_mem_timing_parameters(hwmgr);
2243         PP_ASSERT_WITH_CODE((result == 0),
2244                         "Failed to program memory timing parameters!",
2245                         );
2246
2247         return result;
2248 }
2249
2250 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2251 {
2252         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253         int ret;
2254
2255         if (!hwmgr->avfs_supported)
2256                 return 0;
2257
2258         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2259         if (!ret) {
2260                 if (data->apply_avfs_cks_off_voltage)
2261                         ret = smum_send_msg_to_smc(hwmgr,
2262                                         PPSMC_MSG_ApplyAvfsCksOffVoltage,
2263                                         NULL);
2264         }
2265
2266         return ret;
2267 }
2268
2269 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2270 {
2271         PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2272                         "VBIOS fan info is not correct!",
2273                         );
2274         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2275                         PHM_PlatformCaps_MicrocodeFanControl);
2276         return 0;
2277 }
2278
2279 const struct pp_smumgr_func vegam_smu_funcs = {
2280         .name = "vegam_smu",
2281         .smu_init = vegam_smu_init,
2282         .smu_fini = smu7_smu_fini,
2283         .start_smu = vegam_start_smu,
2284         .check_fw_load_finish = smu7_check_fw_load_finish,
2285         .request_smu_load_fw = smu7_reload_firmware,
2286         .request_smu_load_specific_fw = NULL,
2287         .send_msg_to_smc = smu7_send_msg_to_smc,
2288         .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2289         .get_argument = smu7_get_argument,
2290         .process_firmware_header = vegam_process_firmware_header,
2291         .is_dpm_running = vegam_is_dpm_running,
2292         .get_mac_definition = vegam_get_mac_definition,
2293         .update_smc_table = vegam_update_smc_table,
2294         .init_smc_table = vegam_init_smc_table,
2295         .get_offsetof = vegam_get_offsetof,
2296         .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2297         .populate_all_memory_levels = vegam_populate_all_memory_levels,
2298         .update_sclk_threshold = vegam_update_sclk_threshold,
2299         .is_hw_avfs_present = vegam_is_hw_avfs_present,
2300         .thermal_avfs_enable = vegam_thermal_avfs_enable,
2301         .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2302 };