7772beadd00067843cc22349f122f4bd41a759ae
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / display / dc / dcn32 / dcn32_resource.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn32_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dc_link_dp.h"
61 #include "dcn31/dcn31_apg.h"
62 #include "dcn31/dcn31_dio_link_encoder.h"
63 #include "dcn32/dcn32_dio_link_encoder.h"
64 #include "dce/dce_clock_source.h"
65 #include "dce/dce_audio.h"
66 #include "dce/dce_hwseq.h"
67 #include "clk_mgr.h"
68 #include "virtual/virtual_stream_encoder.h"
69 #include "dml/display_mode_vba.h"
70 #include "dcn32/dcn32_dccg.h"
71 #include "dcn10/dcn10_resource.h"
72 #include "dc_link_ddc.h"
73 #include "dcn31/dcn31_panel_cntl.h"
74
75 #include "dcn30/dcn30_dwb.h"
76 #include "dcn32/dcn32_mmhubbub.h"
77
78 #include "dcn/dcn_3_2_0_offset.h"
79 #include "dcn/dcn_3_2_0_sh_mask.h"
80 #include "nbio/nbio_4_3_0_offset.h"
81
82 #include "reg_helper.h"
83 #include "dce/dmub_abm.h"
84 #include "dce/dmub_psr.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91
92 #define DCN_BASE__INST0_SEG1                       0x000000C0
93 #define DCN_BASE__INST0_SEG2                       0x000034C0
94 #define DCN_BASE__INST0_SEG3                       0x00009000
95 #define NBIO_BASE__INST0_SEG1                      0x00000014
96
97 #define MAX_INSTANCE                                        6
98 #define MAX_SEGMENT                                         6
99
100 struct IP_BASE_INSTANCE {
101         unsigned int segment[MAX_SEGMENT];
102 };
103
104 struct IP_BASE {
105         struct IP_BASE_INSTANCE instance[MAX_INSTANCE];
106 };
107
108 static const struct IP_BASE DCN_BASE = { { { { 0x00000012, 0x000000C0, 0x000034C0, 0x00009000, 0x02403C00, 0 } },
109                                         { { 0, 0, 0, 0, 0, 0 } },
110                                         { { 0, 0, 0, 0, 0, 0 } },
111                                         { { 0, 0, 0, 0, 0, 0 } },
112                                         { { 0, 0, 0, 0, 0, 0 } },
113                                         { { 0, 0, 0, 0, 0, 0 } } } };
114
115 #define DC_LOGGER_INIT(logger)
116
117 #define DCN3_2_DEFAULT_DET_SIZE 256
118 #define DCN3_2_MAX_DET_SIZE 1152
119 #define DCN3_2_MIN_DET_SIZE 128
120 #define DCN3_2_MIN_COMPBUF_SIZE_KB 128
121
122 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
123         .gpuvm_enable = 1,
124         .gpuvm_max_page_table_levels = 1,
125         .hostvm_enable = 0,
126         .rob_buffer_size_kbytes = 128,
127         .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
128         .config_return_buffer_size_in_kbytes = 1280,
129         .compressed_buffer_segment_size_in_kbytes = 64,
130         .meta_fifo_size_in_kentries = 22,
131         .zero_size_buffer_entries = 512,
132         .compbuf_reserved_space_64b = 256,
133         .compbuf_reserved_space_zs = 64,
134         .dpp_output_buffer_pixels = 2560,
135         .opp_output_buffer_lines = 1,
136         .pixel_chunk_size_kbytes = 8,
137         .alpha_pixel_chunk_size_kbytes = 4, // not appearing in spreadsheet, match c code from hw team
138         .min_pixel_chunk_size_bytes = 1024,
139         .dcc_meta_buffer_size_bytes = 6272,
140         .meta_chunk_size_kbytes = 2,
141         .min_meta_chunk_size_bytes = 256,
142         .writeback_chunk_size_kbytes = 8,
143         .ptoi_supported = false,
144         .num_dsc = 4,
145         .maximum_dsc_bits_per_component = 12,
146         .maximum_pixels_per_line_per_dsc_unit = 6016,
147         .dsc422_native_support = true,
148         .is_line_buffer_bpp_fixed = true,
149         .line_buffer_fixed_bpp = 57,
150         .line_buffer_size_bits = 1171920, //DPP doc, DCN3_2_DisplayMode_73.xlsm still shows as 986880 bits with 48 bpp
151         .max_line_buffer_lines = 32,
152         .writeback_interface_buffer_size_kbytes = 90,
153         .max_num_dpp = 4,
154         .max_num_otg = 4,
155         .max_num_hdmi_frl_outputs = 1,
156         .max_num_wb = 1,
157         .max_dchub_pscl_bw_pix_per_clk = 4,
158         .max_pscl_lb_bw_pix_per_clk = 2,
159         .max_lb_vscl_bw_pix_per_clk = 4,
160         .max_vscl_hscl_bw_pix_per_clk = 4,
161         .max_hscl_ratio = 6,
162         .max_vscl_ratio = 6,
163         .max_hscl_taps = 8,
164         .max_vscl_taps = 8,
165         .dpte_buffer_size_in_pte_reqs_luma = 64,
166         .dpte_buffer_size_in_pte_reqs_chroma = 34,
167         .dispclk_ramp_margin_percent = 1,
168         .max_inter_dcn_tile_repeaters = 8,
169         .cursor_buffer_size = 16,
170         .cursor_chunk_size = 2,
171         .writeback_line_buffer_buffer_size = 0,
172         .writeback_min_hscl_ratio = 1,
173         .writeback_min_vscl_ratio = 1,
174         .writeback_max_hscl_ratio = 1,
175         .writeback_max_vscl_ratio = 1,
176         .writeback_max_hscl_taps = 1,
177         .writeback_max_vscl_taps = 1,
178         .dppclk_delay_subtotal = 47,
179         .dppclk_delay_scl = 50,
180         .dppclk_delay_scl_lb_only = 16,
181         .dppclk_delay_cnvc_formatter = 28,
182         .dppclk_delay_cnvc_cursor = 6,
183         .dispclk_delay_subtotal = 125,
184         .dynamic_metadata_vm_enabled = false,
185         .odm_combine_4to1_supported = false,
186         .dcc_supported = true,
187         .max_num_dp2p0_outputs = 2,
188         .max_num_dp2p0_streams = 4,
189 };
190
191 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
192         .clock_limits = {
193                 {
194                         .state = 0,
195                         .dcfclk_mhz = 1564.0,
196                         .fabricclk_mhz = 400.0,
197                         .dispclk_mhz = 2150.0,
198                         .dppclk_mhz = 2150.0,
199                         .phyclk_mhz = 810.0,
200                         .phyclk_d18_mhz = 667.0,
201                         .phyclk_d32_mhz = 625.0,
202                         .socclk_mhz = 1200.0,
203                         .dscclk_mhz = 716.667,
204                         .dram_speed_mts = 1600.0,
205                         .dtbclk_mhz = 1564.0,
206                 },
207         },
208         .num_states = 1,
209         .sr_exit_time_us = 5.20,
210         .sr_enter_plus_exit_time_us = 9.60,
211         .sr_exit_z8_time_us = 285.0,
212         .sr_enter_plus_exit_z8_time_us = 320,
213         .writeback_latency_us = 12.0,
214         .round_trip_ping_latency_dcfclk_cycles = 263,
215         .urgent_latency_pixel_data_only_us = 4.0,
216         .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
217         .urgent_latency_vm_data_only_us = 4.0,
218         .fclk_change_latency_us = 20,
219         .usr_retraining_latency_us = 2,
220         .smn_latency_us = 2,
221         .mall_allocated_for_dcn_mbytes = 64,
222         .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
223         .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
224         .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
225         .pct_ideal_sdp_bw_after_urgent = 100.0,
226         .pct_ideal_fabric_bw_after_urgent = 67.0,
227         .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
228         .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
229         .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
230         .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
231         .max_avg_sdp_bw_use_normal_percent = 80.0,
232         .max_avg_fabric_bw_use_normal_percent = 60.0,
233         .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
234         .max_avg_dram_bw_use_normal_percent = 15.0,
235         .num_chans = 8,
236         .dram_channel_width_bytes = 2,
237         .fabric_datapath_to_dcn_data_return_bytes = 64,
238         .return_bus_width_bytes = 64,
239         .downspread_percent = 0.38,
240         .dcn_downspread_percent = 0.5,
241         .dram_clock_change_latency_us = 400,
242         .dispclk_dppclk_vco_speed_mhz = 4300.0,
243         .do_urgent_latency_adjustment = true,
244         .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
245         .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
246 };
247
248 enum dcn32_clk_src_array_id {
249         DCN32_CLK_SRC_PLL0,
250         DCN32_CLK_SRC_PLL1,
251         DCN32_CLK_SRC_PLL2,
252         DCN32_CLK_SRC_PLL3,
253         DCN32_CLK_SRC_PLL4,
254         DCN32_CLK_SRC_TOTAL
255 };
256
257 /* begin *********************
258  * macros to expend register list macro defined in HW object header file
259  */
260
261 /* DCN */
262 /* TODO awful hack. fixup dcn20_dwb.h */
263 #undef BASE_INNER
264 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
265
266 #define BASE(seg) BASE_INNER(seg)
267
268 #define SR(reg_name)\
269                 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
270                                         reg ## reg_name
271
272 #define SRI(reg_name, block, id)\
273         .reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
274                                         reg ## block ## id ## _ ## reg_name
275
276 #define SRI2(reg_name, block, id)\
277         .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
278                                         reg ## reg_name
279
280 #define SRIR(var_name, reg_name, block, id)\
281         .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
282                                         reg ## block ## id ## _ ## reg_name
283
284 #define SRII(reg_name, block, id)\
285         .reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
286                                         reg ## block ## id ## _ ## reg_name
287
288 #define SRII_MPC_RMU(reg_name, block, id)\
289         .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
290                                         reg ## block ## id ## _ ## reg_name
291
292 #define SRII_DWB(reg_name, temp_name, block, id)\
293         .reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
294                                         reg ## block ## id ## _ ## temp_name
295
296 #define DCCG_SRII(reg_name, block, id)\
297         .block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
298                                         reg ## block ## id ## _ ## reg_name
299
300 #define VUPDATE_SRII(reg_name, block, id)\
301         .reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
302                                         reg ## reg_name ## _ ## block ## id
303
304 /* NBIO */
305 #define NBIO_BASE_INNER(seg) \
306         NBIO_BASE__INST0_SEG ## seg
307
308 #define NBIO_BASE(seg) \
309         NBIO_BASE_INNER(seg)
310
311 #define NBIO_SR(reg_name)\
312                 .reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
313                                         regBIF_BX0_ ## reg_name
314
315 #define CTX ctx
316 #define REG(reg_name) \
317         (DCN_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
318
319 static const struct bios_registers bios_regs = {
320                 NBIO_SR(BIOS_SCRATCH_3),
321                 NBIO_SR(BIOS_SCRATCH_6)
322 };
323
324 #define clk_src_regs(index, pllid)\
325 [index] = {\
326         CS_COMMON_REG_LIST_DCN3_0(index, pllid),\
327 }
328
329 static const struct dce110_clk_src_regs clk_src_regs[] = {
330         clk_src_regs(0, A),
331         clk_src_regs(1, B),
332         clk_src_regs(2, C),
333         clk_src_regs(3, D),
334         clk_src_regs(4, E)
335 };
336
337 static const struct dce110_clk_src_shift cs_shift = {
338                 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
339 };
340
341 static const struct dce110_clk_src_mask cs_mask = {
342                 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
343 };
344
345 #define abm_regs(id)\
346 [id] = {\
347                 ABM_DCN32_REG_LIST(id)\
348 }
349
350 static const struct dce_abm_registers abm_regs[] = {
351                 abm_regs(0),
352                 abm_regs(1),
353                 abm_regs(2),
354                 abm_regs(3),
355 };
356
357 static const struct dce_abm_shift abm_shift = {
358                 ABM_MASK_SH_LIST_DCN32(__SHIFT)
359 };
360
361 static const struct dce_abm_mask abm_mask = {
362                 ABM_MASK_SH_LIST_DCN32(_MASK)
363 };
364
365 #define audio_regs(id)\
366 [id] = {\
367                 AUD_COMMON_REG_LIST(id)\
368 }
369
370 static const struct dce_audio_registers audio_regs[] = {
371         audio_regs(0),
372         audio_regs(1),
373         audio_regs(2),
374         audio_regs(3),
375         audio_regs(4)
376 };
377
378 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
379                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
380                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
381                 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
382
383 static const struct dce_audio_shift audio_shift = {
384                 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
385 };
386
387 static const struct dce_audio_mask audio_mask = {
388                 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
389 };
390
391 #define vpg_regs(id)\
392 [id] = {\
393         VPG_DCN3_REG_LIST(id)\
394 }
395
396 static const struct dcn30_vpg_registers vpg_regs[] = {
397         vpg_regs(0),
398         vpg_regs(1),
399         vpg_regs(2),
400         vpg_regs(3),
401         vpg_regs(4),
402         vpg_regs(5),
403         vpg_regs(6),
404         vpg_regs(7),
405         vpg_regs(8),
406         vpg_regs(9),
407 };
408
409 static const struct dcn30_vpg_shift vpg_shift = {
410         DCN3_VPG_MASK_SH_LIST(__SHIFT)
411 };
412
413 static const struct dcn30_vpg_mask vpg_mask = {
414         DCN3_VPG_MASK_SH_LIST(_MASK)
415 };
416
417 #define afmt_regs(id)\
418 [id] = {\
419         AFMT_DCN3_REG_LIST(id)\
420 }
421
422 static const struct dcn30_afmt_registers afmt_regs[] = {
423         afmt_regs(0),
424         afmt_regs(1),
425         afmt_regs(2),
426         afmt_regs(3),
427         afmt_regs(4),
428         afmt_regs(5)
429 };
430
431 static const struct dcn30_afmt_shift afmt_shift = {
432         DCN3_AFMT_MASK_SH_LIST(__SHIFT)
433 };
434
435 static const struct dcn30_afmt_mask afmt_mask = {
436         DCN3_AFMT_MASK_SH_LIST(_MASK)
437 };
438
439 #define apg_regs(id)\
440 [id] = {\
441         APG_DCN31_REG_LIST(id)\
442 }
443
444 static const struct dcn31_apg_registers apg_regs[] = {
445         apg_regs(0),
446         apg_regs(1),
447         apg_regs(2),
448         apg_regs(3)
449 };
450
451 static const struct dcn31_apg_shift apg_shift = {
452         DCN31_APG_MASK_SH_LIST(__SHIFT)
453 };
454
455 static const struct dcn31_apg_mask apg_mask = {
456                 DCN31_APG_MASK_SH_LIST(_MASK)
457 };
458
459 #define stream_enc_regs(id)\
460 [id] = {\
461         SE_DCN32_REG_LIST(id)\
462 }
463
464 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
465         stream_enc_regs(0),
466         stream_enc_regs(1),
467         stream_enc_regs(2),
468         stream_enc_regs(3),
469         stream_enc_regs(4)
470 };
471
472 static const struct dcn10_stream_encoder_shift se_shift = {
473                 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
474 };
475
476 static const struct dcn10_stream_encoder_mask se_mask = {
477                 SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
478 };
479
480
481 #define aux_regs(id)\
482 [id] = {\
483         DCN2_AUX_REG_LIST(id)\
484 }
485
486 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
487                 aux_regs(0),
488                 aux_regs(1),
489                 aux_regs(2),
490                 aux_regs(3),
491                 aux_regs(4)
492 };
493
494 #define hpd_regs(id)\
495 [id] = {\
496         HPD_REG_LIST(id)\
497 }
498
499 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
500                 hpd_regs(0),
501                 hpd_regs(1),
502                 hpd_regs(2),
503                 hpd_regs(3),
504                 hpd_regs(4)
505 };
506
507 #define link_regs(id, phyid)\
508 [id] = {\
509         LE_DCN31_REG_LIST(id), \
510         UNIPHY_DCN2_REG_LIST(phyid), \
511         /*DPCS_DCN31_REG_LIST(id),*/ \
512 }
513
514 static const struct dcn10_link_enc_registers link_enc_regs[] = {
515         link_regs(0, A),
516         link_regs(1, B),
517         link_regs(2, C),
518         link_regs(3, D),
519         link_regs(4, E)
520 };
521
522 static const struct dcn10_link_enc_shift le_shift = {
523         LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
524         //DPCS_DCN31_MASK_SH_LIST(__SHIFT)
525 };
526
527 static const struct dcn10_link_enc_mask le_mask = {
528         LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
529
530         //DPCS_DCN31_MASK_SH_LIST(_MASK)
531 };
532
533 #define hpo_dp_stream_encoder_reg_list(id)\
534 [id] = {\
535         DCN3_1_HPO_DP_STREAM_ENC_REG_LIST(id)\
536 }
537
538 static const struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[] = {
539         hpo_dp_stream_encoder_reg_list(0),
540         hpo_dp_stream_encoder_reg_list(1),
541         hpo_dp_stream_encoder_reg_list(2),
542         hpo_dp_stream_encoder_reg_list(3),
543 };
544
545 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
546         DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
547 };
548
549 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
550         DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
551 };
552
553
554 #define hpo_dp_link_encoder_reg_list(id)\
555 [id] = {\
556         DCN3_1_HPO_DP_LINK_ENC_REG_LIST(id),\
557         /*DCN3_1_RDPCSTX_REG_LIST(0),*/\
558         /*DCN3_1_RDPCSTX_REG_LIST(1),*/\
559         /*DCN3_1_RDPCSTX_REG_LIST(2),*/\
560         /*DCN3_1_RDPCSTX_REG_LIST(3),*/\
561         /*DCN3_1_RDPCSTX_REG_LIST(4)*/\
562 }
563
564 static const struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[] = {
565         hpo_dp_link_encoder_reg_list(0),
566         hpo_dp_link_encoder_reg_list(1),
567 };
568
569 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
570         DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
571 };
572
573 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
574         DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
575 };
576
577 #define dpp_regs(id)\
578 [id] = {\
579         DPP_REG_LIST_DCN30_COMMON(id),\
580 }
581
582 static const struct dcn3_dpp_registers dpp_regs[] = {
583         dpp_regs(0),
584         dpp_regs(1),
585         dpp_regs(2),
586         dpp_regs(3)
587 };
588
589 static const struct dcn3_dpp_shift tf_shift = {
590                 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
591 };
592
593 static const struct dcn3_dpp_mask tf_mask = {
594                 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
595 };
596
597
598 #define opp_regs(id)\
599 [id] = {\
600         OPP_REG_LIST_DCN30(id),\
601 }
602
603 static const struct dcn20_opp_registers opp_regs[] = {
604         opp_regs(0),
605         opp_regs(1),
606         opp_regs(2),
607         opp_regs(3)
608 };
609
610 static const struct dcn20_opp_shift opp_shift = {
611         OPP_MASK_SH_LIST_DCN20(__SHIFT)
612 };
613
614 static const struct dcn20_opp_mask opp_mask = {
615         OPP_MASK_SH_LIST_DCN20(_MASK)
616 };
617
618 #define aux_engine_regs(id)\
619 [id] = {\
620         AUX_COMMON_REG_LIST0(id), \
621         .AUXN_IMPCAL = 0, \
622         .AUXP_IMPCAL = 0, \
623         .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
624 }
625
626 static const struct dce110_aux_registers aux_engine_regs[] = {
627                 aux_engine_regs(0),
628                 aux_engine_regs(1),
629                 aux_engine_regs(2),
630                 aux_engine_regs(3),
631                 aux_engine_regs(4)
632 };
633
634 static const struct dce110_aux_registers_shift aux_shift = {
635         DCN_AUX_MASK_SH_LIST(__SHIFT)
636 };
637
638 static const struct dce110_aux_registers_mask aux_mask = {
639         DCN_AUX_MASK_SH_LIST(_MASK)
640 };
641
642
643 #define dwbc_regs_dcn3(id)\
644 [id] = {\
645         DWBC_COMMON_REG_LIST_DCN30(id),\
646 }
647
648 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
649         dwbc_regs_dcn3(0),
650 };
651
652 static const struct dcn30_dwbc_shift dwbc30_shift = {
653         DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
654 };
655
656 static const struct dcn30_dwbc_mask dwbc30_mask = {
657         DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
658 };
659
660 #define mcif_wb_regs_dcn3(id)\
661 [id] = {\
662         MCIF_WB_COMMON_REG_LIST_DCN32(id),\
663 }
664
665 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
666         mcif_wb_regs_dcn3(0)
667 };
668
669 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
670         MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
671 };
672
673 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
674         MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
675 };
676
677 #define dsc_regsDCN20(id)\
678 [id] = {\
679         DSC_REG_LIST_DCN20(id)\
680 }
681
682 static const struct dcn20_dsc_registers dsc_regs[] = {
683         dsc_regsDCN20(0),
684         dsc_regsDCN20(1),
685         dsc_regsDCN20(2),
686         dsc_regsDCN20(3)
687 };
688
689 static const struct dcn20_dsc_shift dsc_shift = {
690         DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
691 };
692
693 static const struct dcn20_dsc_mask dsc_mask = {
694         DSC_REG_LIST_SH_MASK_DCN20(_MASK)
695 };
696
697 static const struct dcn30_mpc_registers mpc_regs = {
698                 MPC_REG_LIST_DCN3_0(0),
699                 MPC_REG_LIST_DCN3_0(1),
700                 MPC_REG_LIST_DCN3_0(2),
701                 MPC_REG_LIST_DCN3_0(3),
702                 MPC_OUT_MUX_REG_LIST_DCN3_0(0),
703                 MPC_OUT_MUX_REG_LIST_DCN3_0(1),
704                 MPC_OUT_MUX_REG_LIST_DCN3_0(2),
705                 MPC_OUT_MUX_REG_LIST_DCN3_0(3),
706                 MPC_MCM_REG_LIST_DCN32(0),
707                 MPC_MCM_REG_LIST_DCN32(1),
708                 MPC_MCM_REG_LIST_DCN32(2),
709                 MPC_MCM_REG_LIST_DCN32(3),
710                 MPC_DWB_MUX_REG_LIST_DCN3_0(0),
711 };
712
713 static const struct dcn30_mpc_shift mpc_shift = {
714         MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
715 };
716
717 static const struct dcn30_mpc_mask mpc_mask = {
718         MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
719 };
720
721 #define optc_regs(id)\
722 [id] = {OPTC_COMMON_REG_LIST_DCN3_2(id)}
723
724 //#ifdef DIAGS_BUILD
725 //static struct dcn_optc_registers optc_regs[] = {
726 //#else
727 static const struct dcn_optc_registers optc_regs[] = {
728 //#endif
729         optc_regs(0),
730         optc_regs(1),
731         optc_regs(2),
732         optc_regs(3)
733 };
734
735 static const struct dcn_optc_shift optc_shift = {
736         OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
737 };
738
739 static const struct dcn_optc_mask optc_mask = {
740         OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
741 };
742
743 #define hubp_regs(id)\
744 [id] = {\
745         HUBP_REG_LIST_DCN32(id)\
746 }
747
748 static const struct dcn_hubp2_registers hubp_regs[] = {
749                 hubp_regs(0),
750                 hubp_regs(1),
751                 hubp_regs(2),
752                 hubp_regs(3)
753 };
754
755
756 static const struct dcn_hubp2_shift hubp_shift = {
757                 HUBP_MASK_SH_LIST_DCN32(__SHIFT)
758 };
759
760 static const struct dcn_hubp2_mask hubp_mask = {
761                 HUBP_MASK_SH_LIST_DCN32(_MASK)
762 };
763 static const struct dcn_hubbub_registers hubbub_reg = {
764                 HUBBUB_REG_LIST_DCN32(0)
765 };
766
767 static const struct dcn_hubbub_shift hubbub_shift = {
768                 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
769 };
770
771 static const struct dcn_hubbub_mask hubbub_mask = {
772                 HUBBUB_MASK_SH_LIST_DCN32(_MASK)
773 };
774
775 static const struct dccg_registers dccg_regs = {
776                 DCCG_REG_LIST_DCN32()
777 };
778
779 static const struct dccg_shift dccg_shift = {
780                 DCCG_MASK_SH_LIST_DCN32(__SHIFT)
781 };
782
783 static const struct dccg_mask dccg_mask = {
784                 DCCG_MASK_SH_LIST_DCN32(_MASK)
785 };
786
787
788 #define SRII2(reg_name_pre, reg_name_post, id)\
789         .reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
790                         ## id ## _ ## reg_name_post ## _BASE_IDX) + \
791                         reg ## reg_name_pre ## id ## _ ## reg_name_post
792
793
794 #define HWSEQ_DCN32_REG_LIST()\
795         SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
796         SR(DIO_MEM_PWR_CTRL), \
797         SR(ODM_MEM_PWR_CTRL3), \
798         SR(MMHUBBUB_MEM_PWR_CNTL), \
799         SR(DCCG_GATE_DISABLE_CNTL), \
800         SR(DCCG_GATE_DISABLE_CNTL2), \
801         SR(DCFCLK_CNTL),\
802         SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
803         SRII(PIXEL_RATE_CNTL, OTG, 0), \
804         SRII(PIXEL_RATE_CNTL, OTG, 1),\
805         SRII(PIXEL_RATE_CNTL, OTG, 2),\
806         SRII(PIXEL_RATE_CNTL, OTG, 3),\
807         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
808         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
809         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
810         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
811         SR(MICROSECOND_TIME_BASE_DIV), \
812         SR(MILLISECOND_TIME_BASE_DIV), \
813         SR(DISPCLK_FREQ_CHANGE_CNTL), \
814         SR(RBBMIF_TIMEOUT_DIS), \
815         SR(RBBMIF_TIMEOUT_DIS_2), \
816         SR(DCHUBBUB_CRC_CTRL), \
817         SR(DPP_TOP0_DPP_CRC_CTRL), \
818         SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
819         SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
820         SR(MPC_CRC_CTRL), \
821         SR(MPC_CRC_RESULT_GB), \
822         SR(MPC_CRC_RESULT_C), \
823         SR(MPC_CRC_RESULT_AR), \
824         SR(DOMAIN0_PG_CONFIG), \
825         SR(DOMAIN1_PG_CONFIG), \
826         SR(DOMAIN2_PG_CONFIG), \
827         SR(DOMAIN3_PG_CONFIG), \
828         SR(DOMAIN16_PG_CONFIG), \
829         SR(DOMAIN17_PG_CONFIG), \
830         SR(DOMAIN18_PG_CONFIG), \
831         SR(DOMAIN19_PG_CONFIG), \
832         SR(DOMAIN0_PG_STATUS), \
833         SR(DOMAIN1_PG_STATUS), \
834         SR(DOMAIN2_PG_STATUS), \
835         SR(DOMAIN3_PG_STATUS), \
836         SR(DOMAIN16_PG_STATUS), \
837         SR(DOMAIN17_PG_STATUS), \
838         SR(DOMAIN18_PG_STATUS), \
839         SR(DOMAIN19_PG_STATUS), \
840         SR(D1VGA_CONTROL), \
841         SR(D2VGA_CONTROL), \
842         SR(D3VGA_CONTROL), \
843         SR(D4VGA_CONTROL), \
844         SR(D5VGA_CONTROL), \
845         SR(D6VGA_CONTROL), \
846         SR(DC_IP_REQUEST_CNTL), \
847         SR(AZALIA_AUDIO_DTO), \
848         SR(AZALIA_CONTROLLER_CLOCK_GATING)
849
850 static const struct dce_hwseq_registers hwseq_reg = {
851                 HWSEQ_DCN32_REG_LIST()
852 };
853
854 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
855         HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
856         HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
857         HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
858         HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
859         HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
860         HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
861         HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
862         HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
863         HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
864         HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
865         HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
866         HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
867         HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
868         HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
869         HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
870         HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
871         HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
872         HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
873         HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
874         HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
875         HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
876         HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
877         HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
878         HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
879         HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
880         HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
881         HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
882         HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
883         HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
884         HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
885         HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
886         HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
887
888 static const struct dce_hwseq_shift hwseq_shift = {
889                 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
890 };
891
892 static const struct dce_hwseq_mask hwseq_mask = {
893                 HWSEQ_DCN32_MASK_SH_LIST(_MASK)
894 };
895 #define vmid_regs(id)\
896 [id] = {\
897                 DCN20_VMID_REG_LIST(id)\
898 }
899
900 static const struct dcn_vmid_registers vmid_regs[] = {
901         vmid_regs(0),
902         vmid_regs(1),
903         vmid_regs(2),
904         vmid_regs(3),
905         vmid_regs(4),
906         vmid_regs(5),
907         vmid_regs(6),
908         vmid_regs(7),
909         vmid_regs(8),
910         vmid_regs(9),
911         vmid_regs(10),
912         vmid_regs(11),
913         vmid_regs(12),
914         vmid_regs(13),
915         vmid_regs(14),
916         vmid_regs(15)
917 };
918
919 static const struct dcn20_vmid_shift vmid_shifts = {
920                 DCN20_VMID_MASK_SH_LIST(__SHIFT)
921 };
922
923 static const struct dcn20_vmid_mask vmid_masks = {
924                 DCN20_VMID_MASK_SH_LIST(_MASK)
925 };
926
927 static const struct resource_caps res_cap_dcn32 = {
928         .num_timing_generator = 4,
929         .num_opp = 4,
930         .num_video_plane = 4,
931         .num_audio = 5,
932         .num_stream_encoder = 5,
933         .num_hpo_dp_stream_encoder = 4,
934         .num_hpo_dp_link_encoder = 2,
935         .num_pll = 5,
936         .num_dwb = 1,
937         .num_ddc = 5,
938         .num_vmid = 16,
939         .num_mpc_3dlut = 4,
940         .num_dsc = 4,
941 };
942
943 static const struct dc_plane_cap plane_cap = {
944         .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
945         .blends_with_above = true,
946         .blends_with_below = true,
947         .per_pixel_alpha = true,
948
949         .pixel_format_support = {
950                         .argb8888 = true,
951                         .nv12 = true,
952                         .fp16 = true,
953                         .p010 = true,
954                         .ayuv = false,
955         },
956
957         .max_upscale_factor = {
958                         .argb8888 = 16000,
959                         .nv12 = 16000,
960                         .fp16 = 16000
961         },
962
963         // 6:1 downscaling ratio: 1000/6 = 166.666
964         .max_downscale_factor = {
965                         .argb8888 = 167,
966                         .nv12 = 167,
967                         .fp16 = 167
968         },
969         64,
970         64
971 };
972
973 static const struct dc_debug_options debug_defaults_drv = {
974         .disable_dmcu = true,
975         .force_abm_enable = false,
976         .timing_trace = false,
977         .clock_trace = true,
978         .disable_pplib_clock_request = false,
979         .disable_idle_power_optimizations = true,
980         .pipe_split_policy = MPC_SPLIT_DYNAMIC,
981         .force_single_disp_pipe_split = false,
982         .disable_dcc = DCC_ENABLE,
983         .vsr_support = true,
984         .performance_trace = false,
985         .max_downscale_src_width = 7680,/*upto 8K*/
986         .disable_pplib_wm_range = false,
987         .scl_reset_length10 = true,
988         .sanity_checks = false,
989         .underflow_assert_delay_us = 0xFFFFFFFF,
990         .dwb_fi_phase = -1, // -1 = disable,
991         .dmub_command_table = true,
992         .enable_mem_low_power = {
993                 .bits = {
994                         .vga = false,
995                         .i2c = false,
996                         .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
997                         .dscl = false,
998                         .cm = false,
999                         .mpc = false,
1000                         .optc = false,
1001                 }
1002         },
1003         .use_max_lb = true,
1004         .force_disable_subvp = true
1005 };
1006
1007 static const struct dc_debug_options debug_defaults_diags = {
1008         .disable_dmcu = true,
1009         .force_abm_enable = false,
1010         .timing_trace = true,
1011         .clock_trace = true,
1012         .disable_dpp_power_gate = true,
1013         .disable_hubp_power_gate = true,
1014         .disable_dsc_power_gate = true,
1015         .disable_clock_gate = true,
1016         .disable_pplib_clock_request = true,
1017         .disable_pplib_wm_range = true,
1018         .disable_stutter = false,
1019         .scl_reset_length10 = true,
1020         .dwb_fi_phase = -1, // -1 = disable
1021         .dmub_command_table = true,
1022         .enable_tri_buf = true,
1023         .use_max_lb = true,
1024         .force_disable_subvp = true
1025 };
1026
1027 static struct dce_aux *dcn32_aux_engine_create(
1028         struct dc_context *ctx,
1029         uint32_t inst)
1030 {
1031         struct aux_engine_dce110 *aux_engine =
1032                 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
1033
1034         if (!aux_engine)
1035                 return NULL;
1036
1037         dce110_aux_engine_construct(aux_engine, ctx, inst,
1038                                     SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
1039                                     &aux_engine_regs[inst],
1040                                         &aux_mask,
1041                                         &aux_shift,
1042                                         ctx->dc->caps.extended_aux_timeout_support);
1043
1044         return &aux_engine->base;
1045 }
1046 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
1047
1048 static const struct dce_i2c_registers i2c_hw_regs[] = {
1049                 i2c_inst_regs(1),
1050                 i2c_inst_regs(2),
1051                 i2c_inst_regs(3),
1052                 i2c_inst_regs(4),
1053                 i2c_inst_regs(5),
1054 };
1055
1056 static const struct dce_i2c_shift i2c_shifts = {
1057                 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
1058 };
1059
1060 static const struct dce_i2c_mask i2c_masks = {
1061                 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
1062 };
1063
1064 static struct dce_i2c_hw *dcn32_i2c_hw_create(
1065         struct dc_context *ctx,
1066         uint32_t inst)
1067 {
1068         struct dce_i2c_hw *dce_i2c_hw =
1069                 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
1070
1071         if (!dce_i2c_hw)
1072                 return NULL;
1073
1074         dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
1075                                     &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
1076
1077         return dce_i2c_hw;
1078 }
1079
1080 static struct clock_source *dcn32_clock_source_create(
1081                 struct dc_context *ctx,
1082                 struct dc_bios *bios,
1083                 enum clock_source_id id,
1084                 const struct dce110_clk_src_regs *regs,
1085                 bool dp_clk_src)
1086 {
1087         struct dce110_clk_src *clk_src =
1088                 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1089
1090         if (!clk_src)
1091                 return NULL;
1092
1093         if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
1094                         regs, &cs_shift, &cs_mask)) {
1095                 clk_src->base.dp_clk_src = dp_clk_src;
1096                 return &clk_src->base;
1097         }
1098
1099         BREAK_TO_DEBUGGER();
1100         return NULL;
1101 }
1102
1103 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
1104 {
1105         int i;
1106
1107         struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
1108                                           GFP_KERNEL);
1109
1110         if (!hubbub2)
1111                 return NULL;
1112
1113         hubbub32_construct(hubbub2, ctx,
1114                         &hubbub_reg,
1115                         &hubbub_shift,
1116                         &hubbub_mask,
1117                         ctx->dc->dml.ip.det_buffer_size_kbytes,
1118                         ctx->dc->dml.ip.pixel_chunk_size_kbytes,
1119                         ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
1120
1121
1122         for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
1123                 struct dcn20_vmid *vmid = &hubbub2->vmid[i];
1124
1125                 vmid->ctx = ctx;
1126
1127                 vmid->regs = &vmid_regs[i];
1128                 vmid->shifts = &vmid_shifts;
1129                 vmid->masks = &vmid_masks;
1130         }
1131
1132         return &hubbub2->base;
1133 }
1134
1135 static struct hubp *dcn32_hubp_create(
1136         struct dc_context *ctx,
1137         uint32_t inst)
1138 {
1139         struct dcn20_hubp *hubp2 =
1140                 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1141
1142         if (!hubp2)
1143                 return NULL;
1144
1145         if (hubp32_construct(hubp2, ctx, inst,
1146                         &hubp_regs[inst], &hubp_shift, &hubp_mask))
1147                 return &hubp2->base;
1148
1149         BREAK_TO_DEBUGGER();
1150         kfree(hubp2);
1151         return NULL;
1152 }
1153
1154 static void dcn32_dpp_destroy(struct dpp **dpp)
1155 {
1156         kfree(TO_DCN30_DPP(*dpp));
1157         *dpp = NULL;
1158 }
1159
1160 static struct dpp *dcn32_dpp_create(
1161         struct dc_context *ctx,
1162         uint32_t inst)
1163 {
1164         struct dcn3_dpp *dpp3 =
1165                 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
1166
1167         if (!dpp3)
1168                 return NULL;
1169
1170         if (dpp32_construct(dpp3, ctx, inst,
1171                         &dpp_regs[inst], &tf_shift, &tf_mask))
1172                 return &dpp3->base;
1173
1174         BREAK_TO_DEBUGGER();
1175         kfree(dpp3);
1176         return NULL;
1177 }
1178
1179 static struct mpc *dcn32_mpc_create(
1180                 struct dc_context *ctx,
1181                 int num_mpcc,
1182                 int num_rmu)
1183 {
1184         struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
1185                                           GFP_KERNEL);
1186
1187         if (!mpc30)
1188                 return NULL;
1189
1190         dcn32_mpc_construct(mpc30, ctx,
1191                         &mpc_regs,
1192                         &mpc_shift,
1193                         &mpc_mask,
1194                         num_mpcc,
1195                         num_rmu);
1196
1197         return &mpc30->base;
1198 }
1199
1200 static struct output_pixel_processor *dcn32_opp_create(
1201         struct dc_context *ctx, uint32_t inst)
1202 {
1203         struct dcn20_opp *opp2 =
1204                 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
1205
1206         if (!opp2) {
1207                 BREAK_TO_DEBUGGER();
1208                 return NULL;
1209         }
1210
1211         dcn20_opp_construct(opp2, ctx, inst,
1212                         &opp_regs[inst], &opp_shift, &opp_mask);
1213         return &opp2->base;
1214 }
1215
1216
1217 static struct timing_generator *dcn32_timing_generator_create(
1218                 struct dc_context *ctx,
1219                 uint32_t instance)
1220 {
1221         struct optc *tgn10 =
1222                 kzalloc(sizeof(struct optc), GFP_KERNEL);
1223
1224         if (!tgn10)
1225                 return NULL;
1226
1227         tgn10->base.inst = instance;
1228         tgn10->base.ctx = ctx;
1229
1230         tgn10->tg_regs = &optc_regs[instance];
1231         tgn10->tg_shift = &optc_shift;
1232         tgn10->tg_mask = &optc_mask;
1233
1234         dcn32_timing_generator_init(tgn10);
1235
1236         return &tgn10->base;
1237 }
1238
1239 static const struct encoder_feature_support link_enc_feature = {
1240                 .max_hdmi_deep_color = COLOR_DEPTH_121212,
1241                 .max_hdmi_pixel_clock = 600000,
1242                 .hdmi_ycbcr420_supported = true,
1243                 .dp_ycbcr420_supported = true,
1244                 .fec_supported = true,
1245                 .flags.bits.IS_HBR2_CAPABLE = true,
1246                 .flags.bits.IS_HBR3_CAPABLE = true,
1247                 .flags.bits.IS_TPS3_CAPABLE = true,
1248                 .flags.bits.IS_TPS4_CAPABLE = true
1249 };
1250
1251 static struct link_encoder *dcn32_link_encoder_create(
1252         const struct encoder_init_data *enc_init_data)
1253 {
1254         struct dcn20_link_encoder *enc20 =
1255                 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1256
1257         if (!enc20)
1258                 return NULL;
1259
1260         dcn32_link_encoder_construct(enc20,
1261                         enc_init_data,
1262                         &link_enc_feature,
1263                         &link_enc_regs[enc_init_data->transmitter],
1264                         &link_enc_aux_regs[enc_init_data->channel - 1],
1265                         &link_enc_hpd_regs[enc_init_data->hpd_source],
1266                         &le_shift,
1267                         &le_mask);
1268
1269         return &enc20->enc10.base;
1270 }
1271
1272 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1273 {
1274         struct dcn31_panel_cntl *panel_cntl =
1275                 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1276
1277         if (!panel_cntl)
1278                 return NULL;
1279
1280         dcn31_panel_cntl_construct(panel_cntl, init_data);
1281
1282         return &panel_cntl->base;
1283 }
1284
1285 static void read_dce_straps(
1286         struct dc_context *ctx,
1287         struct resource_straps *straps)
1288 {
1289         generic_reg_get(ctx, regDC_PINSTRAPS + BASE(regDC_PINSTRAPS_BASE_IDX),
1290                 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1291
1292 }
1293
1294 static struct audio *dcn32_create_audio(
1295                 struct dc_context *ctx, unsigned int inst)
1296 {
1297         return dce_audio_create(ctx, inst,
1298                         &audio_regs[inst], &audio_shift, &audio_mask);
1299 }
1300
1301 static struct vpg *dcn32_vpg_create(
1302         struct dc_context *ctx,
1303         uint32_t inst)
1304 {
1305         struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1306
1307         if (!vpg3)
1308                 return NULL;
1309
1310         vpg3_construct(vpg3, ctx, inst,
1311                         &vpg_regs[inst],
1312                         &vpg_shift,
1313                         &vpg_mask);
1314
1315         return &vpg3->base;
1316 }
1317
1318 static struct afmt *dcn32_afmt_create(
1319         struct dc_context *ctx,
1320         uint32_t inst)
1321 {
1322         struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1323
1324         if (!afmt3)
1325                 return NULL;
1326
1327         afmt3_construct(afmt3, ctx, inst,
1328                         &afmt_regs[inst],
1329                         &afmt_shift,
1330                         &afmt_mask);
1331
1332         return &afmt3->base;
1333 }
1334
1335 static struct apg *dcn31_apg_create(
1336         struct dc_context *ctx,
1337         uint32_t inst)
1338 {
1339         struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1340
1341         if (!apg31)
1342                 return NULL;
1343
1344         apg31_construct(apg31, ctx, inst,
1345                         &apg_regs[inst],
1346                         &apg_shift,
1347                         &apg_mask);
1348
1349         return &apg31->base;
1350 }
1351
1352 static struct stream_encoder *dcn32_stream_encoder_create(
1353         enum engine_id eng_id,
1354         struct dc_context *ctx)
1355 {
1356         struct dcn10_stream_encoder *enc1;
1357         struct vpg *vpg;
1358         struct afmt *afmt;
1359         int vpg_inst;
1360         int afmt_inst;
1361
1362         /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1363         if (eng_id <= ENGINE_ID_DIGF) {
1364                 vpg_inst = eng_id;
1365                 afmt_inst = eng_id;
1366         } else
1367                 return NULL;
1368
1369         enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1370         vpg = dcn32_vpg_create(ctx, vpg_inst);
1371         afmt = dcn32_afmt_create(ctx, afmt_inst);
1372
1373         if (!enc1 || !vpg || !afmt) {
1374                 kfree(enc1);
1375                 kfree(vpg);
1376                 kfree(afmt);
1377                 return NULL;
1378         }
1379
1380         dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1381                                         eng_id, vpg, afmt,
1382                                         &stream_enc_regs[eng_id],
1383                                         &se_shift, &se_mask);
1384
1385         return &enc1->base;
1386 }
1387
1388 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1389         enum engine_id eng_id,
1390         struct dc_context *ctx)
1391 {
1392         struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1393         struct vpg *vpg;
1394         struct apg *apg;
1395         uint32_t hpo_dp_inst;
1396         uint32_t vpg_inst;
1397         uint32_t apg_inst;
1398
1399         ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1400         hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1401
1402         /* Mapping of VPG register blocks to HPO DP block instance:
1403          * VPG[6] -> HPO_DP[0]
1404          * VPG[7] -> HPO_DP[1]
1405          * VPG[8] -> HPO_DP[2]
1406          * VPG[9] -> HPO_DP[3]
1407          */
1408         vpg_inst = hpo_dp_inst + 6;
1409
1410         /* Mapping of APG register blocks to HPO DP block instance:
1411          * APG[0] -> HPO_DP[0]
1412          * APG[1] -> HPO_DP[1]
1413          * APG[2] -> HPO_DP[2]
1414          * APG[3] -> HPO_DP[3]
1415          */
1416         apg_inst = hpo_dp_inst;
1417
1418         /* allocate HPO stream encoder and create VPG sub-block */
1419         hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1420         vpg = dcn32_vpg_create(ctx, vpg_inst);
1421         apg = dcn31_apg_create(ctx, apg_inst);
1422
1423         if (!hpo_dp_enc31 || !vpg || !apg) {
1424                 kfree(hpo_dp_enc31);
1425                 kfree(vpg);
1426                 kfree(apg);
1427                 return NULL;
1428         }
1429
1430         dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1431                                         hpo_dp_inst, eng_id, vpg, apg,
1432                                         &hpo_dp_stream_enc_regs[hpo_dp_inst],
1433                                         &hpo_dp_se_shift, &hpo_dp_se_mask);
1434
1435         return &hpo_dp_enc31->base;
1436 }
1437
1438 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1439         uint8_t inst,
1440         struct dc_context *ctx)
1441 {
1442         struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1443
1444         /* allocate HPO link encoder */
1445         hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1446
1447         hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1448                                         &hpo_dp_link_enc_regs[inst],
1449                                         &hpo_dp_le_shift, &hpo_dp_le_mask);
1450
1451         return &hpo_dp_enc31->base;
1452 }
1453
1454 static struct dce_hwseq *dcn32_hwseq_create(
1455         struct dc_context *ctx)
1456 {
1457         struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1458
1459         if (hws) {
1460                 hws->ctx = ctx;
1461                 hws->regs = &hwseq_reg;
1462                 hws->shifts = &hwseq_shift;
1463                 hws->masks = &hwseq_mask;
1464         }
1465         return hws;
1466 }
1467 static const struct resource_create_funcs res_create_funcs = {
1468         .read_dce_straps = read_dce_straps,
1469         .create_audio = dcn32_create_audio,
1470         .create_stream_encoder = dcn32_stream_encoder_create,
1471         .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1472         .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1473         .create_hwseq = dcn32_hwseq_create,
1474 };
1475
1476 static const struct resource_create_funcs res_create_maximus_funcs = {
1477         .read_dce_straps = NULL,
1478         .create_audio = NULL,
1479         .create_stream_encoder = NULL,
1480         .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1481         .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1482         .create_hwseq = dcn32_hwseq_create,
1483 };
1484
1485 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1486 {
1487         unsigned int i;
1488
1489         for (i = 0; i < pool->base.stream_enc_count; i++) {
1490                 if (pool->base.stream_enc[i] != NULL) {
1491                         if (pool->base.stream_enc[i]->vpg != NULL) {
1492                                 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1493                                 pool->base.stream_enc[i]->vpg = NULL;
1494                         }
1495                         if (pool->base.stream_enc[i]->afmt != NULL) {
1496                                 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1497                                 pool->base.stream_enc[i]->afmt = NULL;
1498                         }
1499                         kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1500                         pool->base.stream_enc[i] = NULL;
1501                 }
1502         }
1503
1504         for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1505                 if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1506                         if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1507                                 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1508                                 pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1509                         }
1510                         if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1511                                 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1512                                 pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1513                         }
1514                         kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1515                         pool->base.hpo_dp_stream_enc[i] = NULL;
1516                 }
1517         }
1518
1519         for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1520                 if (pool->base.hpo_dp_link_enc[i] != NULL) {
1521                         kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1522                         pool->base.hpo_dp_link_enc[i] = NULL;
1523                 }
1524         }
1525
1526         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1527                 if (pool->base.dscs[i] != NULL)
1528                         dcn20_dsc_destroy(&pool->base.dscs[i]);
1529         }
1530
1531         if (pool->base.mpc != NULL) {
1532                 kfree(TO_DCN20_MPC(pool->base.mpc));
1533                 pool->base.mpc = NULL;
1534         }
1535         if (pool->base.hubbub != NULL) {
1536                 kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1537                 pool->base.hubbub = NULL;
1538         }
1539         for (i = 0; i < pool->base.pipe_count; i++) {
1540                 if (pool->base.dpps[i] != NULL)
1541                         dcn32_dpp_destroy(&pool->base.dpps[i]);
1542
1543                 if (pool->base.ipps[i] != NULL)
1544                         pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1545
1546                 if (pool->base.hubps[i] != NULL) {
1547                         kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1548                         pool->base.hubps[i] = NULL;
1549                 }
1550
1551                 if (pool->base.irqs != NULL) {
1552                         dal_irq_service_destroy(&pool->base.irqs);
1553                 }
1554         }
1555
1556         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1557                 if (pool->base.engines[i] != NULL)
1558                         dce110_engine_destroy(&pool->base.engines[i]);
1559                 if (pool->base.hw_i2cs[i] != NULL) {
1560                         kfree(pool->base.hw_i2cs[i]);
1561                         pool->base.hw_i2cs[i] = NULL;
1562                 }
1563                 if (pool->base.sw_i2cs[i] != NULL) {
1564                         kfree(pool->base.sw_i2cs[i]);
1565                         pool->base.sw_i2cs[i] = NULL;
1566                 }
1567         }
1568
1569         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1570                 if (pool->base.opps[i] != NULL)
1571                         pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1572         }
1573
1574         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1575                 if (pool->base.timing_generators[i] != NULL)    {
1576                         kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1577                         pool->base.timing_generators[i] = NULL;
1578                 }
1579         }
1580
1581         for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1582                 if (pool->base.dwbc[i] != NULL) {
1583                         kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1584                         pool->base.dwbc[i] = NULL;
1585                 }
1586                 if (pool->base.mcif_wb[i] != NULL) {
1587                         kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1588                         pool->base.mcif_wb[i] = NULL;
1589                 }
1590         }
1591
1592         for (i = 0; i < pool->base.audio_count; i++) {
1593                 if (pool->base.audios[i])
1594                         dce_aud_destroy(&pool->base.audios[i]);
1595         }
1596
1597         for (i = 0; i < pool->base.clk_src_count; i++) {
1598                 if (pool->base.clock_sources[i] != NULL) {
1599                         dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1600                         pool->base.clock_sources[i] = NULL;
1601                 }
1602         }
1603
1604         for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1605                 if (pool->base.mpc_lut[i] != NULL) {
1606                         dc_3dlut_func_release(pool->base.mpc_lut[i]);
1607                         pool->base.mpc_lut[i] = NULL;
1608                 }
1609                 if (pool->base.mpc_shaper[i] != NULL) {
1610                         dc_transfer_func_release(pool->base.mpc_shaper[i]);
1611                         pool->base.mpc_shaper[i] = NULL;
1612                 }
1613         }
1614
1615         if (pool->base.dp_clock_source != NULL) {
1616                 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1617                 pool->base.dp_clock_source = NULL;
1618         }
1619
1620         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1621                 if (pool->base.multiple_abms[i] != NULL)
1622                         dce_abm_destroy(&pool->base.multiple_abms[i]);
1623         }
1624
1625         if (pool->base.psr != NULL)
1626                 dmub_psr_destroy(&pool->base.psr);
1627
1628         if (pool->base.dccg != NULL)
1629                 dcn_dccg_destroy(&pool->base.dccg);
1630
1631         if (pool->base.oem_device != NULL)
1632                 dal_ddc_service_destroy(&pool->base.oem_device);
1633 }
1634
1635
1636 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1637 {
1638         int i;
1639         uint32_t dwb_count = pool->res_cap->num_dwb;
1640
1641         for (i = 0; i < dwb_count; i++) {
1642                 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1643                                                     GFP_KERNEL);
1644
1645                 if (!dwbc30) {
1646                         dm_error("DC: failed to create dwbc30!\n");
1647                         return false;
1648                 }
1649
1650                 dcn30_dwbc_construct(dwbc30, ctx,
1651                                 &dwbc30_regs[i],
1652                                 &dwbc30_shift,
1653                                 &dwbc30_mask,
1654                                 i);
1655
1656                 pool->dwbc[i] = &dwbc30->base;
1657         }
1658         return true;
1659 }
1660
1661 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1662 {
1663         int i;
1664         uint32_t dwb_count = pool->res_cap->num_dwb;
1665
1666         for (i = 0; i < dwb_count; i++) {
1667                 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1668                                                     GFP_KERNEL);
1669
1670                 if (!mcif_wb30) {
1671                         dm_error("DC: failed to create mcif_wb30!\n");
1672                         return false;
1673                 }
1674
1675                 dcn32_mmhubbub_construct(mcif_wb30, ctx,
1676                                 &mcif_wb30_regs[i],
1677                                 &mcif_wb30_shift,
1678                                 &mcif_wb30_mask,
1679                                 i);
1680
1681                 pool->mcif_wb[i] = &mcif_wb30->base;
1682         }
1683         return true;
1684 }
1685
1686 static struct display_stream_compressor *dcn32_dsc_create(
1687         struct dc_context *ctx, uint32_t inst)
1688 {
1689         struct dcn20_dsc *dsc =
1690                 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1691
1692         if (!dsc) {
1693                 BREAK_TO_DEBUGGER();
1694                 return NULL;
1695         }
1696
1697         dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1698         return &dsc->base;
1699 }
1700
1701 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1702 {
1703         struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1704
1705         dcn32_resource_destruct(dcn32_pool);
1706         kfree(dcn32_pool);
1707         *pool = NULL;
1708 }
1709
1710 bool dcn32_acquire_post_bldn_3dlut(
1711                 struct resource_context *res_ctx,
1712                 const struct resource_pool *pool,
1713                 int mpcc_id,
1714                 struct dc_3dlut **lut,
1715                 struct dc_transfer_func **shaper)
1716 {
1717         bool ret = false;
1718         union dc_3dlut_state *state;
1719
1720         ASSERT(*lut == NULL && *shaper == NULL);
1721         *lut = NULL;
1722         *shaper = NULL;
1723
1724         if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1725                 *lut = pool->mpc_lut[mpcc_id];
1726                 *shaper = pool->mpc_shaper[mpcc_id];
1727                 state = &pool->mpc_lut[mpcc_id]->state;
1728                 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1729                 ret = true;
1730         }
1731         return ret;
1732 }
1733
1734 bool dcn32_release_post_bldn_3dlut(
1735                 struct resource_context *res_ctx,
1736                 const struct resource_pool *pool,
1737                 struct dc_3dlut **lut,
1738                 struct dc_transfer_func **shaper)
1739 {
1740         int i;
1741         bool ret = false;
1742
1743         for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1744                 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1745                         res_ctx->is_mpc_3dlut_acquired[i] = false;
1746                         pool->mpc_lut[i]->state.raw = 0;
1747                         *lut = NULL;
1748                         *shaper = NULL;
1749                         ret = true;
1750                         break;
1751                 }
1752         }
1753         return ret;
1754 }
1755
1756 /**
1757  ********************************************************************************************
1758  * dcn32_get_num_free_pipes: Calculate number of free pipes
1759  *
1760  * This function assumes that a "used" pipe is a pipe that has
1761  * both a stream and a plane assigned to it.
1762  *
1763  * @param [in] dc: current dc state
1764  * @param [in] context: new dc state
1765  *
1766  * @return: Number of free pipes available in the context
1767  *
1768  ********************************************************************************************
1769  */
1770 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
1771 {
1772         unsigned int i;
1773         unsigned int free_pipes = 0;
1774         unsigned int num_pipes = 0;
1775
1776         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1777                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1778
1779                 if (pipe->stream && pipe->plane_state && !pipe->top_pipe) {
1780                         while (pipe) {
1781                                 num_pipes++;
1782                                 pipe = pipe->bottom_pipe;
1783                         }
1784                 }
1785         }
1786
1787         free_pipes = dc->res_pool->pipe_count - num_pipes;
1788         return free_pipes;
1789 }
1790
1791 /**
1792  ********************************************************************************************
1793  * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP.
1794  *
1795  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
1796  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
1797  * we are forcing SubVP P-State switching on the current config.
1798  *
1799  * The number of pipes used for the chosen surface must be less than or equal to the
1800  * number of free pipes available.
1801  *
1802  * In general we choose surfaces that have ActiveDRAMClockChangeLatencyMargin <= 0 first,
1803  * then among those surfaces we choose the one with the smallest VBLANK time. We only consider
1804  * surfaces with ActiveDRAMClockChangeLatencyMargin > 0 if we are forcing a Sub-VP config.
1805  *
1806  * @param [in] dc: current dc state
1807  * @param [in] context: new dc state
1808  * @param [out] index: dc pipe index for the pipe chosen to have phantom pipes assigned
1809  *
1810  * @return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
1811  *
1812  ********************************************************************************************
1813  */
1814
1815 static bool dcn32_assign_subvp_pipe(struct dc *dc,
1816                 struct dc_state *context,
1817                 unsigned int *index)
1818 {
1819         unsigned int i, pipe_idx;
1820         unsigned int min_vblank_us = INT_MAX;
1821         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1822         bool valid_assignment_found = false;
1823         unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
1824
1825         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1826                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1827                 unsigned int num_pipes = 0;
1828
1829                 if (!pipe->stream)
1830                         continue;
1831
1832                 if (pipe->plane_state && !pipe->top_pipe &&
1833                                 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1834                         while (pipe) {
1835                                 num_pipes++;
1836                                 pipe = pipe->bottom_pipe;
1837                         }
1838
1839                         pipe = &context->res_ctx.pipe_ctx[i];
1840                         if (num_pipes <= free_pipes) {
1841                                 struct dc_stream_state *stream = pipe->stream;
1842                                 unsigned int vblank_us = ((stream->timing.v_total - stream->timing.v_addressable) *
1843                                                         stream->timing.h_total /
1844                                                         (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
1845                                 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] <= 0 &&
1846                                                 vblank_us < min_vblank_us) {
1847                                         *index = i;
1848                                         min_vblank_us = vblank_us;
1849                                         valid_assignment_found = true;
1850                                 } else if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
1851                                                 dc->debug.force_subvp_mclk_switch && !valid_assignment_found) {
1852                                         // Handle case for forcing Sub-VP config. In this case we can assign
1853                                         // phantom pipes to a surface that has active margin > 0.
1854                                         *index = i;
1855                                         valid_assignment_found = true;
1856                                 }
1857                         }
1858                 }
1859                 pipe_idx++;
1860         }
1861         return valid_assignment_found;
1862 }
1863
1864 /**
1865  * ***************************************************************************************
1866  * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP.
1867  *
1868  * This function returns true if there are enough free pipes
1869  * to create the required phantom pipes for any given stream
1870  * (that does not already have phantom pipe assigned).
1871  *
1872  * e.g. For a 2 stream config where the first stream uses one
1873  * pipe and the second stream uses 2 pipes (i.e. pipe split),
1874  * this function will return true because there is 1 remaining
1875  * pipe which can be used as the phantom pipe for the non pipe
1876  * split pipe.
1877  *
1878  * @param [in] dc: current dc state
1879  * @param [in] context: new dc state
1880  *
1881  * @return: True if there are enough free pipes to assign phantom pipes to at least one
1882  *          stream that does not already have phantom pipes assigned. Otherwise false.
1883  *
1884  * ***************************************************************************************
1885  */
1886 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
1887 {
1888         unsigned int i, split_cnt, free_pipes;
1889         unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
1890         bool subvp_possible = false;
1891
1892         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1893                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1894
1895                 // Find the minimum pipe split count for non SubVP pipes
1896                 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1897                                 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1898                         split_cnt = 0;
1899                         while (pipe) {
1900                                 split_cnt++;
1901                                 pipe = pipe->bottom_pipe;
1902                         }
1903
1904                         if (split_cnt < min_pipe_split)
1905                                 min_pipe_split = split_cnt;
1906                 }
1907         }
1908
1909         free_pipes = dcn32_get_num_free_pipes(dc, context);
1910
1911         // SubVP only possible if at least one pipe is being used (i.e. free_pipes
1912         // should not equal to the pipe_count)
1913         if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
1914                 subvp_possible = true;
1915
1916         return subvp_possible;
1917 }
1918
1919 static void dcn32_enable_phantom_plane(struct dc *dc,
1920                 struct dc_state *context,
1921                 struct dc_stream_state *phantom_stream,
1922                 unsigned int dc_pipe_idx)
1923 {
1924         struct dc_plane_state *phantom_plane = NULL;
1925         struct dc_plane_state *prev_phantom_plane = NULL;
1926         struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1927
1928         while (curr_pipe) {
1929                 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1930                         phantom_plane = prev_phantom_plane;
1931                 else
1932                         phantom_plane = dc_create_plane_state(dc);
1933
1934                 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1935                 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1936                                 sizeof(phantom_plane->scaling_quality));
1937                 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1938                 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1939                 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1940                 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1941                                 sizeof(phantom_plane->plane_size));
1942                 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1943                                 sizeof(phantom_plane->tiling_info));
1944                 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1945                 phantom_plane->format = curr_pipe->plane_state->format;
1946                 phantom_plane->rotation = curr_pipe->plane_state->rotation;
1947                 phantom_plane->visible = curr_pipe->plane_state->visible;
1948
1949                 /* Shadow pipe has small viewport. */
1950                 phantom_plane->clip_rect.y = 0;
1951                 phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable;
1952
1953                 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1954
1955                 curr_pipe = curr_pipe->bottom_pipe;
1956                 prev_phantom_plane = phantom_plane;
1957         }
1958 }
1959
1960 /**
1961  * ***************************************************************************************
1962  * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream
1963  *
1964  * Set timing params of the phantom stream based on calculated output from DML.
1965  * This function first gets the DML pipe index using the DC pipe index, then
1966  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
1967  * lines required for SubVP MCLK switching and assigns to the phantom stream
1968  * accordingly.
1969  *
1970  * - The number of SubVP lines calculated in DML does not take into account
1971  * FW processing delays and required pstate allow width, so we must include
1972  * that separately.
1973  *
1974  * - Set phantom backporch = vstartup of main pipe
1975  *
1976  * @param [in] dc: current dc state
1977  * @param [in] context: new dc state
1978  * @param [in] ref_pipe: Main pipe for the phantom stream
1979  * @param [in] pipes: DML pipe params
1980  * @param [in] pipe_cnt: number of DML pipes
1981  * @param [in] dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
1982  *
1983  * @return: void
1984  *
1985  * ***************************************************************************************
1986  */
1987 static void dcn32_set_phantom_stream_timing(struct dc *dc,
1988                 struct dc_state *context,
1989                 struct pipe_ctx *ref_pipe,
1990                 struct dc_stream_state *phantom_stream,
1991                 display_e2e_pipe_params_st *pipes,
1992                 unsigned int pipe_cnt,
1993                 unsigned int dc_pipe_idx)
1994 {
1995         unsigned int i, pipe_idx;
1996         struct pipe_ctx *pipe;
1997         uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
1998         unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
1999         unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2000         unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
2001
2002         // Find DML pipe index (pipe_idx) using dc_pipe_idx
2003         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2004                 pipe = &context->res_ctx.pipe_ctx[i];
2005
2006                 if (!pipe->stream)
2007                         continue;
2008
2009                 if (i == dc_pipe_idx)
2010                         break;
2011
2012                 pipe_idx++;
2013         }
2014
2015         // Calculate lines required for pstate allow width and FW processing delays
2016         pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
2017                         dc->caps.subvp_pstate_allow_width_us) / 1000000) *
2018                         (ref_pipe->stream->timing.pix_clk_100hz * 100) /
2019                         (double)ref_pipe->stream->timing.h_total;
2020
2021         // Update clks_cfg for calling into recalculate
2022         pipes[0].clks_cfg.voltage = vlevel;
2023         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2024         pipes[0].clks_cfg.socclk_mhz = socclk;
2025
2026         // DML calculation for MALL region doesn't take into account FW delay
2027         // and required pstate allow width for multi-display cases
2028         phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
2029                                 pstate_width_fw_delay_lines;
2030
2031         // For backporch of phantom pipe, use vstartup of the main pipe
2032         phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2033
2034         phantom_stream->dst.y = 0;
2035         phantom_stream->dst.height = phantom_vactive;
2036         phantom_stream->src.y = 0;
2037         phantom_stream->src.height = phantom_vactive;
2038
2039         phantom_stream->timing.v_addressable = phantom_vactive;
2040         phantom_stream->timing.v_front_porch = 1;
2041         phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
2042                                                 phantom_stream->timing.v_front_porch +
2043                                                 phantom_stream->timing.v_sync_width +
2044                                                 phantom_bp;
2045 }
2046
2047 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
2048                 struct dc_state *context,
2049                 display_e2e_pipe_params_st *pipes,
2050                 unsigned int pipe_cnt,
2051                 unsigned int dc_pipe_idx)
2052 {
2053         struct dc_stream_state *phantom_stream = NULL;
2054         struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
2055
2056         phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
2057         phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
2058         phantom_stream->dpms_off = true;
2059         phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
2060         phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
2061         ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
2062         ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
2063
2064         /* stream has limited viewport and small timing */
2065         memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
2066         memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
2067         memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
2068         dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
2069
2070         dc_add_stream_to_ctx(dc, context, phantom_stream);
2071         return phantom_stream;
2072 }
2073
2074 void dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context)
2075 {
2076         int i;
2077         bool removed_pipe = false;
2078
2079         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2080                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2081                 // build scaling params for phantom pipes
2082                 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
2083                         dc_rem_all_planes_for_stream(dc, pipe->stream, context);
2084                         dc_remove_stream_from_ctx(dc, context, pipe->stream);
2085                         removed_pipe = true;
2086                 }
2087
2088                 // Clear all phantom stream info
2089                 if (pipe->stream) {
2090                         pipe->stream->mall_stream_config.type = SUBVP_NONE;
2091                         pipe->stream->mall_stream_config.paired_stream = NULL;
2092                 }
2093         }
2094         if (removed_pipe)
2095                 dc->hwss.apply_ctx_to_hw(dc, context);
2096 }
2097
2098 /* TODO: Input to this function should indicate which pipe indexes (or streams)
2099  * require a phantom pipe / stream
2100  */
2101 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
2102                 display_e2e_pipe_params_st *pipes,
2103                 unsigned int pipe_cnt,
2104                 unsigned int index)
2105 {
2106         struct dc_stream_state *phantom_stream = NULL;
2107         unsigned int i;
2108
2109         // The index of the DC pipe passed into this function is guarenteed to
2110         // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
2111         // already have phantom pipe assigned, etc.) by previous checks.
2112         phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
2113         dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
2114
2115         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2116                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2117
2118                 // Build scaling params for phantom pipes which were newly added.
2119                 // We determine which phantom pipes were added by comparing with
2120                 // the phantom stream.
2121                 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
2122                                 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
2123                         pipe->stream->use_dynamic_meta = false;
2124                         pipe->plane_state->flip_immediate = false;
2125                         if (!resource_build_scaling_params(pipe)) {
2126                                 // Log / remove phantom pipes since failed to build scaling params
2127                         }
2128                 }
2129         }
2130 }
2131
2132 static bool dcn32_split_stream_for_mpc_or_odm(
2133                 const struct dc *dc,
2134                 struct resource_context *res_ctx,
2135                 struct pipe_ctx *pri_pipe,
2136                 struct pipe_ctx *sec_pipe,
2137                 bool odm)
2138 {
2139         int pipe_idx = sec_pipe->pipe_idx;
2140         const struct resource_pool *pool = dc->res_pool;
2141
2142         if (pri_pipe->plane_state) {
2143                 /* ODM + window MPO, where MPO window is on left half only */
2144                 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
2145                                 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2)
2146                         return true;
2147
2148                 /* ODM + window MPO, where MPO window is on right half only */
2149                 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.width/2)
2150                         return true;
2151         }
2152
2153         *sec_pipe = *pri_pipe;
2154
2155         sec_pipe->pipe_idx = pipe_idx;
2156         sec_pipe->plane_res.mi = pool->mis[pipe_idx];
2157         sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
2158         sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
2159         sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
2160         sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
2161         sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
2162         sec_pipe->stream_res.dsc = NULL;
2163         if (odm) {
2164                 if (pri_pipe->next_odm_pipe) {
2165                         ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
2166                         sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
2167                         sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
2168                 }
2169                 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
2170                         pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
2171                         sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
2172                 }
2173                 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
2174                         pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
2175                         sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
2176                 }
2177                 pri_pipe->next_odm_pipe = sec_pipe;
2178                 sec_pipe->prev_odm_pipe = pri_pipe;
2179                 ASSERT(sec_pipe->top_pipe == NULL);
2180
2181                 if (!sec_pipe->top_pipe)
2182                         sec_pipe->stream_res.opp = pool->opps[pipe_idx];
2183                 else
2184                         sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
2185                 if (sec_pipe->stream->timing.flags.DSC == 1) {
2186                         dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
2187                         ASSERT(sec_pipe->stream_res.dsc);
2188                         if (sec_pipe->stream_res.dsc == NULL)
2189                                 return false;
2190                 }
2191         } else {
2192                 if (pri_pipe->bottom_pipe) {
2193                         ASSERT(pri_pipe->bottom_pipe != sec_pipe);
2194                         sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
2195                         sec_pipe->bottom_pipe->top_pipe = sec_pipe;
2196                 }
2197                 pri_pipe->bottom_pipe = sec_pipe;
2198                 sec_pipe->top_pipe = pri_pipe;
2199
2200                 ASSERT(pri_pipe->plane_state);
2201         }
2202
2203         return true;
2204 }
2205
2206 static struct pipe_ctx *dcn32_find_split_pipe(
2207                 struct dc *dc,
2208                 struct dc_state *context,
2209                 int old_index)
2210 {
2211         struct pipe_ctx *pipe = NULL;
2212         int i;
2213
2214         if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
2215                 pipe = &context->res_ctx.pipe_ctx[old_index];
2216                 pipe->pipe_idx = old_index;
2217         }
2218
2219         if (!pipe)
2220                 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
2221                         if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
2222                                         && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
2223                                 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
2224                                         pipe = &context->res_ctx.pipe_ctx[i];
2225                                         pipe->pipe_idx = i;
2226                                         break;
2227                                 }
2228                         }
2229                 }
2230
2231         /*
2232          * May need to fix pipes getting tossed from 1 opp to another on flip
2233          * Add for debugging transient underflow during topology updates:
2234          * ASSERT(pipe);
2235          */
2236         if (!pipe)
2237                 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
2238                         if (context->res_ctx.pipe_ctx[i].stream == NULL) {
2239                                 pipe = &context->res_ctx.pipe_ctx[i];
2240                                 pipe->pipe_idx = i;
2241                                 break;
2242                         }
2243                 }
2244
2245         return pipe;
2246 }
2247
2248
2249 /**
2250  * ***************************************************************************************
2251  * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable
2252  *
2253  * High level algorithm:
2254  * 1. Find longest microschedule length (in us) between the two SubVP pipes
2255  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
2256  * pipes still allows for the maximum microschedule to fit in the active
2257  * region for both pipes.
2258  *
2259  * @param [in] dc: current dc state
2260  * @param [in] context: new dc state
2261  *
2262  * @return: bool - True if the SubVP + SubVP config is schedulable, false otherwise
2263  *
2264  * ***************************************************************************************
2265  */
2266 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
2267 {
2268         struct pipe_ctx *subvp_pipes[2];
2269         struct dc_stream_state *phantom = NULL;
2270         uint32_t microschedule_lines = 0;
2271         uint32_t index = 0;
2272         uint32_t i;
2273         uint32_t max_microschedule_us = 0;
2274         int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
2275
2276         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2277                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2278                 uint32_t time_us = 0;
2279
2280                 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
2281                  * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
2282                  */
2283                 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
2284                                 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
2285                         phantom = pipe->stream->mall_stream_config.paired_stream;
2286                         microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
2287                                         phantom->timing.v_addressable;
2288
2289                         // Round up when calculating microschedule time
2290                         time_us = ((microschedule_lines * phantom->timing.h_total +
2291                                         phantom->timing.pix_clk_100hz * 100 - 1) /
2292                                         (double)(phantom->timing.pix_clk_100hz * 100)) * 1000000 +
2293                                                 dc->caps.subvp_prefetch_end_to_mall_start_us +
2294                                                 dc->caps.subvp_fw_processing_delay_us;
2295                         if (time_us > max_microschedule_us)
2296                                 max_microschedule_us = time_us;
2297
2298                         subvp_pipes[index] = pipe;
2299                         index++;
2300
2301                         // Maximum 2 SubVP pipes
2302                         if (index == 2)
2303                                 break;
2304                 }
2305         }
2306         vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
2307                         (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2308         vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
2309                                 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2310         vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
2311                         subvp_pipes[0]->stream->timing.h_total) /
2312                         (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2313         vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
2314                         subvp_pipes[1]->stream->timing.h_total) /
2315                         (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2316
2317         if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
2318                         (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
2319                 return true;
2320
2321         return false;
2322 }
2323
2324 /**
2325  * ***************************************************************************************
2326  * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable
2327  *
2328  * High level algorithm:
2329  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
2330  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
2331  * (the margin is equal to the MALL region + DRR margin (500us))
2332  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
2333  * then report the configuration as supported
2334  *
2335  * @param [in] dc: current dc state
2336  * @param [in] context: new dc state
2337  * @param [in] drr_pipe: DRR pipe_ctx for the SubVP + DRR config
2338  *
2339  * @return: bool - True if the SubVP + DRR config is schedulable, false otherwise
2340  *
2341  * ***************************************************************************************
2342  */
2343 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
2344 {
2345         bool schedulable = false;
2346         uint32_t i;
2347         struct pipe_ctx *pipe = NULL;
2348         struct dc_crtc_timing *main_timing = NULL;
2349         struct dc_crtc_timing *phantom_timing = NULL;
2350         struct dc_crtc_timing *drr_timing = NULL;
2351         int16_t prefetch_us = 0;
2352         int16_t mall_region_us = 0;
2353         int16_t drr_frame_us = 0;       // nominal frame time
2354         int16_t subvp_active_us = 0;
2355         int16_t stretched_drr_us = 0;
2356         int16_t drr_stretched_vblank_us = 0;
2357         int16_t max_vblank_mallregion = 0;
2358
2359         // Find SubVP pipe
2360         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2361                 pipe = &context->res_ctx.pipe_ctx[i];
2362
2363                 // We check for master pipe, but it shouldn't matter since we only need
2364                 // the pipe for timing info (stream should be same for any pipe splits)
2365                 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
2366                         continue;
2367
2368                 // Find the SubVP pipe
2369                 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2370                         break;
2371         }
2372
2373         main_timing = &pipe->stream->timing;
2374         phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
2375         drr_timing = &drr_pipe->stream->timing;
2376         prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
2377                         (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
2378                         dc->caps.subvp_prefetch_end_to_mall_start_us;
2379         subvp_active_us = main_timing->v_addressable * main_timing->h_total /
2380                         (double)(main_timing->pix_clk_100hz * 100) * 1000000;
2381         drr_frame_us = drr_timing->v_total * drr_timing->h_total /
2382                         (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
2383         // P-State allow width and FW delays already included phantom_timing->v_addressable
2384         mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
2385                         (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
2386         stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
2387         drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
2388                         (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
2389         max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
2390
2391         /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
2392          * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
2393          * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
2394          * and the max of (VBLANK blanking time, MALL region)).
2395          */
2396         if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
2397                         subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
2398                 schedulable = true;
2399
2400         return schedulable;
2401 }
2402
2403 /**
2404  * ***************************************************************************************
2405  * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable
2406  *
2407  * High level algorithm:
2408  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
2409  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
2410  * then report the configuration as supported
2411  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
2412  *
2413  * @param [in] dc: current dc state
2414  * @param [in] context: new dc state
2415  *
2416  * @return: bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
2417  *
2418  * ***************************************************************************************
2419  */
2420 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
2421 {
2422         struct pipe_ctx *pipe = NULL;
2423         struct pipe_ctx *subvp_pipe = NULL;
2424         bool found = false;
2425         bool schedulable = false;
2426         uint32_t i = 0;
2427         uint8_t vblank_index = 0;
2428         int16_t prefetch_us = 0;
2429         int16_t mall_region_us = 0;
2430         int16_t vblank_frame_us = 0;
2431         int16_t subvp_active_us = 0;
2432         int16_t vblank_blank_us = 0;
2433         int16_t max_vblank_mallregion = 0;
2434         struct dc_crtc_timing *main_timing = NULL;
2435         struct dc_crtc_timing *phantom_timing = NULL;
2436         struct dc_crtc_timing *vblank_timing = NULL;
2437
2438         /* For SubVP + VBLANK/DRR cases, we assume there can only be
2439          * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
2440          * is supported, it is either a single VBLANK case or two VBLANK
2441          * displays which are synchronized (in which case they have identical
2442          * timings).
2443          */
2444         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2445                 pipe = &context->res_ctx.pipe_ctx[i];
2446
2447                 // We check for master pipe, but it shouldn't matter since we only need
2448                 // the pipe for timing info (stream should be same for any pipe splits)
2449                 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
2450                         continue;
2451
2452                 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
2453                         // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
2454                         vblank_index = i;
2455                         found = true;
2456                 }
2457
2458                 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2459                         subvp_pipe = pipe;
2460         }
2461         // Use ignore_msa_timing_param flag to identify as DRR
2462         if (found && pipe->stream->ignore_msa_timing_param) {
2463                 // SUBVP + DRR case
2464                 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
2465         } else if (found) {
2466                 main_timing = &subvp_pipe->stream->timing;
2467                 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
2468                 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
2469                 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
2470                 // Also include the prefetch end to mallstart delay time
2471                 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
2472                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
2473                                 dc->caps.subvp_prefetch_end_to_mall_start_us;
2474                 // P-State allow width and FW delays already included phantom_timing->v_addressable
2475                 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
2476                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
2477                 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
2478                                 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
2479                 vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
2480                                 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
2481                 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
2482                                 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
2483                 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
2484
2485                 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
2486                 // and the max of (VBLANK blanking time, MALL region)
2487                 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
2488                 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
2489                         schedulable = true;
2490         }
2491         return schedulable;
2492 }
2493
2494 /**
2495  * ********************************************************************************************
2496  * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle
2497  * static analysis based on the case.
2498  *
2499  * Three cases:
2500  * 1. SubVP + SubVP
2501  * 2. SubVP + VBLANK (DRR checked internally)
2502  * 3. SubVP + VACTIVE (currently unsupported)
2503  *
2504  * @param [in] dc: current dc state
2505  * @param [in] context: new dc state
2506  * @param [in] vlevel: Voltage level calculated by DML
2507  *
2508  * @return: bool - True if statically schedulable, false otherwise
2509  *
2510  * ********************************************************************************************
2511  */
2512 static bool subvp_validate_static_schedulability(struct dc *dc,
2513                                 struct dc_state *context,
2514                                 int vlevel)
2515 {
2516         bool schedulable = true;        // true by default for single display case
2517         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2518         uint32_t i, pipe_idx;
2519         uint8_t subvp_count = 0;
2520         uint8_t vactive_count = 0;
2521
2522         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2523                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2524
2525                 if (!pipe->stream)
2526                         continue;
2527
2528                 if (pipe->plane_state && !pipe->top_pipe &&
2529                                 pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2530                         subvp_count++;
2531
2532                 // Count how many planes are capable of VACTIVE switching (SubVP + VACTIVE unsupported)
2533                 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0) {
2534                         vactive_count++;
2535                 }
2536                 pipe_idx++;
2537         }
2538
2539         if (subvp_count == 2) {
2540                 // Static schedulability check for SubVP + SubVP case
2541                 schedulable = subvp_subvp_schedulable(dc, context);
2542         } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
2543                 // Static schedulability check for SubVP + VBLANK case. Also handle the case where
2544                 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
2545                 if (vactive_count > 0)
2546                         schedulable = false;
2547                 else
2548                         schedulable = subvp_vblank_schedulable(dc, context);
2549         } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp) {
2550                 // SubVP + VACTIVE currently unsupported
2551                 schedulable = false;
2552         }
2553         return schedulable;
2554 }
2555
2556 static void dcn32_full_validate_bw_helper(struct dc *dc,
2557                 struct dc_state *context,
2558                 display_e2e_pipe_params_st *pipes,
2559                 int *vlevel,
2560                 int *split,
2561                 bool *merge,
2562                 int *pipe_cnt)
2563 {
2564         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2565         unsigned int dc_pipe_idx = 0;
2566         bool found_supported_config = false;
2567         struct pipe_ctx *pipe = NULL;
2568         uint32_t non_subvp_pipes = 0;
2569         bool drr_pipe_found = false;
2570         uint32_t drr_pipe_index = 0;
2571         uint32_t i = 0;
2572
2573         /*
2574          * DML favors voltage over p-state, but we're more interested in
2575          * supporting p-state over voltage. We can't support p-state in
2576          * prefetch mode > 0 so try capping the prefetch mode to start.
2577          */
2578         context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2579                         dm_prefetch_support_uclk_fclk_and_stutter;
2580         *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
2581         /* This may adjust vlevel and maxMpcComb */
2582         if (*vlevel < context->bw_ctx.dml.soc.num_states)
2583                 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
2584
2585         /* Conditions for setting up phantom pipes for SubVP:
2586          * 1. Not force disable SubVP
2587          * 2. Full update (i.e. !fast_validate)
2588          * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
2589          * 4. Display configuration passes validation
2590          * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
2591          */
2592         if (!dc->debug.force_disable_subvp &&
2593                         (*vlevel == context->bw_ctx.dml.soc.num_states ||
2594                         vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
2595                         dc->debug.force_subvp_mclk_switch)) {
2596
2597                 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
2598                                 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
2599
2600                         dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
2601
2602                         *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
2603                         *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
2604
2605                         if (*vlevel < context->bw_ctx.dml.soc.num_states &&
2606                                         vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
2607                                         && subvp_validate_static_schedulability(dc, context, *vlevel)) {
2608                                 found_supported_config = true;
2609                         } else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
2610                                         vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
2611                                 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
2612                                  * the case for SubVP + DRR, where the DRR display does not support MCLK switch
2613                                  * at it's native refresh rate / timing.
2614                                  */
2615                                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2616                                         pipe = &context->res_ctx.pipe_ctx[i];
2617                                         if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
2618                                                         pipe->stream->mall_stream_config.type == SUBVP_NONE) {
2619                                                 non_subvp_pipes++;
2620                                                 // Use ignore_msa_timing_param flag to identify as DRR
2621                                                 if (pipe->stream->ignore_msa_timing_param) {
2622                                                         drr_pipe_found = true;
2623                                                         drr_pipe_index = i;
2624                                                 }
2625                                         }
2626                                 }
2627                                 // If there is only 1 remaining non SubVP pipe that is DRR, check static
2628                                 // schedulability for SubVP + DRR.
2629                                 if (non_subvp_pipes == 1 && drr_pipe_found) {
2630                                         found_supported_config = subvp_drr_schedulable(dc,
2631                                                         context, &context->res_ctx.pipe_ctx[drr_pipe_index]);
2632                                 }
2633                         }
2634                 }
2635
2636                 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
2637                 // remove phantom pipes and repopulate dml pipes
2638                 if (!found_supported_config) {
2639                         dc->res_pool->funcs->remove_phantom_pipes(dc, context);
2640                         *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
2641                 } else {
2642                         // only call dcn20_validate_apply_pipe_split_flags if we found a supported config
2643                         memset(split, 0, MAX_PIPES * sizeof(int));
2644                         memset(merge, 0, MAX_PIPES * sizeof(bool));
2645                         *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
2646
2647                         // If found a supported SubVP config, phantom pipes were added to the context.
2648                         // Program timing for the phantom pipes.
2649                         dc->hwss.apply_ctx_to_hw(dc, context);
2650                 }
2651         }
2652 }
2653
2654 static bool dcn32_internal_validate_bw(
2655                 struct dc *dc,
2656                 struct dc_state *context,
2657                 display_e2e_pipe_params_st *pipes,
2658                 int *pipe_cnt_out,
2659                 int *vlevel_out,
2660                 bool fast_validate)
2661 {
2662         bool out = false;
2663         bool repopulate_pipes = false;
2664         int split[MAX_PIPES] = { 0 };
2665         bool merge[MAX_PIPES] = { false };
2666         bool newly_split[MAX_PIPES] = { false };
2667         int pipe_cnt, i, pipe_idx, vlevel;
2668         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2669
2670         ASSERT(pipes);
2671         if (!pipes)
2672                 return false;
2673
2674         // For each full update, remove all existing phantom pipes first
2675         dc->res_pool->funcs->remove_phantom_pipes(dc, context);
2676
2677         dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2678
2679         pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2680
2681         if (!pipe_cnt) {
2682                 out = true;
2683                 goto validate_out;
2684         }
2685
2686         dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2687
2688         if (!fast_validate) {
2689                 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
2690         }
2691
2692         if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
2693                         vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
2694                 /*
2695                  * If mode is unsupported or there's still no p-state support then
2696                  * fall back to favoring voltage.
2697                  *
2698                  * We don't actually support prefetch mode 2, so require that we
2699                  * at least support prefetch mode 1.
2700                  */
2701                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2702                                 dm_prefetch_support_stutter;
2703
2704                 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2705                 if (vlevel < context->bw_ctx.dml.soc.num_states) {
2706                         memset(split, 0, MAX_PIPES * sizeof(int));
2707                         memset(merge, 0, MAX_PIPES * sizeof(bool));
2708                         vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2709                 }
2710         }
2711
2712         dml_log_mode_support_params(&context->bw_ctx.dml);
2713
2714         if (vlevel == context->bw_ctx.dml.soc.num_states)
2715                 goto validate_fail;
2716
2717         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2718                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2719                 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2720
2721                 if (!pipe->stream)
2722                         continue;
2723
2724                 /* We only support full screen mpo with ODM */
2725                 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2726                                 && pipe->plane_state && mpo_pipe
2727                                 && memcmp(&mpo_pipe->plane_res.scl_data.recout,
2728                                                 &pipe->plane_res.scl_data.recout,
2729                                                 sizeof(struct rect)) != 0) {
2730                         ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2731                         goto validate_fail;
2732                 }
2733                 pipe_idx++;
2734         }
2735
2736         /* merge pipes if necessary */
2737         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2738                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2739
2740                 /*skip pipes that don't need merging*/
2741                 if (!merge[i])
2742                         continue;
2743
2744                 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
2745                 if (pipe->prev_odm_pipe) {
2746                         /*split off odm pipe*/
2747                         pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
2748                         if (pipe->next_odm_pipe)
2749                                 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
2750
2751                         pipe->bottom_pipe = NULL;
2752                         pipe->next_odm_pipe = NULL;
2753                         pipe->plane_state = NULL;
2754                         pipe->stream = NULL;
2755                         pipe->top_pipe = NULL;
2756                         pipe->prev_odm_pipe = NULL;
2757                         if (pipe->stream_res.dsc)
2758                                 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2759                         memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2760                         memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2761                         repopulate_pipes = true;
2762                 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2763                         struct pipe_ctx *top_pipe = pipe->top_pipe;
2764                         struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2765
2766                         top_pipe->bottom_pipe = bottom_pipe;
2767                         if (bottom_pipe)
2768                                 bottom_pipe->top_pipe = top_pipe;
2769
2770                         pipe->top_pipe = NULL;
2771                         pipe->bottom_pipe = NULL;
2772                         pipe->plane_state = NULL;
2773                         pipe->stream = NULL;
2774                         memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2775                         memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2776                         repopulate_pipes = true;
2777                 } else
2778                         ASSERT(0); /* Should never try to merge master pipe */
2779
2780         }
2781
2782         for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2783                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2784                 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2785                 struct pipe_ctx *hsplit_pipe = NULL;
2786                 bool odm;
2787                 int old_index = -1;
2788
2789                 if (!pipe->stream || newly_split[i])
2790                         continue;
2791
2792                 pipe_idx++;
2793                 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2794
2795                 if (!pipe->plane_state && !odm)
2796                         continue;
2797
2798                 if (split[i]) {
2799                         if (odm) {
2800                                 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2801                                         old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2802                                 else if (old_pipe->next_odm_pipe)
2803                                         old_index = old_pipe->next_odm_pipe->pipe_idx;
2804                         } else {
2805                                 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2806                                                 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2807                                         old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2808                                 else if (old_pipe->bottom_pipe &&
2809                                                 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2810                                         old_index = old_pipe->bottom_pipe->pipe_idx;
2811                         }
2812                         hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2813                         ASSERT(hsplit_pipe);
2814                         if (!hsplit_pipe)
2815                                 goto validate_fail;
2816
2817                         if (!dcn32_split_stream_for_mpc_or_odm(
2818                                         dc, &context->res_ctx,
2819                                         pipe, hsplit_pipe, odm))
2820                                 goto validate_fail;
2821
2822                         newly_split[hsplit_pipe->pipe_idx] = true;
2823                         repopulate_pipes = true;
2824                 }
2825                 if (split[i] == 4) {
2826                         struct pipe_ctx *pipe_4to1;
2827
2828                         if (odm && old_pipe->next_odm_pipe)
2829                                 old_index = old_pipe->next_odm_pipe->pipe_idx;
2830                         else if (!odm && old_pipe->bottom_pipe &&
2831                                                 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2832                                 old_index = old_pipe->bottom_pipe->pipe_idx;
2833                         else
2834                                 old_index = -1;
2835                         pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2836                         ASSERT(pipe_4to1);
2837                         if (!pipe_4to1)
2838                                 goto validate_fail;
2839                         if (!dcn32_split_stream_for_mpc_or_odm(
2840                                         dc, &context->res_ctx,
2841                                         pipe, pipe_4to1, odm))
2842                                 goto validate_fail;
2843                         newly_split[pipe_4to1->pipe_idx] = true;
2844
2845                         if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2846                                         && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2847                                 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2848                         else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2849                                         old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2850                                         old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2851                                 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2852                         else
2853                                 old_index = -1;
2854                         pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2855                         ASSERT(pipe_4to1);
2856                         if (!pipe_4to1)
2857                                 goto validate_fail;
2858                         if (!dcn32_split_stream_for_mpc_or_odm(
2859                                         dc, &context->res_ctx,
2860                                         hsplit_pipe, pipe_4to1, odm))
2861                                 goto validate_fail;
2862                         newly_split[pipe_4to1->pipe_idx] = true;
2863                 }
2864                 if (odm)
2865                         dcn20_build_mapped_resource(dc, context, pipe->stream);
2866         }
2867
2868         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2869                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2870
2871                 if (pipe->plane_state) {
2872                         if (!resource_build_scaling_params(pipe))
2873                                 goto validate_fail;
2874                 }
2875         }
2876
2877         /* Actual dsc count per stream dsc validation*/
2878         if (!dcn20_validate_dsc(dc, context)) {
2879                 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2880                 goto validate_fail;
2881         }
2882
2883         if (repopulate_pipes)
2884                 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2885         *vlevel_out = vlevel;
2886         *pipe_cnt_out = pipe_cnt;
2887
2888         out = true;
2889         goto validate_out;
2890
2891 validate_fail:
2892         out = false;
2893
2894 validate_out:
2895         return out;
2896 }
2897
2898 bool dcn32_validate_bandwidth(struct dc *dc,
2899                 struct dc_state *context,
2900                 bool fast_validate)
2901 {
2902         bool out = false;
2903
2904         BW_VAL_TRACE_SETUP();
2905
2906         int vlevel = 0;
2907         int pipe_cnt = 0;
2908         display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2909         DC_LOGGER_INIT(dc->ctx->logger);
2910
2911         BW_VAL_TRACE_COUNT();
2912
2913     DC_FP_START();
2914         out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2915     DC_FP_END();
2916
2917         if (pipe_cnt == 0)
2918                 goto validate_out;
2919
2920         if (!out)
2921                 goto validate_fail;
2922
2923         BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2924
2925         if (fast_validate) {
2926                 BW_VAL_TRACE_SKIP(fast);
2927                 goto validate_out;
2928         }
2929
2930         dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2931
2932         BW_VAL_TRACE_END_WATERMARKS();
2933
2934         goto validate_out;
2935
2936 validate_fail:
2937         DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2938                 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2939
2940         BW_VAL_TRACE_SKIP(fail);
2941         out = false;
2942
2943 validate_out:
2944         kfree(pipes);
2945
2946         BW_VAL_TRACE_FINISH();
2947
2948         return out;
2949 }
2950
2951
2952 static bool is_dual_plane(enum surface_pixel_format format)
2953 {
2954         return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA;
2955 }
2956
2957 int dcn32_populate_dml_pipes_from_context(
2958         struct dc *dc, struct dc_state *context,
2959         display_e2e_pipe_params_st *pipes,
2960         bool fast_validate)
2961 {
2962         int i, pipe_cnt;
2963         struct resource_context *res_ctx = &context->res_ctx;
2964         struct pipe_ctx *pipe;
2965
2966         dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
2967
2968         for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
2969                 struct dc_crtc_timing *timing;
2970
2971                 if (!res_ctx->pipe_ctx[i].stream)
2972                         continue;
2973                 pipe = &res_ctx->pipe_ctx[i];
2974                 timing = &pipe->stream->timing;
2975
2976                 pipes[pipe_cnt].pipe.src.gpuvm = true;
2977                 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2978                 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2979                 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
2980                 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
2981                 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
2982                 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
2983
2984                 switch (pipe->stream->mall_stream_config.type) {
2985                 case SUBVP_MAIN:
2986                         pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
2987                         break;
2988                 case SUBVP_PHANTOM:
2989                         pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
2990                         pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_enable;
2991                         break;
2992                 case SUBVP_NONE:
2993                         pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
2994                         pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
2995                         break;
2996                 default:
2997                         break;
2998                 }
2999
3000                 pipes[pipe_cnt].dout.dsc_input_bpc = 0;
3001                 if (pipes[pipe_cnt].dout.dsc_enable) {
3002                         switch (timing->display_color_depth) {
3003                         case COLOR_DEPTH_888:
3004                                 pipes[pipe_cnt].dout.dsc_input_bpc = 8;
3005                                 break;
3006                         case COLOR_DEPTH_101010:
3007                                 pipes[pipe_cnt].dout.dsc_input_bpc = 10;
3008                                 break;
3009                         case COLOR_DEPTH_121212:
3010                                 pipes[pipe_cnt].dout.dsc_input_bpc = 12;
3011                                 break;
3012                         default:
3013                                 ASSERT(0);
3014                                 break;
3015                         }
3016                 }
3017                 pipe_cnt++;
3018         }
3019
3020         switch (pipe_cnt) {
3021         case 1:
3022                 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE;
3023                 if (pipe->plane_state && !dc->debug.disable_z9_mpc) {
3024                         if (!is_dual_plane(pipe->plane_state->format)) {
3025                                 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE;
3026                                 pipes[0].pipe.src.unbounded_req_mode = true;
3027                                 if (pipe->plane_state->src_rect.width >= 5120 &&
3028                                         pipe->plane_state->src_rect.height >= 2880)
3029                                         context->bw_ctx.dml.ip.det_buffer_size_kbytes = 320; // 5K or higher
3030                         }
3031                 }
3032                 break;
3033         case 2:
3034                 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE / 2; // 576 KB (9 segments)
3035                 break;
3036         case 3:
3037                 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE / 3; // 384 KB (6 segments)
3038                 break;
3039         case 4:
3040         default:
3041                 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE; // 256 KB (4 segments)
3042                 break;
3043         }
3044
3045         return pipe_cnt;
3046 }
3047
3048 void dcn32_calculate_wm_and_dlg_fp(
3049                 struct dc *dc, struct dc_state *context,
3050                 display_e2e_pipe_params_st *pipes,
3051                 int pipe_cnt,
3052                 int vlevel)
3053 {
3054         int i, pipe_idx, vlevel_temp = 0;
3055
3056         double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3057         double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
3058         unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
3059         bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
3060                         dm_dram_clock_change_unsupported;
3061
3062         /* Set B:
3063          * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
3064          * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
3065          * calculations to cover bootup clocks.
3066          * DCFCLK: soc.clock_limits[2] when available
3067          * UCLK: soc.clock_limits[2] when available
3068          */
3069         if (dcn3_2_soc.num_states > 2) {
3070                 vlevel_temp = 2;
3071                 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
3072         } else
3073                 dcfclk = 615; //DCFCLK Vmin_lv
3074
3075         pipes[0].clks_cfg.voltage = vlevel_temp;
3076         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
3077         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
3078
3079         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
3080                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
3081                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
3082                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
3083                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
3084         }
3085         context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3086         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3087         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3088         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3089         context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3090         context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3091         context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3092         context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3093         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3094         context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3095
3096         /* Set D:
3097          * All clocks min.
3098          * DCFCLK: Min, as reported by PM FW when available
3099          * UCLK  : Min, as reported by PM FW when available
3100          * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
3101          */
3102
3103         if (dcn3_2_soc.num_states > 2) {
3104                 vlevel_temp = 0;
3105                 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
3106         } else
3107                 dcfclk = 615; //DCFCLK Vmin_lv
3108
3109         pipes[0].clks_cfg.voltage = vlevel_temp;
3110         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
3111         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
3112
3113         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
3114                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
3115                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
3116                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
3117                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
3118         }
3119         context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3120         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3121         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3122         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3123         context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3124         context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3125         context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3126         context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3127         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3128         context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3129
3130         /* Set C, for Dummy P-State:
3131          * All clocks min.
3132          * DCFCLK: Min, as reported by PM FW, when available
3133          * UCLK  : Min,  as reported by PM FW, when available
3134          * pstate latency as per UCLK state dummy pstate latency
3135          */
3136
3137         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
3138                 unsigned int min_dram_speed_mts_margin = 160;
3139
3140                 if ((!pstate_en))
3141                         min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
3142
3143                 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */
3144                 for (i = 3; i > 0; i--)
3145                         if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)
3146                                 break;
3147
3148                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
3149                 context->bw_ctx.dml.soc.dummy_pstate_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
3150                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
3151                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
3152                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
3153         }
3154         context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3155         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3156         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3157         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3158         context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3159         context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3160         context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3161         context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3162         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3163         context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3164
3165         if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
3166                 /* The only difference between A and C is p-state latency, if p-state is not supported
3167                  * with full p-state latency we want to calculate DLG based on dummy p-state latency,
3168                  * Set A p-state watermark set to 0 on DCN32, when p-state unsupported, for now keep as DCN32.
3169                  */
3170                 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
3171                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
3172         } else {
3173                 /* Set A:
3174                  * All clocks min.
3175                  * DCFCLK: Min, as reported by PM FW, when available
3176                  * UCLK: Min, as reported by PM FW, when available
3177                  */
3178                 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
3179                 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3180                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3181                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3182                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3183                 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3184                 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3185                 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3186                 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3187                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3188                 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3189         }
3190
3191         pipes[0].clks_cfg.voltage = vlevel;
3192         pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
3193         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
3194
3195         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3196                 if (!context->res_ctx.pipe_ctx[i].stream)
3197                         continue;
3198
3199                 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
3200                 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
3201
3202                 if (dc->config.forced_clocks) {
3203                         pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
3204                         pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
3205                 }
3206                 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
3207                         pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
3208                 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
3209                         pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
3210
3211                 pipe_idx++;
3212         }
3213
3214         context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
3215
3216         dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
3217
3218         if (!pstate_en)
3219                 /* Restore full p-state latency */
3220                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
3221                                 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
3222 }
3223
3224 static struct dc_cap_funcs cap_funcs = {
3225         .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
3226 };
3227
3228
3229 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
3230                 unsigned int *optimal_dcfclk,
3231                 unsigned int *optimal_fclk)
3232 {
3233         double bw_from_dram, bw_from_dram1, bw_from_dram2;
3234
3235         bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
3236                 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
3237         bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
3238                 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
3239
3240         bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
3241
3242         if (optimal_fclk)
3243                 *optimal_fclk = bw_from_dram /
3244                 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
3245
3246         if (optimal_dcfclk)
3247                 *optimal_dcfclk =  bw_from_dram /
3248                 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
3249 }
3250
3251 void dcn32_calculate_wm_and_dlg(
3252                 struct dc *dc, struct dc_state *context,
3253                 display_e2e_pipe_params_st *pipes,
3254                 int pipe_cnt,
3255                 int vlevel)
3256 {
3257     DC_FP_START();
3258     dcn32_calculate_wm_and_dlg_fp(
3259                 dc, context,
3260                 pipes,
3261                 pipe_cnt,
3262                 vlevel);
3263     DC_FP_END();
3264 }
3265
3266 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
3267 {
3268         int i;
3269
3270         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3271                 if (!context->res_ctx.pipe_ctx[i].stream)
3272                         continue;
3273                 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
3274                         return true;
3275         }
3276         return false;
3277 }
3278
3279 void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes,
3280                 int pipe_cnt, int vlevel)
3281 {
3282         int i, pipe_idx;
3283         bool usr_retraining_support = false;
3284
3285         /* Writeback MCIF_WB arbitration parameters */
3286         dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
3287
3288         context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
3289         context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
3290         context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
3291         context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3292         context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
3293         context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
3294         context->bw_ctx.bw.dcn.clk.p_state_change_support =
3295                         context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
3296                                         != dm_dram_clock_change_unsupported;
3297
3298         /*
3299          * TODO: needs FAMS
3300          * Pstate change might not be supported by hardware, but it might be
3301          * possible with firmware driven vertical blank stretching.
3302          */
3303         // context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
3304         context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
3305         context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
3306         if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
3307                 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
3308         else
3309                 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
3310
3311         usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
3312         ASSERT(usr_retraining_support);
3313
3314         if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
3315                 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
3316
3317         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3318                 if (!context->res_ctx.pipe_ctx[i].stream)
3319                         continue;
3320                 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
3321                                 pipe_idx);
3322                 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
3323                                 pipe_idx);
3324                 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
3325                                 pipe_idx);
3326                 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
3327                                 pipe_idx);
3328                 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
3329                         // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
3330                         context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
3331                         context->res_ctx.pipe_ctx[i].unbounded_req = false;
3332                 } else {
3333                         context->res_ctx.pipe_ctx[i].det_buffer_size_kb =
3334                                         context->bw_ctx.dml.ip.det_buffer_size_kbytes;
3335                         context->res_ctx.pipe_ctx[i].unbounded_req = pipes[pipe_idx].pipe.src.unbounded_req_mode;
3336                 }
3337                 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
3338                         context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
3339                 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
3340                 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
3341                 pipe_idx++;
3342         }
3343         /*save a original dppclock copy*/
3344         context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
3345         context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
3346         context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
3347                         * 1000;
3348         context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
3349                         * 1000;
3350
3351         context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes
3352                         - context->bw_ctx.dml.ip.det_buffer_size_kbytes * pipe_idx;
3353
3354         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3355
3356                 if (!context->res_ctx.pipe_ctx[i].stream)
3357                         continue;
3358
3359                 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
3360                                 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
3361                                 pipe_cnt, pipe_idx);
3362
3363                 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
3364                                 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
3365
3366                 pipe_idx++;
3367         }
3368 }
3369
3370 /* dcn32_update_bw_bounding_box
3371  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet
3372  * with actual values as per dGPU SKU:
3373  * -with passed few options from dc->config
3374  * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW)
3375  * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes
3376  * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU
3377  * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC)
3378  * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different
3379  *  clocks (which might differ for certain dGPU SKU of the same ASIC)
3380  */
3381 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
3382 {
3383         if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
3384
3385                 /* Overrides from dc->config options */
3386                 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3387
3388                 /* Override from passed dc->bb_overrides if available*/
3389                 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3390                                 && dc->bb_overrides.sr_exit_time_ns) {
3391                         dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3392                 }
3393
3394                 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3395                                 != dc->bb_overrides.sr_enter_plus_exit_time_ns
3396                                 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3397                         dcn3_2_soc.sr_enter_plus_exit_time_us =
3398                                 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3399                 }
3400
3401                 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3402                         && dc->bb_overrides.urgent_latency_ns) {
3403                         dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3404                 }
3405
3406                 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3407                                 != dc->bb_overrides.dram_clock_change_latency_ns
3408                                 && dc->bb_overrides.dram_clock_change_latency_ns) {
3409                         dcn3_2_soc.dram_clock_change_latency_us =
3410                                 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3411                 }
3412
3413                 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3414                                 != dc->bb_overrides.dummy_clock_change_latency_ns
3415                                 && dc->bb_overrides.dummy_clock_change_latency_ns) {
3416                         dcn3_2_soc.dummy_pstate_latency_us =
3417                                 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3418                 }
3419
3420                 /* Override from VBIOS if VBIOS bb_info available */
3421                 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3422                         struct bp_soc_bb_info bb_info = {0};
3423
3424                         if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3425                                 if (bb_info.dram_clock_change_latency_100ns > 0)
3426                                         dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
3427
3428                         if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3429                                 dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
3430
3431                         if (bb_info.dram_sr_exit_latency_100ns > 0)
3432                                 dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
3433                         }
3434                 }
3435
3436                 /* Override from VBIOS for num_chan */
3437                 if (dc->ctx->dc_bios->vram_info.num_chans)
3438                         dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3439
3440                 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3441                         dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3442
3443         }
3444
3445         /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3446         dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3447         dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3448
3449         /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3450         if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
3451                 unsigned int i = 0, j = 0, num_states = 0;
3452
3453                 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3454                 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3455                 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3456                 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3457
3458                 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {615, 906, 1324, 1564};
3459                 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3460                 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3461
3462                 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3463                         if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3464                                 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3465                         if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3466                                 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3467                         if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3468                                 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3469                         if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3470                                 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3471                 }
3472                 if (!max_dcfclk_mhz)
3473                         max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3474                 if (!max_dispclk_mhz)
3475                         max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3476                 if (!max_dppclk_mhz)
3477                         max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3478                 if (!max_phyclk_mhz)
3479                         max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3480
3481                 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3482                         // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3483                         dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3484                         num_dcfclk_sta_targets++;
3485                 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3486                         // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3487                         for (i = 0; i < num_dcfclk_sta_targets; i++) {
3488                                 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3489                                         dcfclk_sta_targets[i] = max_dcfclk_mhz;
3490                                         break;
3491                                 }
3492                         }
3493                         // Update size of array since we "removed" duplicates
3494                         num_dcfclk_sta_targets = i + 1;
3495                 }
3496
3497                 num_uclk_states = bw_params->clk_table.num_entries;
3498
3499                 // Calculate optimal dcfclk for each uclk
3500                 for (i = 0; i < num_uclk_states; i++) {
3501                         dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3502                                         &optimal_dcfclk_for_uclk[i], NULL);
3503                         if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3504                                 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3505                         }
3506                 }
3507
3508                 // Calculate optimal uclk for each dcfclk sta target
3509                 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3510                         for (j = 0; j < num_uclk_states; j++) {
3511                                 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3512                                         optimal_uclk_for_dcfclk_sta_targets[i] =
3513                                                         bw_params->clk_table.entries[j].memclk_mhz * 16;
3514                                         break;
3515                                 }
3516                         }
3517                 }
3518
3519                 i = 0;
3520                 j = 0;
3521                 // create the final dcfclk and uclk table
3522                 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3523                         if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3524                                 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3525                                 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3526                         } else {
3527                                 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3528                                         dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3529                                         dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3530                                 } else {
3531                                         j = num_uclk_states;
3532                                 }
3533                         }
3534                 }
3535
3536                 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3537                         dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3538                         dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3539                 }
3540
3541                 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3542                                 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3543                         dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3544                         dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3545                 }
3546
3547                 dcn3_2_soc.num_states = num_states;
3548                 for (i = 0; i < dcn3_2_soc.num_states; i++) {
3549                         dcn3_2_soc.clock_limits[i].state = i;
3550                         dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3551                         dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3552                         dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3553
3554                         /* Fill all states with max values of all these clocks */
3555                         dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3556                         dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3557                         dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3558                         dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3559
3560                         /* Populate from bw_params for DTBCLK, SOCCLK */
3561                         if (!bw_params->clk_table.entries[i].dtbclk_mhz && i > 0)
3562                                 dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3563                         else
3564                                 dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3565
3566                         if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3567                                 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3568                         else
3569                                 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3570
3571                         /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3572                         /* PHYCLK_D18, PHYCLK_D32 */
3573                         dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3574                         dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3575                 }
3576
3577                 /* Re-init DML with updated bb */
3578                 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3579                 if (dc->current_state)
3580                         dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3581         }
3582 }
3583
3584 static struct resource_funcs dcn32_res_pool_funcs = {
3585         .destroy = dcn32_destroy_resource_pool,
3586         .link_enc_create = dcn32_link_encoder_create,
3587         .link_enc_create_minimal = NULL,
3588         .panel_cntl_create = dcn32_panel_cntl_create,
3589         .validate_bandwidth = dcn32_validate_bandwidth,
3590         .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
3591         .populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
3592         .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
3593         .add_stream_to_ctx = dcn30_add_stream_to_ctx,
3594         .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
3595         .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
3596         .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
3597         .set_mcif_arb_params = dcn30_set_mcif_arb_params,
3598         .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
3599         .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
3600         .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
3601         .update_bw_bounding_box = dcn32_update_bw_bounding_box,
3602         .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
3603         .update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
3604         .add_phantom_pipes = dcn32_add_phantom_pipes,
3605         .remove_phantom_pipes = dcn32_remove_phantom_pipes,
3606 };
3607
3608
3609 static bool dcn32_resource_construct(
3610         uint8_t num_virtual_links,
3611         struct dc *dc,
3612         struct dcn32_resource_pool *pool)
3613 {
3614         int i, j;
3615         struct dc_context *ctx = dc->ctx;
3616         struct irq_service_init_data init_data;
3617         struct ddc_service_init_data ddc_init_data = {0};
3618         uint32_t pipe_fuses = 0;
3619         uint32_t num_pipes  = 4;
3620
3621     DC_FP_START();
3622
3623         ctx->dc_bios->regs = &bios_regs;
3624
3625         pool->base.res_cap = &res_cap_dcn32;
3626         /* max number of pipes for ASIC before checking for pipe fuses */
3627         num_pipes  = pool->base.res_cap->num_timing_generator;
3628         pipe_fuses = REG_READ(CC_DC_PIPE_DIS);
3629
3630         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
3631                 if (pipe_fuses & 1 << i)
3632                         num_pipes--;
3633
3634         if (pipe_fuses & 1)
3635                 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
3636
3637         if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
3638                 ASSERT(0); //Entire DCN is harvested!
3639
3640         /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
3641          * value will be changed, update max_num_dpp and max_num_otg for dml.
3642          */
3643         dcn3_2_ip.max_num_dpp = num_pipes;
3644         dcn3_2_ip.max_num_otg = num_pipes;
3645
3646         pool->base.funcs = &dcn32_res_pool_funcs;
3647
3648         /*************************************************
3649          *  Resource + asic cap harcoding                *
3650          *************************************************/
3651         pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
3652         pool->base.timing_generator_count = num_pipes;
3653         pool->base.pipe_count = num_pipes;
3654         pool->base.mpcc_count = num_pipes;
3655         dc->caps.max_downscale_ratio = 600;
3656         dc->caps.i2c_speed_in_khz = 100;
3657         dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
3658         dc->caps.max_cursor_size = 256;
3659         dc->caps.min_horizontal_blanking_period = 80;
3660         dc->caps.dmdata_alloc_size = 2048;
3661         dc->caps.mall_size_per_mem_channel = 0;
3662         dc->caps.mall_size_total = 0;
3663         dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
3664
3665         dc->caps.cache_line_size = 64;
3666         dc->caps.cache_num_ways = 16;
3667         dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64
3668         dc->caps.subvp_fw_processing_delay_us = 15;
3669         dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
3670         dc->caps.subvp_pstate_allow_width_us = 20;
3671         dc->caps.subvp_vertical_int_margin_us = 30;
3672
3673         dc->caps.max_slave_planes = 2;
3674         dc->caps.max_slave_yuv_planes = 2;
3675         dc->caps.max_slave_rgb_planes = 2;
3676         dc->caps.post_blend_color_processing = true;
3677         dc->caps.force_dp_tps4_for_cp2520 = true;
3678         dc->caps.dp_hpo = true;
3679         dc->caps.edp_dsc_support = true;
3680         dc->caps.extended_aux_timeout_support = true;
3681         dc->caps.dmcub_support = true;
3682
3683         /* Color pipeline capabilities */
3684         dc->caps.color.dpp.dcn_arch = 1;
3685         dc->caps.color.dpp.input_lut_shared = 0;
3686         dc->caps.color.dpp.icsc = 1;
3687         dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
3688         dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
3689         dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
3690         dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
3691         dc->caps.color.dpp.dgam_rom_caps.pq = 1;
3692         dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
3693         dc->caps.color.dpp.post_csc = 1;
3694         dc->caps.color.dpp.gamma_corr = 1;
3695         dc->caps.color.dpp.dgam_rom_for_yuv = 0;
3696
3697         dc->caps.color.dpp.hw_3d_lut = 1;
3698         dc->caps.color.dpp.ogam_ram = 0;  //Blnd Gam also removed
3699         // no OGAM ROM on DCN2 and later ASICs
3700         dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
3701         dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
3702         dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
3703         dc->caps.color.dpp.ogam_rom_caps.pq = 0;
3704         dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
3705         dc->caps.color.dpp.ocsc = 0;
3706
3707         dc->caps.color.mpc.gamut_remap = 1;
3708         dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
3709         dc->caps.color.mpc.ogam_ram = 1;
3710         dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
3711         dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
3712         dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
3713         dc->caps.color.mpc.ogam_rom_caps.pq = 0;
3714         dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
3715         dc->caps.color.mpc.ocsc = 1;
3716
3717         /* Use pipe context based otg sync logic */
3718         dc->config.use_pipe_ctx_sync_logic = true;
3719
3720         /* read VBIOS LTTPR caps */
3721         {
3722                 if (ctx->dc_bios->funcs->get_lttpr_caps) {
3723                         enum bp_result bp_query_result;
3724                         uint8_t is_vbios_lttpr_enable = 0;
3725
3726                         bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
3727                         dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
3728                 }
3729
3730                 /* interop bit is implicit */
3731                 {
3732                         dc->caps.vbios_lttpr_aware = true;
3733                 }
3734         }
3735
3736         if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
3737                 dc->debug = debug_defaults_drv;
3738         else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
3739                 dc->debug = debug_defaults_diags;
3740         } else
3741                 dc->debug = debug_defaults_diags;
3742         // Init the vm_helper
3743         if (dc->vm_helper)
3744                 vm_helper_init(dc->vm_helper, 16);
3745
3746         /*************************************************
3747          *  Create resources                             *
3748          *************************************************/
3749
3750         /* Clock Sources for Pixel Clock*/
3751         pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
3752                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3753                                 CLOCK_SOURCE_COMBO_PHY_PLL0,
3754                                 &clk_src_regs[0], false);
3755         pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
3756                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3757                                 CLOCK_SOURCE_COMBO_PHY_PLL1,
3758                                 &clk_src_regs[1], false);
3759         pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
3760                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3761                                 CLOCK_SOURCE_COMBO_PHY_PLL2,
3762                                 &clk_src_regs[2], false);
3763         pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
3764                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3765                                 CLOCK_SOURCE_COMBO_PHY_PLL3,
3766                                 &clk_src_regs[3], false);
3767         pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
3768                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3769                                 CLOCK_SOURCE_COMBO_PHY_PLL4,
3770                                 &clk_src_regs[4], false);
3771
3772         pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
3773
3774         /* todo: not reuse phy_pll registers */
3775         pool->base.dp_clock_source =
3776                         dcn32_clock_source_create(ctx, ctx->dc_bios,
3777                                 CLOCK_SOURCE_ID_DP_DTO,
3778                                 &clk_src_regs[0], true);
3779
3780         for (i = 0; i < pool->base.clk_src_count; i++) {
3781                 if (pool->base.clock_sources[i] == NULL) {
3782                         dm_error("DC: failed to create clock sources!\n");
3783                         BREAK_TO_DEBUGGER();
3784                         goto create_fail;
3785                 }
3786         }
3787
3788         /* DCCG */
3789         pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
3790         if (pool->base.dccg == NULL) {
3791                 dm_error("DC: failed to create dccg!\n");
3792                 BREAK_TO_DEBUGGER();
3793                 goto create_fail;
3794         }
3795
3796         /* DML */
3797         if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
3798                 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3799
3800         /* IRQ Service */
3801         init_data.ctx = dc->ctx;
3802         pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
3803         if (!pool->base.irqs)
3804                 goto create_fail;
3805
3806         /* HUBBUB */
3807         pool->base.hubbub = dcn32_hubbub_create(ctx);
3808         if (pool->base.hubbub == NULL) {
3809                 BREAK_TO_DEBUGGER();
3810                 dm_error("DC: failed to create hubbub!\n");
3811                 goto create_fail;
3812         }
3813
3814         /* HUBPs, DPPs, OPPs, TGs, ABMs */
3815         for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
3816
3817                 /* if pipe is disabled, skip instance of HW pipe,
3818                  * i.e, skip ASIC register instance
3819                  */
3820                 if (pipe_fuses & 1 << i)
3821                         continue;
3822
3823                 /* HUBPs */
3824                 pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
3825                 if (pool->base.hubps[j] == NULL) {
3826                         BREAK_TO_DEBUGGER();
3827                         dm_error(
3828                                 "DC: failed to create hubps!\n");
3829                         goto create_fail;
3830                 }
3831
3832                 /* DPPs */
3833                 pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
3834                 if (pool->base.dpps[j] == NULL) {
3835                         BREAK_TO_DEBUGGER();
3836                         dm_error(
3837                                 "DC: failed to create dpps!\n");
3838                         goto create_fail;
3839                 }
3840
3841                 /* OPPs */
3842                 pool->base.opps[j] = dcn32_opp_create(ctx, i);
3843                 if (pool->base.opps[j] == NULL) {
3844                         BREAK_TO_DEBUGGER();
3845                         dm_error(
3846                                 "DC: failed to create output pixel processor!\n");
3847                         goto create_fail;
3848                 }
3849
3850                 /* TGs */
3851                 pool->base.timing_generators[j] = dcn32_timing_generator_create(
3852                                 ctx, i);
3853                 if (pool->base.timing_generators[j] == NULL) {
3854                         BREAK_TO_DEBUGGER();
3855                         dm_error("DC: failed to create tg!\n");
3856                         goto create_fail;
3857                 }
3858
3859                 /* ABMs */
3860                 pool->base.multiple_abms[j] = dmub_abm_create(ctx,
3861                                 &abm_regs[i],
3862                                 &abm_shift,
3863                                 &abm_mask);
3864                 if (pool->base.multiple_abms[j] == NULL) {
3865                         dm_error("DC: failed to create abm for pipe %d!\n", i);
3866                         BREAK_TO_DEBUGGER();
3867                         goto create_fail;
3868                 }
3869
3870                 /* index for resource pool arrays for next valid pipe */
3871                 j++;
3872         }
3873
3874         /* PSR */
3875         pool->base.psr = dmub_psr_create(ctx);
3876         if (pool->base.psr == NULL) {
3877                 dm_error("DC: failed to create psr obj!\n");
3878                 BREAK_TO_DEBUGGER();
3879                 goto create_fail;
3880         }
3881
3882         /* MPCCs */
3883         pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
3884         if (pool->base.mpc == NULL) {
3885                 BREAK_TO_DEBUGGER();
3886                 dm_error("DC: failed to create mpc!\n");
3887                 goto create_fail;
3888         }
3889
3890         /* DSCs */
3891         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
3892                 pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
3893                 if (pool->base.dscs[i] == NULL) {
3894                         BREAK_TO_DEBUGGER();
3895                         dm_error("DC: failed to create display stream compressor %d!\n", i);
3896                         goto create_fail;
3897                 }
3898         }
3899
3900         /* DWB */
3901         if (!dcn32_dwbc_create(ctx, &pool->base)) {
3902                 BREAK_TO_DEBUGGER();
3903                 dm_error("DC: failed to create dwbc!\n");
3904                 goto create_fail;
3905         }
3906
3907         /* MMHUBBUB */
3908         if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
3909                 BREAK_TO_DEBUGGER();
3910                 dm_error("DC: failed to create mcif_wb!\n");
3911                 goto create_fail;
3912         }
3913
3914         /* AUX and I2C */
3915         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
3916                 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
3917                 if (pool->base.engines[i] == NULL) {
3918                         BREAK_TO_DEBUGGER();
3919                         dm_error(
3920                                 "DC:failed to create aux engine!!\n");
3921                         goto create_fail;
3922                 }
3923                 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
3924                 if (pool->base.hw_i2cs[i] == NULL) {
3925                         BREAK_TO_DEBUGGER();
3926                         dm_error(
3927                                 "DC:failed to create hw i2c!!\n");
3928                         goto create_fail;
3929                 }
3930                 pool->base.sw_i2cs[i] = NULL;
3931         }
3932
3933         /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
3934         if (!resource_construct(num_virtual_links, dc, &pool->base,
3935                         (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
3936                         &res_create_funcs : &res_create_maximus_funcs)))
3937                         goto create_fail;
3938
3939         /* HW Sequencer init functions and Plane caps */
3940         dcn32_hw_sequencer_init_functions(dc);
3941
3942         dc->caps.max_planes =  pool->base.pipe_count;
3943
3944         for (i = 0; i < dc->caps.max_planes; ++i)
3945                 dc->caps.planes[i] = plane_cap;
3946
3947         dc->cap_funcs = cap_funcs;
3948
3949         if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
3950                 ddc_init_data.ctx = dc->ctx;
3951                 ddc_init_data.link = NULL;
3952                 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
3953                 ddc_init_data.id.enum_id = 0;
3954                 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
3955                 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
3956         } else {
3957                 pool->base.oem_device = NULL;
3958         }
3959
3960     DC_FP_END();
3961
3962         return true;
3963
3964 create_fail:
3965
3966     DC_FP_END();
3967
3968         dcn32_resource_destruct(pool);
3969
3970         return false;
3971 }
3972
3973 struct resource_pool *dcn32_create_resource_pool(
3974                 const struct dc_init_data *init_data,
3975                 struct dc *dc)
3976 {
3977         struct dcn32_resource_pool *pool =
3978                 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
3979
3980         if (!pool)
3981                 return NULL;
3982
3983         if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
3984                 return &pool->base;
3985
3986         BREAK_TO_DEBUGGER();
3987         kfree(pool);
3988         return NULL;
3989 }