drm/amd/powerplay: put those exposed power interfaces in amdgpu_dpm.c
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / powerplay / hwmgr / smu_helper.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/pci.h>
25 #include <linux/reboot.h>
26
27 #include "hwmgr.h"
28 #include "pp_debug.h"
29 #include "ppatomctrl.h"
30 #include "ppsmc.h"
31 #include "atom.h"
32 #include "ivsrcid/thm/irqsrcs_thm_9_0.h"
33 #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
34 #include "ivsrcid/ivsrcid_vislands30.h"
35
36 uint8_t convert_to_vid(uint16_t vddc)
37 {
38         return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
39 }
40
41 uint16_t convert_to_vddc(uint8_t vid)
42 {
43         return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
44 }
45
46 int phm_copy_clock_limits_array(
47         struct pp_hwmgr *hwmgr,
48         uint32_t **pptable_info_array,
49         const uint32_t *pptable_array,
50         uint32_t power_saving_clock_count)
51 {
52         uint32_t array_size, i;
53         uint32_t *table;
54
55         array_size = sizeof(uint32_t) * power_saving_clock_count;
56         table = kzalloc(array_size, GFP_KERNEL);
57         if (NULL == table)
58                 return -ENOMEM;
59
60         for (i = 0; i < power_saving_clock_count; i++)
61                 table[i] = le32_to_cpu(pptable_array[i]);
62
63         *pptable_info_array = table;
64
65         return 0;
66 }
67
68 int phm_copy_overdrive_settings_limits_array(
69         struct pp_hwmgr *hwmgr,
70         uint32_t **pptable_info_array,
71         const uint32_t *pptable_array,
72         uint32_t od_setting_count)
73 {
74         uint32_t array_size, i;
75         uint32_t *table;
76
77         array_size = sizeof(uint32_t) * od_setting_count;
78         table = kzalloc(array_size, GFP_KERNEL);
79         if (NULL == table)
80                 return -ENOMEM;
81
82         for (i = 0; i < od_setting_count; i++)
83                 table[i] = le32_to_cpu(pptable_array[i]);
84
85         *pptable_info_array = table;
86
87         return 0;
88 }
89
90 uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
91 {
92         u32 mask = 0;
93         u32 shift = 0;
94
95         shift = (offset % 4) << 3;
96         if (size == sizeof(uint8_t))
97                 mask = 0xFF << shift;
98         else if (size == sizeof(uint16_t))
99                 mask = 0xFFFF << shift;
100
101         original_data &= ~mask;
102         original_data |= (field << shift);
103         return original_data;
104 }
105
106 /**
107  * Returns once the part of the register indicated by the mask has
108  * reached the given value.
109  */
110 int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
111                          uint32_t value, uint32_t mask)
112 {
113         uint32_t i;
114         uint32_t cur_value;
115
116         if (hwmgr == NULL || hwmgr->device == NULL) {
117                 pr_err("Invalid Hardware Manager!");
118                 return -EINVAL;
119         }
120
121         for (i = 0; i < hwmgr->usec_timeout; i++) {
122                 cur_value = cgs_read_register(hwmgr->device, index);
123                 if ((cur_value & mask) == (value & mask))
124                         break;
125                 udelay(1);
126         }
127
128         /* timeout means wrong logic*/
129         if (i == hwmgr->usec_timeout)
130                 return -1;
131         return 0;
132 }
133
134
135 /**
136  * Returns once the part of the register indicated by the mask has
137  * reached the given value.The indirect space is described by giving
138  * the memory-mapped index of the indirect index register.
139  */
140 int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
141                                 uint32_t indirect_port,
142                                 uint32_t index,
143                                 uint32_t value,
144                                 uint32_t mask)
145 {
146         if (hwmgr == NULL || hwmgr->device == NULL) {
147                 pr_err("Invalid Hardware Manager!");
148                 return -EINVAL;
149         }
150
151         cgs_write_register(hwmgr->device, indirect_port, index);
152         return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
153 }
154
155 int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
156                                         uint32_t index,
157                                         uint32_t value, uint32_t mask)
158 {
159         uint32_t i;
160         uint32_t cur_value;
161
162         if (hwmgr == NULL || hwmgr->device == NULL)
163                 return -EINVAL;
164
165         for (i = 0; i < hwmgr->usec_timeout; i++) {
166                 cur_value = cgs_read_register(hwmgr->device,
167                                                                         index);
168                 if ((cur_value & mask) != (value & mask))
169                         break;
170                 udelay(1);
171         }
172
173         /* timeout means wrong logic */
174         if (i == hwmgr->usec_timeout)
175                 return -ETIME;
176         return 0;
177 }
178
179 int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
180                                                 uint32_t indirect_port,
181                                                 uint32_t index,
182                                                 uint32_t value,
183                                                 uint32_t mask)
184 {
185         if (hwmgr == NULL || hwmgr->device == NULL)
186                 return -EINVAL;
187
188         cgs_write_register(hwmgr->device, indirect_port, index);
189         return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
190                                                 value, mask);
191 }
192
193 bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
194 {
195         return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
196 }
197
198 bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
199 {
200         return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
201 }
202
203
204 int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
205 {
206         uint32_t i, j;
207         uint16_t vvalue;
208         bool found = false;
209         struct pp_atomctrl_voltage_table *table;
210
211         PP_ASSERT_WITH_CODE((NULL != vol_table),
212                         "Voltage Table empty.", return -EINVAL);
213
214         table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
215                         GFP_KERNEL);
216
217         if (NULL == table)
218                 return -EINVAL;
219
220         table->mask_low = vol_table->mask_low;
221         table->phase_delay = vol_table->phase_delay;
222
223         for (i = 0; i < vol_table->count; i++) {
224                 vvalue = vol_table->entries[i].value;
225                 found = false;
226
227                 for (j = 0; j < table->count; j++) {
228                         if (vvalue == table->entries[j].value) {
229                                 found = true;
230                                 break;
231                         }
232                 }
233
234                 if (!found) {
235                         table->entries[table->count].value = vvalue;
236                         table->entries[table->count].smio_low =
237                                         vol_table->entries[i].smio_low;
238                         table->count++;
239                 }
240         }
241
242         memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
243         kfree(table);
244         table = NULL;
245         return 0;
246 }
247
248 int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
249                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
250 {
251         uint32_t i;
252         int result;
253
254         PP_ASSERT_WITH_CODE((0 != dep_table->count),
255                         "Voltage Dependency Table empty.", return -EINVAL);
256
257         PP_ASSERT_WITH_CODE((NULL != vol_table),
258                         "vol_table empty.", return -EINVAL);
259
260         vol_table->mask_low = 0;
261         vol_table->phase_delay = 0;
262         vol_table->count = dep_table->count;
263
264         for (i = 0; i < dep_table->count; i++) {
265                 vol_table->entries[i].value = dep_table->entries[i].mvdd;
266                 vol_table->entries[i].smio_low = 0;
267         }
268
269         result = phm_trim_voltage_table(vol_table);
270         PP_ASSERT_WITH_CODE((0 == result),
271                         "Failed to trim MVDD table.", return result);
272
273         return 0;
274 }
275
276 int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
277                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
278 {
279         uint32_t i;
280         int result;
281
282         PP_ASSERT_WITH_CODE((0 != dep_table->count),
283                         "Voltage Dependency Table empty.", return -EINVAL);
284
285         PP_ASSERT_WITH_CODE((NULL != vol_table),
286                         "vol_table empty.", return -EINVAL);
287
288         vol_table->mask_low = 0;
289         vol_table->phase_delay = 0;
290         vol_table->count = dep_table->count;
291
292         for (i = 0; i < dep_table->count; i++) {
293                 vol_table->entries[i].value = dep_table->entries[i].vddci;
294                 vol_table->entries[i].smio_low = 0;
295         }
296
297         result = phm_trim_voltage_table(vol_table);
298         PP_ASSERT_WITH_CODE((0 == result),
299                         "Failed to trim VDDCI table.", return result);
300
301         return 0;
302 }
303
304 int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
305                 phm_ppt_v1_voltage_lookup_table *lookup_table)
306 {
307         int i = 0;
308
309         PP_ASSERT_WITH_CODE((0 != lookup_table->count),
310                         "Voltage Lookup Table empty.", return -EINVAL);
311
312         PP_ASSERT_WITH_CODE((NULL != vol_table),
313                         "vol_table empty.", return -EINVAL);
314
315         vol_table->mask_low = 0;
316         vol_table->phase_delay = 0;
317
318         vol_table->count = lookup_table->count;
319
320         for (i = 0; i < vol_table->count; i++) {
321                 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
322                 vol_table->entries[i].smio_low = 0;
323         }
324
325         return 0;
326 }
327
328 void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
329                                 struct pp_atomctrl_voltage_table *vol_table)
330 {
331         unsigned int i, diff;
332
333         if (vol_table->count <= max_vol_steps)
334                 return;
335
336         diff = vol_table->count - max_vol_steps;
337
338         for (i = 0; i < max_vol_steps; i++)
339                 vol_table->entries[i] = vol_table->entries[i + diff];
340
341         vol_table->count = max_vol_steps;
342
343         return;
344 }
345
346 int phm_reset_single_dpm_table(void *table,
347                                 uint32_t count, int max)
348 {
349         int i;
350
351         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
352
353         dpm_table->count = count > max ? max : count;
354
355         for (i = 0; i < dpm_table->count; i++)
356                 dpm_table->dpm_level[i].enabled = false;
357
358         return 0;
359 }
360
361 void phm_setup_pcie_table_entry(
362         void *table,
363         uint32_t index, uint32_t pcie_gen,
364         uint32_t pcie_lanes)
365 {
366         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
367         dpm_table->dpm_level[index].value = pcie_gen;
368         dpm_table->dpm_level[index].param1 = pcie_lanes;
369         dpm_table->dpm_level[index].enabled = 1;
370 }
371
372 int32_t phm_get_dpm_level_enable_mask_value(void *table)
373 {
374         int32_t i;
375         int32_t mask = 0;
376         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
377
378         for (i = dpm_table->count; i > 0; i--) {
379                 mask = mask << 1;
380                 if (dpm_table->dpm_level[i - 1].enabled)
381                         mask |= 0x1;
382                 else
383                         mask &= 0xFFFFFFFE;
384         }
385
386         return mask;
387 }
388
389 uint8_t phm_get_voltage_index(
390                 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
391 {
392         uint8_t count = (uint8_t) (lookup_table->count);
393         uint8_t i;
394
395         PP_ASSERT_WITH_CODE((NULL != lookup_table),
396                         "Lookup Table empty.", return 0);
397         PP_ASSERT_WITH_CODE((0 != count),
398                         "Lookup Table empty.", return 0);
399
400         for (i = 0; i < lookup_table->count; i++) {
401                 /* find first voltage equal or bigger than requested */
402                 if (lookup_table->entries[i].us_vdd >= voltage)
403                         return i;
404         }
405         /* voltage is bigger than max voltage in the table */
406         return i - 1;
407 }
408
409 uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
410                 uint32_t voltage)
411 {
412         uint8_t count = (uint8_t) (voltage_table->count);
413         uint8_t i = 0;
414
415         PP_ASSERT_WITH_CODE((NULL != voltage_table),
416                 "Voltage Table empty.", return 0;);
417         PP_ASSERT_WITH_CODE((0 != count),
418                 "Voltage Table empty.", return 0;);
419
420         for (i = 0; i < count; i++) {
421                 /* find first voltage bigger than requested */
422                 if (voltage_table->entries[i].value >= voltage)
423                         return i;
424         }
425
426         /* voltage is bigger than max voltage in the table */
427         return i - 1;
428 }
429
430 uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
431 {
432         uint32_t  i;
433
434         for (i = 0; i < vddci_table->count; i++) {
435                 if (vddci_table->entries[i].value >= vddci)
436                         return vddci_table->entries[i].value;
437         }
438
439         pr_debug("vddci is larger than max value in vddci_table\n");
440         return vddci_table->entries[i-1].value;
441 }
442
443 int phm_find_boot_level(void *table,
444                 uint32_t value, uint32_t *boot_level)
445 {
446         int result = -EINVAL;
447         uint32_t i;
448         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
449
450         for (i = 0; i < dpm_table->count; i++) {
451                 if (value == dpm_table->dpm_level[i].value) {
452                         *boot_level = i;
453                         result = 0;
454                 }
455         }
456
457         return result;
458 }
459
460 int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
461         phm_ppt_v1_voltage_lookup_table *lookup_table,
462         uint16_t virtual_voltage_id, int32_t *sclk)
463 {
464         uint8_t entry_id;
465         uint8_t voltage_id;
466         struct phm_ppt_v1_information *table_info =
467                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
468
469         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
470
471         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
472         for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
473                 voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
474                 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
475                         break;
476         }
477
478         if (entry_id >= table_info->vdd_dep_on_sclk->count) {
479                 pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
480                 return -EINVAL;
481         }
482
483         *sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
484
485         return 0;
486 }
487
488 /**
489  * Initialize Dynamic State Adjustment Rule Settings
490  *
491  * @param    hwmgr  the address of the powerplay hardware manager.
492  */
493 int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
494 {
495         uint32_t table_size;
496         struct phm_clock_voltage_dependency_table *table_clk_vlt;
497         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
498
499         /* initialize vddc_dep_on_dal_pwrl table */
500         table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
501         table_clk_vlt = kzalloc(table_size, GFP_KERNEL);
502
503         if (NULL == table_clk_vlt) {
504                 pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
505                 return -ENOMEM;
506         } else {
507                 table_clk_vlt->count = 4;
508                 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
509                 table_clk_vlt->entries[0].v = 0;
510                 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
511                 table_clk_vlt->entries[1].v = 720;
512                 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
513                 table_clk_vlt->entries[2].v = 810;
514                 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
515                 table_clk_vlt->entries[3].v = 900;
516                 if (pptable_info != NULL)
517                         pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
518                 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
519         }
520
521         return 0;
522 }
523
524 uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
525 {
526         uint32_t level = 0;
527
528         while (0 == (mask & (1 << level)))
529                 level++;
530
531         return level;
532 }
533
534 void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
535 {
536         struct phm_ppt_v1_information *table_info =
537                         (struct phm_ppt_v1_information *)hwmgr->pptable;
538         struct phm_clock_voltage_dependency_table *table =
539                                 table_info->vddc_dep_on_dal_pwrl;
540         struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
541         enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
542         uint32_t req_vddc = 0, req_volt, i;
543
544         if (!table || table->count <= 0
545                 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
546                 || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
547                 return;
548
549         for (i = 0; i < table->count; i++) {
550                 if (dal_power_level == table->entries[i].clk) {
551                         req_vddc = table->entries[i].v;
552                         break;
553                 }
554         }
555
556         vddc_table = table_info->vdd_dep_on_sclk;
557         for (i = 0; i < vddc_table->count; i++) {
558                 if (req_vddc <= vddc_table->entries[i].vddc) {
559                         req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
560                         smum_send_msg_to_smc_with_parameter(hwmgr,
561                                         PPSMC_MSG_VddC_Request,
562                                         req_volt,
563                                         NULL);
564                         return;
565                 }
566         }
567         pr_err("DAL requested level can not"
568                         " found a available voltage in VDDC DPM Table \n");
569 }
570
571 int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
572                                 uint32_t sclk, uint16_t id, uint16_t *voltage)
573 {
574         uint32_t vol;
575         int ret = 0;
576
577         if (hwmgr->chip_id < CHIP_TONGA) {
578                 ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
579         } else if (hwmgr->chip_id < CHIP_POLARIS10) {
580                 ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
581                 if (*voltage >= 2000 || *voltage == 0)
582                         *voltage = 1150;
583         } else {
584                 ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
585                 *voltage = (uint16_t)(vol/100);
586         }
587         return ret;
588 }
589
590
591 int phm_irq_process(struct amdgpu_device *adev,
592                            struct amdgpu_irq_src *source,
593                            struct amdgpu_iv_entry *entry)
594 {
595         uint32_t client_id = entry->client_id;
596         uint32_t src_id = entry->src_id;
597
598         if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) {
599                 if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH) {
600                         dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
601                         /*
602                          * SW CTF just occurred.
603                          * Try to do a graceful shutdown to prevent further damage.
604                          */
605                         dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
606                         orderly_poweroff(true);
607                 } else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW)
608                         dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
609                 else if (src_id == VISLANDS30_IV_SRCID_GPIO_19) {
610                         dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
611                         /*
612                          * HW CTF just occurred. Shutdown to prevent further damage.
613                          */
614                         dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
615                         orderly_poweroff(true);
616                 }
617         } else if (client_id == SOC15_IH_CLIENTID_THM) {
618                 if (src_id == 0) {
619                         dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
620                         /*
621                          * SW CTF just occurred.
622                          * Try to do a graceful shutdown to prevent further damage.
623                          */
624                         dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
625                         orderly_poweroff(true);
626                 } else
627                         dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
628         } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
629                 dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
630                 /*
631                  * HW CTF just occurred. Shutdown to prevent further damage.
632                  */
633                 dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
634                 orderly_poweroff(true);
635         }
636
637         return 0;
638 }
639
640 static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
641         .process = phm_irq_process,
642 };
643
644 int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
645 {
646         struct amdgpu_irq_src *source =
647                 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
648
649         if (!source)
650                 return -ENOMEM;
651
652         source->funcs = &smu9_irq_funcs;
653
654         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
655                         SOC15_IH_CLIENTID_THM,
656                         THM_9_0__SRCID__THM_DIG_THERM_L2H,
657                         source);
658         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
659                         SOC15_IH_CLIENTID_THM,
660                         THM_9_0__SRCID__THM_DIG_THERM_H2L,
661                         source);
662
663         /* Register CTF(GPIO_19) interrupt */
664         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
665                         SOC15_IH_CLIENTID_ROM_SMUIO,
666                         SMUIO_9_0__SRCID__SMUIO_GPIO19,
667                         source);
668
669         return 0;
670 }
671
672 void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
673                                                 uint8_t *frev, uint8_t *crev)
674 {
675         struct amdgpu_device *adev = dev;
676         uint16_t data_start;
677
678         if (amdgpu_atom_parse_data_header(
679                     adev->mode_info.atom_context, table, size,
680                     frev, crev, &data_start))
681                 return (uint8_t *)adev->mode_info.atom_context->bios +
682                         data_start;
683
684         return NULL;
685 }
686
687 int smu_get_voltage_dependency_table_ppt_v1(
688                         const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
689                         struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
690 {
691         uint8_t i = 0;
692         PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
693                                 "Voltage Lookup Table empty",
694                                 return -EINVAL);
695
696         dep_table->count = allowed_dep_table->count;
697         for (i=0; i<dep_table->count; i++) {
698                 dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
699                 dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
700                 dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
701                 dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
702                 dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
703                 dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
704                 dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
705                 dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
706                 dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
707                 dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
708         }
709
710         return 0;
711 }
712
713 int smu_set_watermarks_for_clocks_ranges(void *wt_table,
714                 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
715 {
716         uint32_t i;
717         struct watermarks *table = wt_table;
718
719         if (!table || !wm_with_clock_ranges)
720                 return -EINVAL;
721
722         if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
723                 return -EINVAL;
724
725         for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
726                 table->WatermarkRow[1][i].MinClock =
727                         cpu_to_le16((uint16_t)
728                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
729                         1000));
730                 table->WatermarkRow[1][i].MaxClock =
731                         cpu_to_le16((uint16_t)
732                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
733                         1000));
734                 table->WatermarkRow[1][i].MinUclk =
735                         cpu_to_le16((uint16_t)
736                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
737                         1000));
738                 table->WatermarkRow[1][i].MaxUclk =
739                         cpu_to_le16((uint16_t)
740                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
741                         1000));
742                 table->WatermarkRow[1][i].WmSetting = (uint8_t)
743                                 wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
744         }
745
746         for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
747                 table->WatermarkRow[0][i].MinClock =
748                         cpu_to_le16((uint16_t)
749                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
750                         1000));
751                 table->WatermarkRow[0][i].MaxClock =
752                         cpu_to_le16((uint16_t)
753                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
754                         1000));
755                 table->WatermarkRow[0][i].MinUclk =
756                         cpu_to_le16((uint16_t)
757                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
758                         1000));
759                 table->WatermarkRow[0][i].MaxUclk =
760                         cpu_to_le16((uint16_t)
761                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
762                         1000));
763                 table->WatermarkRow[0][i].WmSetting = (uint8_t)
764                                 wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
765         }
766         return 0;
767 }