fa20201eef3a8b03765a03158865bca006edcba9
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / display / dc / core / dc.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24
25 #include <linux/slab.h>
26
27 #include "dm_services.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37
38 #include "clk_mgr.h"
39 #include "clock_source.h"
40 #include "dc_bios_types.h"
41
42 #include "bios_parser_interface.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50
51 #include "link_hwss.h"
52 #include "link_encoder.h"
53
54 #include "dc_link_ddc.h"
55 #include "dm_helpers.h"
56 #include "mem_input.h"
57 #include "hubp.h"
58
59 #include "dc_link_dp.h"
60
61 #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
62 #include "dsc.h"
63 #endif
64
65 #ifdef CONFIG_DRM_AMD_DC_DCN2_0
66 #include "vm_helper.h"
67 #endif
68
69 #include "dce/dce_i2c.h"
70
71 #define DC_LOGGER \
72         dc->ctx->logger
73
74 const static char DC_BUILD_ID[] = "production-build";
75
76 /**
77  * DOC: Overview
78  *
79  * DC is the OS-agnostic component of the amdgpu DC driver.
80  *
81  * DC maintains and validates a set of structs representing the state of the
82  * driver and writes that state to AMD hardware
83  *
84  * Main DC HW structs:
85  *
86  * struct dc - The central struct.  One per driver.  Created on driver load,
87  * destroyed on driver unload.
88  *
89  * struct dc_context - One per driver.
90  * Used as a backpointer by most other structs in dc.
91  *
92  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
93  * plugpoints).  Created on driver load, destroyed on driver unload.
94  *
95  * struct dc_sink - One per display.  Created on boot or hotplug.
96  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
97  * (the display directly attached).  It may also have one or more remote
98  * sinks (in the Multi-Stream Transport case)
99  *
100  * struct resource_pool - One per driver.  Represents the hw blocks not in the
101  * main pipeline.  Not directly accessible by dm.
102  *
103  * Main dc state structs:
104  *
105  * These structs can be created and destroyed as needed.  There is a full set of
106  * these structs in dc->current_state representing the currently programmed state.
107  *
108  * struct dc_state - The global DC state to track global state information,
109  * such as bandwidth values.
110  *
111  * struct dc_stream_state - Represents the hw configuration for the pipeline from
112  * a framebuffer to a display.  Maps one-to-one with dc_sink.
113  *
114  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
115  * and may have more in the Multi-Plane Overlay case.
116  *
117  * struct resource_context - Represents the programmable state of everything in
118  * the resource_pool.  Not directly accessible by dm.
119  *
120  * struct pipe_ctx - A member of struct resource_context.  Represents the
121  * internal hardware pipeline components.  Each dc_plane_state has either
122  * one or two (in the pipe-split case).
123  */
124
125 /*******************************************************************************
126  * Private functions
127  ******************************************************************************/
128
129 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
130 {
131         if (new > *original)
132                 *original = new;
133 }
134
135 static void destroy_links(struct dc *dc)
136 {
137         uint32_t i;
138
139         for (i = 0; i < dc->link_count; i++) {
140                 if (NULL != dc->links[i])
141                         link_destroy(&dc->links[i]);
142         }
143 }
144
145 static bool create_links(
146                 struct dc *dc,
147                 uint32_t num_virtual_links)
148 {
149         int i;
150         int connectors_num;
151         struct dc_bios *bios = dc->ctx->dc_bios;
152
153         dc->link_count = 0;
154
155         connectors_num = bios->funcs->get_connectors_number(bios);
156
157         if (connectors_num > ENUM_ID_COUNT) {
158                 dm_error(
159                         "DC: Number of connectors %d exceeds maximum of %d!\n",
160                         connectors_num,
161                         ENUM_ID_COUNT);
162                 return false;
163         }
164
165         dm_output_to_console(
166                 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
167                 __func__,
168                 connectors_num,
169                 num_virtual_links);
170
171         for (i = 0; i < connectors_num; i++) {
172                 struct link_init_data link_init_params = {0};
173                 struct dc_link *link;
174
175                 link_init_params.ctx = dc->ctx;
176                 /* next BIOS object table connector */
177                 link_init_params.connector_index = i;
178                 link_init_params.link_index = dc->link_count;
179                 link_init_params.dc = dc;
180                 link = link_create(&link_init_params);
181
182                 if (link) {
183                         if (dc->config.edp_not_connected &&
184                                         link->connector_signal == SIGNAL_TYPE_EDP) {
185                                 link_destroy(&link);
186                         } else {
187                                 dc->links[dc->link_count] = link;
188                                 link->dc = dc;
189                                 ++dc->link_count;
190                         }
191                 }
192         }
193
194         for (i = 0; i < num_virtual_links; i++) {
195                 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
196                 struct encoder_init_data enc_init = {0};
197
198                 if (link == NULL) {
199                         BREAK_TO_DEBUGGER();
200                         goto failed_alloc;
201                 }
202
203                 link->link_index = dc->link_count;
204                 dc->links[dc->link_count] = link;
205                 dc->link_count++;
206
207                 link->ctx = dc->ctx;
208                 link->dc = dc;
209                 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
210                 link->link_id.type = OBJECT_TYPE_CONNECTOR;
211                 link->link_id.id = CONNECTOR_ID_VIRTUAL;
212                 link->link_id.enum_id = ENUM_ID_1;
213                 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
214
215                 if (!link->link_enc) {
216                         BREAK_TO_DEBUGGER();
217                         goto failed_alloc;
218                 }
219
220                 link->link_status.dpcd_caps = &link->dpcd_caps;
221
222                 enc_init.ctx = dc->ctx;
223                 enc_init.channel = CHANNEL_ID_UNKNOWN;
224                 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
225                 enc_init.transmitter = TRANSMITTER_UNKNOWN;
226                 enc_init.connector = link->link_id;
227                 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
228                 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
229                 enc_init.encoder.enum_id = ENUM_ID_1;
230                 virtual_link_encoder_construct(link->link_enc, &enc_init);
231         }
232
233         return true;
234
235 failed_alloc:
236         return false;
237 }
238
239 static struct dc_perf_trace *dc_perf_trace_create(void)
240 {
241         return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
242 }
243
244 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
245 {
246         kfree(*perf_trace);
247         *perf_trace = NULL;
248 }
249
250 /**
251  *****************************************************************************
252  *  Function: dc_stream_adjust_vmin_vmax
253  *
254  *  @brief
255  *     Looks up the pipe context of dc_stream_state and updates the
256  *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
257  *     Rate, which is a power-saving feature that targets reducing panel
258  *     refresh rate while the screen is static
259  *
260  *  @param [in] dc: dc reference
261  *  @param [in] stream: Initial dc stream state
262  *  @param [in] adjust: Updated parameters for vertical_total_min and
263  *  vertical_total_max
264  *****************************************************************************
265  */
266 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
267                 struct dc_stream_state *stream,
268                 struct dc_crtc_timing_adjust *adjust)
269 {
270         int i = 0;
271         bool ret = false;
272
273         for (i = 0; i < MAX_PIPES; i++) {
274                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
275
276                 if (pipe->stream == stream && pipe->stream_res.tg) {
277                         pipe->stream->adjust = *adjust;
278                         dc->hwss.set_drr(&pipe,
279                                         1,
280                                         adjust->v_total_min,
281                                         adjust->v_total_max);
282
283                         ret = true;
284                 }
285         }
286         return ret;
287 }
288
289 bool dc_stream_get_crtc_position(struct dc *dc,
290                 struct dc_stream_state **streams, int num_streams,
291                 unsigned int *v_pos, unsigned int *nom_v_pos)
292 {
293         /* TODO: Support multiple streams */
294         const struct dc_stream_state *stream = streams[0];
295         int i = 0;
296         bool ret = false;
297         struct crtc_position position;
298
299         for (i = 0; i < MAX_PIPES; i++) {
300                 struct pipe_ctx *pipe =
301                                 &dc->current_state->res_ctx.pipe_ctx[i];
302
303                 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
304                         dc->hwss.get_position(&pipe, 1, &position);
305
306                         *v_pos = position.vertical_count;
307                         *nom_v_pos = position.nominal_vcount;
308                         ret = true;
309                 }
310         }
311         return ret;
312 }
313
314 /**
315  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
316  * @dc: DC Object
317  * @stream: The stream to configure CRC on.
318  * @enable: Enable CRC if true, disable otherwise.
319  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
320  *              once.
321  *
322  * By default, only CRC0 is configured, and the entire frame is used to
323  * calculate the crc.
324  */
325 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
326                              bool enable, bool continuous)
327 {
328         int i;
329         struct pipe_ctx *pipe;
330         struct crc_params param;
331         struct timing_generator *tg;
332
333         for (i = 0; i < MAX_PIPES; i++) {
334                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
335                 if (pipe->stream == stream)
336                         break;
337         }
338         /* Stream not found */
339         if (i == MAX_PIPES)
340                 return false;
341
342         /* Always capture the full frame */
343         param.windowa_x_start = 0;
344         param.windowa_y_start = 0;
345         param.windowa_x_end = pipe->stream->timing.h_addressable;
346         param.windowa_y_end = pipe->stream->timing.v_addressable;
347         param.windowb_x_start = 0;
348         param.windowb_y_start = 0;
349         param.windowb_x_end = pipe->stream->timing.h_addressable;
350         param.windowb_y_end = pipe->stream->timing.v_addressable;
351
352         /* Default to the union of both windows */
353         param.selection = UNION_WINDOW_A_B;
354         param.continuous_mode = continuous;
355         param.enable = enable;
356
357         tg = pipe->stream_res.tg;
358
359         /* Only call if supported */
360         if (tg->funcs->configure_crc)
361                 return tg->funcs->configure_crc(tg, &param);
362         DC_LOG_WARNING("CRC capture not supported.");
363         return false;
364 }
365
366 /**
367  * dc_stream_get_crc() - Get CRC values for the given stream.
368  * @dc: DC object
369  * @stream: The DC stream state of the stream to get CRCs from.
370  * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
371  *
372  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
373  * Return false if stream is not found, or if CRCs are not enabled.
374  */
375 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
376                        uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
377 {
378         int i;
379         struct pipe_ctx *pipe;
380         struct timing_generator *tg;
381
382         for (i = 0; i < MAX_PIPES; i++) {
383                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
384                 if (pipe->stream == stream)
385                         break;
386         }
387         /* Stream not found */
388         if (i == MAX_PIPES)
389                 return false;
390
391         tg = pipe->stream_res.tg;
392
393         if (tg->funcs->get_crc)
394                 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
395         DC_LOG_WARNING("CRC capture not supported.");
396         return false;
397 }
398
399 void dc_stream_set_dither_option(struct dc_stream_state *stream,
400                 enum dc_dither_option option)
401 {
402         struct bit_depth_reduction_params params;
403         struct dc_link *link = stream->link;
404         struct pipe_ctx *pipes = NULL;
405         int i;
406
407         for (i = 0; i < MAX_PIPES; i++) {
408                 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
409                                 stream) {
410                         pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
411                         break;
412                 }
413         }
414
415         if (!pipes)
416                 return;
417         if (option > DITHER_OPTION_MAX)
418                 return;
419
420         stream->dither_option = option;
421
422         memset(&params, 0, sizeof(params));
423         resource_build_bit_depth_reduction_params(stream, &params);
424         stream->bit_depth_params = params;
425
426         if (pipes->plane_res.xfm &&
427             pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
428                 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
429                         pipes->plane_res.xfm,
430                         pipes->plane_res.scl_data.lb_params.depth,
431                         &stream->bit_depth_params);
432         }
433
434         pipes->stream_res.opp->funcs->
435                 opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
436 }
437
438 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
439 {
440         int i = 0;
441         bool ret = false;
442         struct pipe_ctx *pipes;
443
444         for (i = 0; i < MAX_PIPES; i++) {
445                 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
446                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
447                         dc->hwss.program_gamut_remap(pipes);
448                         ret = true;
449                 }
450         }
451
452         return ret;
453 }
454
455 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
456 {
457         int i = 0;
458         bool ret = false;
459         struct pipe_ctx *pipes;
460
461         for (i = 0; i < MAX_PIPES; i++) {
462                 if (dc->current_state->res_ctx.pipe_ctx[i].stream
463                                 == stream) {
464
465                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
466                         dc->hwss.program_output_csc(dc,
467                                         pipes,
468                                         stream->output_color_space,
469                                         stream->csc_color_matrix.matrix,
470                                         pipes->stream_res.opp->inst);
471                         ret = true;
472                 }
473         }
474
475         return ret;
476 }
477
478 void dc_stream_set_static_screen_events(struct dc *dc,
479                 struct dc_stream_state **streams,
480                 int num_streams,
481                 const struct dc_static_screen_events *events)
482 {
483         int i = 0;
484         int j = 0;
485         struct pipe_ctx *pipes_affected[MAX_PIPES];
486         int num_pipes_affected = 0;
487
488         for (i = 0; i < num_streams; i++) {
489                 struct dc_stream_state *stream = streams[i];
490
491                 for (j = 0; j < MAX_PIPES; j++) {
492                         if (dc->current_state->res_ctx.pipe_ctx[j].stream
493                                         == stream) {
494                                 pipes_affected[num_pipes_affected++] =
495                                                 &dc->current_state->res_ctx.pipe_ctx[j];
496                         }
497                 }
498         }
499
500         dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, events);
501 }
502
503 static void destruct(struct dc *dc)
504 {
505         if (dc->current_state) {
506                 dc_release_state(dc->current_state);
507                 dc->current_state = NULL;
508         }
509
510         destroy_links(dc);
511
512         if (dc->clk_mgr) {
513                 dc_destroy_clk_mgr(dc->clk_mgr);
514                 dc->clk_mgr = NULL;
515         }
516
517         dc_destroy_resource_pool(dc);
518
519         if (dc->ctx->gpio_service)
520                 dal_gpio_service_destroy(&dc->ctx->gpio_service);
521
522         if (dc->ctx->created_bios)
523                 dal_bios_parser_destroy(&dc->ctx->dc_bios);
524
525         dc_perf_trace_destroy(&dc->ctx->perf_trace);
526
527         kfree(dc->ctx);
528         dc->ctx = NULL;
529
530         kfree(dc->bw_vbios);
531         dc->bw_vbios = NULL;
532
533         kfree(dc->bw_dceip);
534         dc->bw_dceip = NULL;
535
536 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
537         kfree(dc->dcn_soc);
538         dc->dcn_soc = NULL;
539
540         kfree(dc->dcn_ip);
541         dc->dcn_ip = NULL;
542
543 #endif
544 #ifdef CONFIG_DRM_AMD_DC_DCN2_0
545         kfree(dc->vm_helper);
546         dc->vm_helper = NULL;
547
548 #endif
549 }
550
551 static bool construct(struct dc *dc,
552                 const struct dc_init_data *init_params)
553 {
554         struct dc_context *dc_ctx;
555         struct bw_calcs_dceip *dc_dceip;
556         struct bw_calcs_vbios *dc_vbios;
557 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
558         struct dcn_soc_bounding_box *dcn_soc;
559         struct dcn_ip_params *dcn_ip;
560 #endif
561
562         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
563         dc->config = init_params->flags;
564
565 #ifdef CONFIG_DRM_AMD_DC_DCN2_0
566         // Allocate memory for the vm_helper
567         dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
568
569 #endif
570         memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
571
572         dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
573         if (!dc_dceip) {
574                 dm_error("%s: failed to create dceip\n", __func__);
575                 goto fail;
576         }
577
578         dc->bw_dceip = dc_dceip;
579
580         dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
581         if (!dc_vbios) {
582                 dm_error("%s: failed to create vbios\n", __func__);
583                 goto fail;
584         }
585
586         dc->bw_vbios = dc_vbios;
587 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
588         dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
589         if (!dcn_soc) {
590                 dm_error("%s: failed to create dcn_soc\n", __func__);
591                 goto fail;
592         }
593
594         dc->dcn_soc = dcn_soc;
595
596         dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
597         if (!dcn_ip) {
598                 dm_error("%s: failed to create dcn_ip\n", __func__);
599                 goto fail;
600         }
601
602         dc->dcn_ip = dcn_ip;
603 #ifdef CONFIG_DRM_AMD_DC_DCN2_0
604         dc->soc_bounding_box = init_params->soc_bounding_box;
605 #endif
606 #endif
607
608         dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
609         if (!dc_ctx) {
610                 dm_error("%s: failed to create ctx\n", __func__);
611                 goto fail;
612         }
613
614         dc_ctx->cgs_device = init_params->cgs_device;
615         dc_ctx->driver_context = init_params->driver;
616         dc_ctx->dc = dc;
617         dc_ctx->asic_id = init_params->asic_id;
618         dc_ctx->dc_sink_id_count = 0;
619         dc_ctx->dc_stream_id_count = 0;
620         dc->ctx = dc_ctx;
621
622         /* Create logger */
623
624         dc_ctx->dce_environment = init_params->dce_environment;
625
626         dc_version = resource_parse_asic_id(init_params->asic_id);
627         dc_ctx->dce_version = dc_version;
628
629         /* Resource should construct all asic specific resources.
630          * This should be the only place where we need to parse the asic id
631          */
632         if (init_params->vbios_override)
633                 dc_ctx->dc_bios = init_params->vbios_override;
634         else {
635                 /* Create BIOS parser */
636                 struct bp_init_data bp_init_data;
637
638                 bp_init_data.ctx = dc_ctx;
639                 bp_init_data.bios = init_params->asic_id.atombios_base_address;
640
641                 dc_ctx->dc_bios = dal_bios_parser_create(
642                                 &bp_init_data, dc_version);
643
644                 if (!dc_ctx->dc_bios) {
645                         ASSERT_CRITICAL(false);
646                         goto fail;
647                 }
648
649                 dc_ctx->created_bios = true;
650                 }
651
652         dc_ctx->perf_trace = dc_perf_trace_create();
653         if (!dc_ctx->perf_trace) {
654                 ASSERT_CRITICAL(false);
655                 goto fail;
656         }
657
658         /* Create GPIO service */
659         dc_ctx->gpio_service = dal_gpio_service_create(
660                         dc_version,
661                         dc_ctx->dce_environment,
662                         dc_ctx);
663
664         if (!dc_ctx->gpio_service) {
665                 ASSERT_CRITICAL(false);
666                 goto fail;
667         }
668
669         dc->res_pool = dc_create_resource_pool(dc, init_params, dc_version);
670         if (!dc->res_pool)
671                 goto fail;
672
673         dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
674         if (!dc->clk_mgr)
675                 goto fail;
676
677         /* Creation of current_state must occur after dc->dml
678          * is initialized in dc_create_resource_pool because
679          * on creation it copies the contents of dc->dml
680          */
681
682         dc->current_state = dc_create_state(dc);
683
684         if (!dc->current_state) {
685                 dm_error("%s: failed to create validate ctx\n", __func__);
686                 goto fail;
687         }
688
689         dc_resource_state_construct(dc, dc->current_state);
690
691         if (!create_links(dc, init_params->num_virtual_links))
692                 goto fail;
693
694         return true;
695
696 fail:
697
698         destruct(dc);
699         return false;
700 }
701
702 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
703 static bool disable_all_writeback_pipes_for_stream(
704                 const struct dc *dc,
705                 struct dc_stream_state *stream,
706                 struct dc_state *context)
707 {
708         int i;
709
710         for (i = 0; i < stream->num_wb_info; i++)
711                 stream->writeback_info[i].wb_enabled = false;
712
713         return true;
714 }
715 #endif
716
717 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
718 {
719         int i, j;
720         struct dc_state *dangling_context = dc_create_state(dc);
721         struct dc_state *current_ctx;
722
723         if (dangling_context == NULL)
724                 return;
725
726         dc_resource_state_copy_construct(dc->current_state, dangling_context);
727
728         for (i = 0; i < dc->res_pool->pipe_count; i++) {
729                 struct dc_stream_state *old_stream =
730                                 dc->current_state->res_ctx.pipe_ctx[i].stream;
731                 bool should_disable = true;
732
733                 for (j = 0; j < context->stream_count; j++) {
734                         if (old_stream == context->streams[j]) {
735                                 should_disable = false;
736                                 break;
737                         }
738                 }
739                 if (should_disable && old_stream) {
740                         dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
741 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
742                         disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
743 #endif
744                         dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
745                 }
746         }
747
748         current_ctx = dc->current_state;
749         dc->current_state = dangling_context;
750         dc_release_state(current_ctx);
751 }
752
753 /*******************************************************************************
754  * Public functions
755  ******************************************************************************/
756
757 struct dc *dc_create(const struct dc_init_data *init_params)
758 {
759         struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
760         unsigned int full_pipe_count;
761
762         if (NULL == dc)
763                 goto alloc_fail;
764
765         if (false == construct(dc, init_params))
766                 goto construct_fail;
767
768         /*TODO: separate HW and SW initialization*/
769         dc->hwss.init_hw(dc);
770
771         full_pipe_count = dc->res_pool->pipe_count;
772         if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
773                 full_pipe_count--;
774         dc->caps.max_streams = min(
775                         full_pipe_count,
776                         dc->res_pool->stream_enc_count);
777
778         dc->caps.max_links = dc->link_count;
779         dc->caps.max_audios = dc->res_pool->audio_count;
780         dc->caps.linear_pitch_alignment = 64;
781
782         /* Populate versioning information */
783         dc->versions.dc_ver = DC_VER;
784
785         if (dc->res_pool->dmcu != NULL)
786                 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
787
788         dc->build_id = DC_BUILD_ID;
789
790         DC_LOG_DC("Display Core initialized\n");
791
792
793
794         return dc;
795
796 construct_fail:
797         kfree(dc);
798
799 alloc_fail:
800         return NULL;
801 }
802
803 void dc_init_callbacks(struct dc *dc,
804                 const struct dc_callback_init *init_params)
805 {
806 }
807
808 void dc_destroy(struct dc **dc)
809 {
810         destruct(*dc);
811         kfree(*dc);
812         *dc = NULL;
813 }
814
815 static void enable_timing_multisync(
816                 struct dc *dc,
817                 struct dc_state *ctx)
818 {
819         int i = 0, multisync_count = 0;
820         int pipe_count = dc->res_pool->pipe_count;
821         struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
822
823         for (i = 0; i < pipe_count; i++) {
824                 if (!ctx->res_ctx.pipe_ctx[i].stream ||
825                                 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
826                         continue;
827                 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
828                         continue;
829                 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
830                 multisync_count++;
831         }
832
833         if (multisync_count > 0) {
834                 dc->hwss.enable_per_frame_crtc_position_reset(
835                         dc, multisync_count, multisync_pipes);
836         }
837 }
838
839 static void program_timing_sync(
840                 struct dc *dc,
841                 struct dc_state *ctx)
842 {
843         int i, j, k;
844         int group_index = 0;
845         int num_group = 0;
846         int pipe_count = dc->res_pool->pipe_count;
847         struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
848
849         for (i = 0; i < pipe_count; i++) {
850                 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
851                         continue;
852
853                 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
854         }
855
856         for (i = 0; i < pipe_count; i++) {
857                 int group_size = 1;
858                 struct pipe_ctx *pipe_set[MAX_PIPES];
859
860                 if (!unsynced_pipes[i])
861                         continue;
862
863                 pipe_set[0] = unsynced_pipes[i];
864                 unsynced_pipes[i] = NULL;
865
866                 /* Add tg to the set, search rest of the tg's for ones with
867                  * same timing, add all tgs with same timing to the group
868                  */
869                 for (j = i + 1; j < pipe_count; j++) {
870                         if (!unsynced_pipes[j])
871                                 continue;
872
873                         if (resource_are_streams_timing_synchronizable(
874                                         unsynced_pipes[j]->stream,
875                                         pipe_set[0]->stream)) {
876                                 pipe_set[group_size] = unsynced_pipes[j];
877                                 unsynced_pipes[j] = NULL;
878                                 group_size++;
879                         }
880                 }
881
882                 /* set first pipe with plane as master */
883                 for (j = 0; j < group_size; j++) {
884                         struct pipe_ctx *temp;
885
886                         if (pipe_set[j]->plane_state) {
887                                 if (j == 0)
888                                         break;
889
890                                 temp = pipe_set[0];
891                                 pipe_set[0] = pipe_set[j];
892                                 pipe_set[j] = temp;
893                                 break;
894                         }
895                 }
896
897
898                 for (k = 0; k < group_size; k++) {
899                         struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
900
901                         status->timing_sync_info.group_id = num_group;
902                         status->timing_sync_info.group_size = group_size;
903                         if (k == 0)
904                                 status->timing_sync_info.master = true;
905                         else
906                                 status->timing_sync_info.master = false;
907
908                 }
909                 /* remove any other pipes with plane as they have already been synced */
910                 for (j = j + 1; j < group_size; j++) {
911                         if (pipe_set[j]->plane_state) {
912                                 group_size--;
913                                 pipe_set[j] = pipe_set[group_size];
914                                 j--;
915                         }
916                 }
917
918                 if (group_size > 1) {
919                         dc->hwss.enable_timing_synchronization(
920                                 dc, group_index, group_size, pipe_set);
921                         group_index++;
922                 }
923                 num_group++;
924         }
925 }
926
927 static bool context_changed(
928                 struct dc *dc,
929                 struct dc_state *context)
930 {
931         uint8_t i;
932
933         if (context->stream_count != dc->current_state->stream_count)
934                 return true;
935
936         for (i = 0; i < dc->current_state->stream_count; i++) {
937                 if (dc->current_state->streams[i] != context->streams[i])
938                         return true;
939         }
940
941         return false;
942 }
943
944 bool dc_validate_seamless_boot_timing(const struct dc *dc,
945                                 const struct dc_sink *sink,
946                                 struct dc_crtc_timing *crtc_timing)
947 {
948         struct timing_generator *tg;
949         struct dc_link *link = sink->link;
950         unsigned int inst;
951
952         /* Check for enabled DIG to identify enabled display */
953         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
954                 return false;
955
956         /* Check for which front end is used by this encoder.
957          * Note the inst is 1 indexed, where 0 is undefined.
958          * Note that DIG_FE can source from different OTG but our
959          * current implementation always map 1-to-1, so this code makes
960          * the same assumption and doesn't check OTG source.
961          */
962         inst = link->link_enc->funcs->get_dig_frontend(link->link_enc) - 1;
963
964         /* Instance should be within the range of the pool */
965         if (inst >= dc->res_pool->pipe_count)
966                 return false;
967
968         tg = dc->res_pool->timing_generators[inst];
969
970         if (!tg->funcs->is_matching_timing)
971                 return false;
972
973         if (!tg->funcs->is_matching_timing(tg, crtc_timing))
974                 return false;
975
976         if (dc_is_dp_signal(link->connector_signal)) {
977                 unsigned int pix_clk_100hz;
978
979                 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
980                         dc->res_pool->dp_clock_source,
981                         inst, &pix_clk_100hz);
982
983                 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
984                         return false;
985         }
986
987         return true;
988 }
989
990 bool dc_enable_stereo(
991         struct dc *dc,
992         struct dc_state *context,
993         struct dc_stream_state *streams[],
994         uint8_t stream_count)
995 {
996         bool ret = true;
997         int i, j;
998         struct pipe_ctx *pipe;
999
1000         for (i = 0; i < MAX_PIPES; i++) {
1001                 if (context != NULL)
1002                         pipe = &context->res_ctx.pipe_ctx[i];
1003                 else
1004                         pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1005                 for (j = 0 ; pipe && j < stream_count; j++)  {
1006                         if (streams[j] && streams[j] == pipe->stream &&
1007                                 dc->hwss.setup_stereo)
1008                                 dc->hwss.setup_stereo(pipe, dc);
1009                 }
1010         }
1011
1012         return ret;
1013 }
1014
1015 /*
1016  * Applies given context to HW and copy it into current context.
1017  * It's up to the user to release the src context afterwards.
1018  */
1019 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1020 {
1021         struct dc_bios *dcb = dc->ctx->dc_bios;
1022         enum dc_status result = DC_ERROR_UNEXPECTED;
1023         struct pipe_ctx *pipe;
1024         int i, k, l;
1025         struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1026
1027         disable_dangling_plane(dc, context);
1028
1029         for (i = 0; i < context->stream_count; i++)
1030                 dc_streams[i] =  context->streams[i];
1031
1032         if (!dcb->funcs->is_accelerated_mode(dcb))
1033                 dc->hwss.enable_accelerated_mode(dc, context);
1034
1035         for (i = 0; i < context->stream_count; i++) {
1036                 if (context->streams[i]->apply_seamless_boot_optimization)
1037                         dc->optimize_seamless_boot = true;
1038         }
1039
1040         if (!dc->optimize_seamless_boot)
1041                 dc->hwss.prepare_bandwidth(dc, context);
1042
1043         /* re-program planes for existing stream, in case we need to
1044          * free up plane resource for later use
1045          */
1046         for (i = 0; i < context->stream_count; i++) {
1047                 if (context->streams[i]->mode_changed)
1048                         continue;
1049
1050                 dc->hwss.apply_ctx_for_surface(
1051                         dc, context->streams[i],
1052                         context->stream_status[i].plane_count,
1053                         context); /* use new pipe config in new context */
1054         }
1055
1056         /* Program hardware */
1057         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1058                 pipe = &context->res_ctx.pipe_ctx[i];
1059                 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1060         }
1061
1062         result = dc->hwss.apply_ctx_to_hw(dc, context);
1063
1064         if (result != DC_OK)
1065                 return result;
1066
1067         if (context->stream_count > 1) {
1068                 enable_timing_multisync(dc, context);
1069                 program_timing_sync(dc, context);
1070         }
1071
1072         /* Program all planes within new context*/
1073         for (i = 0; i < context->stream_count; i++) {
1074                 const struct dc_link *link = context->streams[i]->link;
1075
1076                 if (!context->streams[i]->mode_changed)
1077                         continue;
1078
1079                 dc->hwss.apply_ctx_for_surface(
1080                                 dc, context->streams[i],
1081                                 context->stream_status[i].plane_count,
1082                                 context);
1083
1084                 /*
1085                  * enable stereo
1086                  * TODO rework dc_enable_stereo call to work with validation sets?
1087                  */
1088                 for (k = 0; k < MAX_PIPES; k++) {
1089                         pipe = &context->res_ctx.pipe_ctx[k];
1090
1091                         for (l = 0 ; pipe && l < context->stream_count; l++)  {
1092                                 if (context->streams[l] &&
1093                                         context->streams[l] == pipe->stream &&
1094                                         dc->hwss.setup_stereo)
1095                                         dc->hwss.setup_stereo(pipe, dc);
1096                         }
1097                 }
1098
1099                 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1100                                 context->streams[i]->timing.h_addressable,
1101                                 context->streams[i]->timing.v_addressable,
1102                                 context->streams[i]->timing.h_total,
1103                                 context->streams[i]->timing.v_total,
1104                                 context->streams[i]->timing.pix_clk_100hz / 10);
1105         }
1106
1107         dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1108
1109         if (!dc->optimize_seamless_boot)
1110                 /* pplib is notified if disp_num changed */
1111                 dc->hwss.optimize_bandwidth(dc, context);
1112
1113         for (i = 0; i < context->stream_count; i++)
1114                 context->streams[i]->mode_changed = false;
1115
1116         memset(&context->commit_hints, 0, sizeof(context->commit_hints));
1117
1118         dc_release_state(dc->current_state);
1119
1120         dc->current_state = context;
1121
1122         dc_retain_state(dc->current_state);
1123
1124         return result;
1125 }
1126
1127 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1128 {
1129         enum dc_status result = DC_ERROR_UNEXPECTED;
1130         int i;
1131
1132         if (false == context_changed(dc, context))
1133                 return DC_OK;
1134
1135         DC_LOG_DC("%s: %d streams\n",
1136                                 __func__, context->stream_count);
1137
1138         for (i = 0; i < context->stream_count; i++) {
1139                 struct dc_stream_state *stream = context->streams[i];
1140
1141                 dc_stream_log(dc, stream);
1142         }
1143
1144         result = dc_commit_state_no_check(dc, context);
1145
1146         return (result == DC_OK);
1147 }
1148
1149 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1150 {
1151         int i;
1152         struct dc_state *context = dc->current_state;
1153
1154         if (!dc->optimized_required || dc->optimize_seamless_boot)
1155                 return true;
1156
1157         post_surface_trace(dc);
1158
1159         for (i = 0; i < dc->res_pool->pipe_count; i++)
1160                 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1161                     context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1162                         context->res_ctx.pipe_ctx[i].pipe_idx = i;
1163                         dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1164                 }
1165
1166         dc->optimized_required = false;
1167
1168         dc->hwss.optimize_bandwidth(dc, context);
1169         return true;
1170 }
1171
1172 struct dc_state *dc_create_state(struct dc *dc)
1173 {
1174         struct dc_state *context = kzalloc(sizeof(struct dc_state),
1175                                            GFP_KERNEL);
1176
1177         if (!context)
1178                 return NULL;
1179         /* Each context must have their own instance of VBA and in order to
1180          * initialize and obtain IP and SOC the base DML instance from DC is
1181          * initially copied into every context
1182          */
1183 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
1184         memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1185 #endif
1186
1187         kref_init(&context->refcount);
1188
1189         return context;
1190 }
1191
1192 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1193 {
1194         int i, j;
1195         struct dc_state *new_ctx = kmemdup(src_ctx,
1196                         sizeof(struct dc_state), GFP_KERNEL);
1197
1198         if (!new_ctx)
1199                 return NULL;
1200
1201         for (i = 0; i < MAX_PIPES; i++) {
1202                         struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1203
1204                         if (cur_pipe->top_pipe)
1205                                 cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1206
1207                         if (cur_pipe->bottom_pipe)
1208                                 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1209
1210         }
1211
1212         for (i = 0; i < new_ctx->stream_count; i++) {
1213                         dc_stream_retain(new_ctx->streams[i]);
1214                         for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1215                                 dc_plane_state_retain(
1216                                         new_ctx->stream_status[i].plane_states[j]);
1217         }
1218
1219         kref_init(&new_ctx->refcount);
1220
1221         return new_ctx;
1222 }
1223
1224 void dc_retain_state(struct dc_state *context)
1225 {
1226         kref_get(&context->refcount);
1227 }
1228
1229 static void dc_state_free(struct kref *kref)
1230 {
1231         struct dc_state *context = container_of(kref, struct dc_state, refcount);
1232         dc_resource_state_destruct(context);
1233         kfree(context);
1234 }
1235
1236 void dc_release_state(struct dc_state *context)
1237 {
1238         kref_put(&context->refcount, dc_state_free);
1239 }
1240
1241 static bool is_surface_in_context(
1242                 const struct dc_state *context,
1243                 const struct dc_plane_state *plane_state)
1244 {
1245         int j;
1246
1247         for (j = 0; j < MAX_PIPES; j++) {
1248                 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1249
1250                 if (plane_state == pipe_ctx->plane_state) {
1251                         return true;
1252                 }
1253         }
1254
1255         return false;
1256 }
1257
1258 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1259 {
1260         union surface_update_flags *update_flags = &u->surface->update_flags;
1261         enum surface_update_type update_type = UPDATE_TYPE_FAST;
1262
1263         if (!u->plane_info)
1264                 return UPDATE_TYPE_FAST;
1265
1266         if (u->plane_info->color_space != u->surface->color_space) {
1267                 update_flags->bits.color_space_change = 1;
1268                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1269         }
1270
1271         if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1272                 update_flags->bits.horizontal_mirror_change = 1;
1273                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1274         }
1275
1276         if (u->plane_info->rotation != u->surface->rotation) {
1277                 update_flags->bits.rotation_change = 1;
1278                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1279         }
1280
1281         if (u->plane_info->format != u->surface->format) {
1282                 update_flags->bits.pixel_format_change = 1;
1283                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1284         }
1285
1286         if (u->plane_info->stereo_format != u->surface->stereo_format) {
1287                 update_flags->bits.stereo_format_change = 1;
1288                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1289         }
1290
1291         if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1292                 update_flags->bits.per_pixel_alpha_change = 1;
1293                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1294         }
1295
1296         if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1297                 update_flags->bits.global_alpha_change = 1;
1298                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1299         }
1300
1301         if (u->plane_info->sdr_white_level != u->surface->sdr_white_level) {
1302                 update_flags->bits.sdr_white_level = 1;
1303                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1304         }
1305
1306         if (u->plane_info->dcc.enable != u->surface->dcc.enable
1307                         || u->plane_info->dcc.grph.independent_64b_blks != u->surface->dcc.grph.independent_64b_blks
1308                         || u->plane_info->dcc.grph.meta_pitch != u->surface->dcc.grph.meta_pitch) {
1309                 update_flags->bits.dcc_change = 1;
1310                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1311         }
1312
1313         if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1314                         resource_pixel_format_to_bpp(u->surface->format)) {
1315                 /* different bytes per element will require full bandwidth
1316                  * and DML calculation
1317                  */
1318                 update_flags->bits.bpp_change = 1;
1319                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1320         }
1321
1322         if (u->plane_info->plane_size.grph.surface_pitch != u->surface->plane_size.grph.surface_pitch
1323                         || u->plane_info->plane_size.video.luma_pitch != u->surface->plane_size.video.luma_pitch
1324                         || u->plane_info->plane_size.video.chroma_pitch != u->surface->plane_size.video.chroma_pitch) {
1325                 update_flags->bits.plane_size_change = 1;
1326                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1327         }
1328
1329
1330         if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1331                         sizeof(union dc_tiling_info)) != 0) {
1332                 update_flags->bits.swizzle_change = 1;
1333                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1334
1335                 /* todo: below are HW dependent, we should add a hook to
1336                  * DCE/N resource and validated there.
1337                  */
1338                 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1339                         /* swizzled mode requires RQ to be setup properly,
1340                          * thus need to run DML to calculate RQ settings
1341                          */
1342                         update_flags->bits.bandwidth_change = 1;
1343                         elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1344                 }
1345         }
1346
1347         /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1348         return update_type;
1349 }
1350
1351 static enum surface_update_type get_scaling_info_update_type(
1352                 const struct dc_surface_update *u)
1353 {
1354         union surface_update_flags *update_flags = &u->surface->update_flags;
1355
1356         if (!u->scaling_info)
1357                 return UPDATE_TYPE_FAST;
1358
1359         if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1360                         || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1361                         || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1362                         || u->scaling_info->dst_rect.height != u->surface->dst_rect.height) {
1363                 update_flags->bits.scaling_change = 1;
1364
1365                 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1366                         || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1367                                 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1368                                         || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1369                         /* Making dst rect smaller requires a bandwidth change */
1370                         update_flags->bits.bandwidth_change = 1;
1371         }
1372
1373         if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1374                 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1375
1376                 update_flags->bits.scaling_change = 1;
1377                 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1378                                 && u->scaling_info->src_rect.height > u->surface->src_rect.height)
1379                         /* Making src rect bigger requires a bandwidth change */
1380                         update_flags->bits.clock_change = 1;
1381         }
1382
1383         if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1384                         || u->scaling_info->src_rect.y != u->surface->src_rect.y
1385                         || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1386                         || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1387                         || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1388                         || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1389                 update_flags->bits.position_change = 1;
1390
1391         if (update_flags->bits.clock_change
1392                         || update_flags->bits.bandwidth_change)
1393                 return UPDATE_TYPE_FULL;
1394
1395         if (update_flags->bits.scaling_change
1396                         || update_flags->bits.position_change)
1397                 return UPDATE_TYPE_MED;
1398
1399         return UPDATE_TYPE_FAST;
1400 }
1401
1402 static enum surface_update_type det_surface_update(const struct dc *dc,
1403                 const struct dc_surface_update *u)
1404 {
1405         const struct dc_state *context = dc->current_state;
1406         enum surface_update_type type;
1407         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1408         union surface_update_flags *update_flags = &u->surface->update_flags;
1409
1410         update_flags->raw = 0; // Reset all flags
1411
1412         if (u->flip_addr)
1413                 update_flags->bits.addr_update = 1;
1414
1415         if (!is_surface_in_context(context, u->surface)) {
1416                 update_flags->bits.new_plane = 1;
1417                 return UPDATE_TYPE_FULL;
1418         }
1419
1420         if (u->surface->force_full_update) {
1421                 update_flags->bits.full_update = 1;
1422                 return UPDATE_TYPE_FULL;
1423         }
1424
1425         type = get_plane_info_update_type(u);
1426         elevate_update_type(&overall_type, type);
1427
1428         type = get_scaling_info_update_type(u);
1429         elevate_update_type(&overall_type, type);
1430
1431         if (u->flip_addr)
1432                 update_flags->bits.addr_update = 1;
1433
1434         if (u->in_transfer_func)
1435                 update_flags->bits.in_transfer_func_change = 1;
1436
1437         if (u->input_csc_color_matrix)
1438                 update_flags->bits.input_csc_change = 1;
1439
1440         if (u->coeff_reduction_factor)
1441                 update_flags->bits.coeff_reduction_change = 1;
1442
1443         if (u->gamma) {
1444                 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1445
1446                 if (u->plane_info)
1447                         format = u->plane_info->format;
1448                 else if (u->surface)
1449                         format = u->surface->format;
1450
1451                 if (dce_use_lut(format))
1452                         update_flags->bits.gamma_change = 1;
1453         }
1454
1455         if (update_flags->bits.in_transfer_func_change) {
1456                 type = UPDATE_TYPE_MED;
1457                 elevate_update_type(&overall_type, type);
1458         }
1459
1460         if (update_flags->bits.input_csc_change
1461                         || update_flags->bits.coeff_reduction_change
1462                         || update_flags->bits.gamma_change) {
1463                 type = UPDATE_TYPE_FULL;
1464                 elevate_update_type(&overall_type, type);
1465         }
1466
1467         return overall_type;
1468 }
1469
1470 static enum surface_update_type check_update_surfaces_for_stream(
1471                 struct dc *dc,
1472                 struct dc_surface_update *updates,
1473                 int surface_count,
1474                 struct dc_stream_update *stream_update,
1475                 const struct dc_stream_status *stream_status)
1476 {
1477         int i;
1478         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1479
1480         if (stream_status == NULL || stream_status->plane_count != surface_count)
1481                 return UPDATE_TYPE_FULL;
1482
1483         /* some stream updates require passive update */
1484         if (stream_update) {
1485                 if ((stream_update->src.height != 0) &&
1486                                 (stream_update->src.width != 0))
1487                         return UPDATE_TYPE_FULL;
1488
1489                 if ((stream_update->dst.height != 0) &&
1490                                 (stream_update->dst.width != 0))
1491                         return UPDATE_TYPE_FULL;
1492
1493                 if (stream_update->out_transfer_func)
1494                         return UPDATE_TYPE_FULL;
1495
1496                 if (stream_update->abm_level)
1497                         return UPDATE_TYPE_FULL;
1498
1499                 if (stream_update->dpms_off)
1500                         return UPDATE_TYPE_FULL;
1501
1502 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1503                 if (stream_update->wb_update)
1504                         return UPDATE_TYPE_FULL;
1505 #endif
1506         }
1507
1508         for (i = 0 ; i < surface_count; i++) {
1509                 enum surface_update_type type =
1510                                 det_surface_update(dc, &updates[i]);
1511
1512                 if (type == UPDATE_TYPE_FULL)
1513                         return type;
1514
1515                 elevate_update_type(&overall_type, type);
1516         }
1517
1518         return overall_type;
1519 }
1520
1521 /**
1522  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1523  *
1524  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1525  */
1526 enum surface_update_type dc_check_update_surfaces_for_stream(
1527                 struct dc *dc,
1528                 struct dc_surface_update *updates,
1529                 int surface_count,
1530                 struct dc_stream_update *stream_update,
1531                 const struct dc_stream_status *stream_status)
1532 {
1533         int i;
1534         enum surface_update_type type;
1535
1536         for (i = 0; i < surface_count; i++)
1537                 updates[i].surface->update_flags.raw = 0;
1538
1539         type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
1540         if (type == UPDATE_TYPE_FULL)
1541                 for (i = 0; i < surface_count; i++)
1542                         updates[i].surface->update_flags.raw = 0xFFFFFFFF;
1543
1544         return type;
1545 }
1546
1547 static struct dc_stream_status *stream_get_status(
1548         struct dc_state *ctx,
1549         struct dc_stream_state *stream)
1550 {
1551         uint8_t i;
1552
1553         for (i = 0; i < ctx->stream_count; i++) {
1554                 if (stream == ctx->streams[i]) {
1555                         return &ctx->stream_status[i];
1556                 }
1557         }
1558
1559         return NULL;
1560 }
1561
1562 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
1563
1564 static void copy_surface_update_to_plane(
1565                 struct dc_plane_state *surface,
1566                 struct dc_surface_update *srf_update)
1567 {
1568         if (srf_update->flip_addr) {
1569                 surface->address = srf_update->flip_addr->address;
1570                 surface->flip_immediate =
1571                         srf_update->flip_addr->flip_immediate;
1572                 surface->time.time_elapsed_in_us[surface->time.index] =
1573                         srf_update->flip_addr->flip_timestamp_in_us -
1574                                 surface->time.prev_update_time_in_us;
1575                 surface->time.prev_update_time_in_us =
1576                         srf_update->flip_addr->flip_timestamp_in_us;
1577                 surface->time.index++;
1578                 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
1579                         surface->time.index = 0;
1580         }
1581
1582         if (srf_update->scaling_info) {
1583                 surface->scaling_quality =
1584                                 srf_update->scaling_info->scaling_quality;
1585                 surface->dst_rect =
1586                                 srf_update->scaling_info->dst_rect;
1587                 surface->src_rect =
1588                                 srf_update->scaling_info->src_rect;
1589                 surface->clip_rect =
1590                                 srf_update->scaling_info->clip_rect;
1591         }
1592
1593         if (srf_update->plane_info) {
1594                 surface->color_space =
1595                                 srf_update->plane_info->color_space;
1596                 surface->format =
1597                                 srf_update->plane_info->format;
1598                 surface->plane_size =
1599                                 srf_update->plane_info->plane_size;
1600                 surface->rotation =
1601                                 srf_update->plane_info->rotation;
1602                 surface->horizontal_mirror =
1603                                 srf_update->plane_info->horizontal_mirror;
1604                 surface->stereo_format =
1605                                 srf_update->plane_info->stereo_format;
1606                 surface->tiling_info =
1607                                 srf_update->plane_info->tiling_info;
1608                 surface->visible =
1609                                 srf_update->plane_info->visible;
1610                 surface->per_pixel_alpha =
1611                                 srf_update->plane_info->per_pixel_alpha;
1612                 surface->global_alpha =
1613                                 srf_update->plane_info->global_alpha;
1614                 surface->global_alpha_value =
1615                                 srf_update->plane_info->global_alpha_value;
1616                 surface->dcc =
1617                                 srf_update->plane_info->dcc;
1618                 surface->sdr_white_level =
1619                                 srf_update->plane_info->sdr_white_level;
1620         }
1621
1622         if (srf_update->gamma &&
1623                         (surface->gamma_correction !=
1624                                         srf_update->gamma)) {
1625                 memcpy(&surface->gamma_correction->entries,
1626                         &srf_update->gamma->entries,
1627                         sizeof(struct dc_gamma_entries));
1628                 surface->gamma_correction->is_identity =
1629                         srf_update->gamma->is_identity;
1630                 surface->gamma_correction->num_entries =
1631                         srf_update->gamma->num_entries;
1632                 surface->gamma_correction->type =
1633                         srf_update->gamma->type;
1634         }
1635
1636         if (srf_update->in_transfer_func &&
1637                         (surface->in_transfer_func !=
1638                                 srf_update->in_transfer_func)) {
1639                 surface->in_transfer_func->sdr_ref_white_level =
1640                         srf_update->in_transfer_func->sdr_ref_white_level;
1641                 surface->in_transfer_func->tf =
1642                         srf_update->in_transfer_func->tf;
1643                 surface->in_transfer_func->type =
1644                         srf_update->in_transfer_func->type;
1645                 memcpy(&surface->in_transfer_func->tf_pts,
1646                         &srf_update->in_transfer_func->tf_pts,
1647                         sizeof(struct dc_transfer_func_distributed_points));
1648         }
1649
1650 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1651         if (srf_update->func_shaper &&
1652                         (surface->in_shaper_func !=
1653                         srf_update->func_shaper))
1654                 memcpy(surface->in_shaper_func, srf_update->func_shaper,
1655                 sizeof(*surface->in_shaper_func));
1656
1657         if (srf_update->lut3d_func &&
1658                         (surface->lut3d_func !=
1659                         srf_update->lut3d_func))
1660                 memcpy(surface->lut3d_func, srf_update->lut3d_func,
1661                 sizeof(*surface->lut3d_func));
1662
1663         if (srf_update->blend_tf &&
1664                         (surface->blend_tf !=
1665                         srf_update->blend_tf))
1666                 memcpy(surface->blend_tf, srf_update->blend_tf,
1667                 sizeof(*surface->blend_tf));
1668
1669 #endif
1670         if (srf_update->input_csc_color_matrix)
1671                 surface->input_csc_color_matrix =
1672                         *srf_update->input_csc_color_matrix;
1673
1674         if (srf_update->coeff_reduction_factor)
1675                 surface->coeff_reduction_factor =
1676                         *srf_update->coeff_reduction_factor;
1677 }
1678
1679 static void copy_stream_update_to_stream(struct dc *dc,
1680                                          struct dc_state *context,
1681                                          struct dc_stream_state *stream,
1682                                          const struct dc_stream_update *update)
1683 {
1684         if (update == NULL || stream == NULL)
1685                 return;
1686
1687         if (update->src.height && update->src.width)
1688                 stream->src = update->src;
1689
1690         if (update->dst.height && update->dst.width)
1691                 stream->dst = update->dst;
1692
1693         if (update->out_transfer_func &&
1694             stream->out_transfer_func != update->out_transfer_func) {
1695                 stream->out_transfer_func->sdr_ref_white_level =
1696                         update->out_transfer_func->sdr_ref_white_level;
1697                 stream->out_transfer_func->tf = update->out_transfer_func->tf;
1698                 stream->out_transfer_func->type =
1699                         update->out_transfer_func->type;
1700                 memcpy(&stream->out_transfer_func->tf_pts,
1701                        &update->out_transfer_func->tf_pts,
1702                        sizeof(struct dc_transfer_func_distributed_points));
1703         }
1704
1705         if (update->hdr_static_metadata)
1706                 stream->hdr_static_metadata = *update->hdr_static_metadata;
1707
1708         if (update->abm_level)
1709                 stream->abm_level = *update->abm_level;
1710
1711         if (update->periodic_interrupt0)
1712                 stream->periodic_interrupt0 = *update->periodic_interrupt0;
1713
1714         if (update->periodic_interrupt1)
1715                 stream->periodic_interrupt1 = *update->periodic_interrupt1;
1716
1717         if (update->gamut_remap)
1718                 stream->gamut_remap_matrix = *update->gamut_remap;
1719
1720         /* Note: this being updated after mode set is currently not a use case
1721          * however if it arises OCSC would need to be reprogrammed at the
1722          * minimum
1723          */
1724         if (update->output_color_space)
1725                 stream->output_color_space = *update->output_color_space;
1726
1727         if (update->output_csc_transform)
1728                 stream->csc_color_matrix = *update->output_csc_transform;
1729
1730         if (update->vrr_infopacket)
1731                 stream->vrr_infopacket = *update->vrr_infopacket;
1732
1733         if (update->dpms_off)
1734                 stream->dpms_off = *update->dpms_off;
1735
1736         if (update->vsc_infopacket)
1737                 stream->vsc_infopacket = *update->vsc_infopacket;
1738
1739         if (update->vsp_infopacket)
1740                 stream->vsp_infopacket = *update->vsp_infopacket;
1741
1742         if (update->dither_option)
1743                 stream->dither_option = *update->dither_option;
1744 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1745         /* update current stream with writeback info */
1746         if (update->wb_update) {
1747                 int i;
1748
1749                 stream->num_wb_info = update->wb_update->num_wb_info;
1750                 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
1751                 for (i = 0; i < stream->num_wb_info; i++)
1752                         stream->writeback_info[i] =
1753                                 update->wb_update->writeback_info[i];
1754         }
1755 #endif
1756 #if defined(CONFIG_DRM_AMD_DC_DSC_SUPPORT)
1757         if (update->dsc_config) {
1758                 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
1759                 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
1760                 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
1761                                        update->dsc_config->num_slices_v != 0);
1762
1763                 stream->timing.dsc_cfg = *update->dsc_config;
1764                 stream->timing.flags.DSC = enable_dsc;
1765                 if (!dc->res_pool->funcs->validate_bandwidth(dc, context,
1766                                                              true)) {
1767                         stream->timing.dsc_cfg = old_dsc_cfg;
1768                         stream->timing.flags.DSC = old_dsc_enabled;
1769                 }
1770         }
1771 #endif
1772 }
1773
1774 static void commit_planes_do_stream_update(struct dc *dc,
1775                 struct dc_stream_state *stream,
1776                 struct dc_stream_update *stream_update,
1777                 enum surface_update_type update_type,
1778                 struct dc_state *context)
1779 {
1780         int j;
1781
1782         // Stream updates
1783         for (j = 0; j < dc->res_pool->pipe_count; j++) {
1784                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1785
1786                 if (!pipe_ctx->top_pipe &&
1787                         pipe_ctx->stream &&
1788                         pipe_ctx->stream == stream) {
1789
1790                         if (stream_update->periodic_interrupt0 &&
1791                                         dc->hwss.setup_periodic_interrupt)
1792                                 dc->hwss.setup_periodic_interrupt(pipe_ctx, VLINE0);
1793
1794                         if (stream_update->periodic_interrupt1 &&
1795                                         dc->hwss.setup_periodic_interrupt)
1796                                 dc->hwss.setup_periodic_interrupt(pipe_ctx, VLINE1);
1797
1798                         if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
1799                                         stream_update->vrr_infopacket ||
1800                                         stream_update->vsc_infopacket ||
1801                                         stream_update->vsp_infopacket) {
1802                                 resource_build_info_frame(pipe_ctx);
1803                                 dc->hwss.update_info_frame(pipe_ctx);
1804                         }
1805
1806                         if (stream_update->gamut_remap)
1807                                 dc_stream_set_gamut_remap(dc, stream);
1808
1809                         if (stream_update->output_csc_transform)
1810                                 dc_stream_program_csc_matrix(dc, stream);
1811
1812                         if (stream_update->dither_option) {
1813 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1814                                 struct pipe_ctx *odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
1815 #endif
1816                                 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1817                                                                         &pipe_ctx->stream->bit_depth_params);
1818                                 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
1819                                                 &stream->bit_depth_params,
1820                                                 &stream->clamping);
1821 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1822                                 if (odm_pipe)
1823                                         odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
1824                                                         &stream->bit_depth_params,
1825                                                         &stream->clamping);
1826 #endif
1827                         }
1828
1829 #if defined(CONFIG_DRM_AMD_DC_DSC_SUPPORT)
1830                         if (stream_update->dsc_config && dc->hwss.pipe_control_lock_global) {
1831                                 dc->hwss.pipe_control_lock_global(dc, pipe_ctx, true);
1832                                 dp_update_dsc_config(pipe_ctx);
1833                                 dc->hwss.pipe_control_lock_global(dc, pipe_ctx, false);
1834                         }
1835 #endif
1836                         /* Full fe update*/
1837                         if (update_type == UPDATE_TYPE_FAST)
1838                                 continue;
1839
1840                         if (stream_update->dpms_off) {
1841                                 dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
1842                                 if (*stream_update->dpms_off) {
1843                                         core_link_disable_stream(pipe_ctx, KEEP_ACQUIRED_RESOURCE);
1844                                         dc->hwss.optimize_bandwidth(dc, dc->current_state);
1845                                 } else {
1846                                         dc->hwss.prepare_bandwidth(dc, dc->current_state);
1847                                         core_link_enable_stream(dc->current_state, pipe_ctx);
1848                                 }
1849                                 dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
1850                         }
1851
1852                         if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
1853                                 if (pipe_ctx->stream_res.tg->funcs->is_blanked) {
1854                                         // if otg funcs defined check if blanked before programming
1855                                         if (!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
1856                                                 pipe_ctx->stream_res.abm->funcs->set_abm_level(
1857                                                         pipe_ctx->stream_res.abm, stream->abm_level);
1858                                 } else
1859                                         pipe_ctx->stream_res.abm->funcs->set_abm_level(
1860                                                 pipe_ctx->stream_res.abm, stream->abm_level);
1861                         }
1862                 }
1863         }
1864 }
1865
1866 static void commit_planes_for_stream(struct dc *dc,
1867                 struct dc_surface_update *srf_updates,
1868                 int surface_count,
1869                 struct dc_stream_state *stream,
1870                 struct dc_stream_update *stream_update,
1871                 enum surface_update_type update_type,
1872                 struct dc_state *context)
1873 {
1874         int i, j;
1875         struct pipe_ctx *top_pipe_to_program = NULL;
1876
1877         if (dc->optimize_seamless_boot && surface_count > 0) {
1878                 /* Optimize seamless boot flag keeps clocks and watermarks high until
1879                  * first flip. After first flip, optimization is required to lower
1880                  * bandwidth. Important to note that it is expected UEFI will
1881                  * only light up a single display on POST, therefore we only expect
1882                  * one stream with seamless boot flag set.
1883                  */
1884                 if (stream->apply_seamless_boot_optimization) {
1885                         stream->apply_seamless_boot_optimization = false;
1886                         dc->optimize_seamless_boot = false;
1887                         dc->optimized_required = true;
1888                 }
1889         }
1890
1891         if (update_type == UPDATE_TYPE_FULL && !dc->optimize_seamless_boot) {
1892                 dc->hwss.prepare_bandwidth(dc, context);
1893                 context_clock_trace(dc, context);
1894         }
1895
1896         // Stream updates
1897         if (stream_update)
1898                 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
1899
1900         if (surface_count == 0) {
1901                 /*
1902                  * In case of turning off screen, no need to program front end a second time.
1903                  * just return after program blank.
1904                  */
1905                 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
1906                 return;
1907         }
1908
1909 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1910         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
1911                 for (i = 0; i < surface_count; i++) {
1912                         struct dc_plane_state *plane_state = srf_updates[i].surface;
1913                         /*set logical flag for lock/unlock use*/
1914                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
1915                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1916                                 if (!pipe_ctx->plane_state)
1917                                         continue;
1918                                 if (pipe_ctx->plane_state != plane_state)
1919                                         continue;
1920                                 plane_state->triplebuffer_flips = false;
1921                                 if (update_type == UPDATE_TYPE_FAST &&
1922                                         dc->hwss.program_triplebuffer != NULL &&
1923                                         !plane_state->flip_immediate &&
1924                                         !dc->debug.disable_tri_buf) {
1925                                                 /*triple buffer for VUpdate  only*/
1926                                                 plane_state->triplebuffer_flips = true;
1927                                 }
1928                         }
1929                 }
1930         }
1931 #endif
1932
1933         // Update Type FULL, Surface updates
1934         for (j = 0; j < dc->res_pool->pipe_count; j++) {
1935                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1936
1937                 if (!pipe_ctx->top_pipe &&
1938                         pipe_ctx->stream &&
1939                         pipe_ctx->stream == stream) {
1940                         struct dc_stream_status *stream_status = NULL;
1941
1942                         top_pipe_to_program = pipe_ctx;
1943
1944                         if (!pipe_ctx->plane_state)
1945                                 continue;
1946
1947                         /* Full fe update*/
1948                         if (update_type == UPDATE_TYPE_FAST)
1949                                 continue;
1950
1951 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1952                         ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
1953
1954                         if (dc->hwss.program_triplebuffer != NULL &&
1955                                 !dc->debug.disable_tri_buf) {
1956                                 /*turn off triple buffer for full update*/
1957                                 dc->hwss.program_triplebuffer(
1958                                         dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
1959                         }
1960 #endif
1961                         stream_status =
1962                                 stream_get_status(context, pipe_ctx->stream);
1963
1964                         dc->hwss.apply_ctx_for_surface(
1965                                         dc, pipe_ctx->stream, stream_status->plane_count, context);
1966                 }
1967         }
1968
1969         // Update Type FAST, Surface updates
1970         if (update_type == UPDATE_TYPE_FAST) {
1971                 /* Lock the top pipe while updating plane addrs, since freesync requires
1972                  *  plane addr update event triggers to be synchronized.
1973                  *  top_pipe_to_program is expected to never be NULL
1974                  */
1975                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
1976
1977 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1978                 if (dc->hwss.set_flip_control_gsl)
1979                         for (i = 0; i < surface_count; i++) {
1980                                 struct dc_plane_state *plane_state = srf_updates[i].surface;
1981
1982                                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
1983                                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1984
1985                                         if (pipe_ctx->stream != stream)
1986                                                 continue;
1987
1988                                         if (pipe_ctx->plane_state != plane_state)
1989                                                 continue;
1990
1991                                         // GSL has to be used for flip immediate
1992                                         dc->hwss.set_flip_control_gsl(pipe_ctx,
1993                                                         plane_state->flip_immediate);
1994                                 }
1995                         }
1996 #endif
1997                 /* Perform requested Updates */
1998                 for (i = 0; i < surface_count; i++) {
1999                         struct dc_plane_state *plane_state = srf_updates[i].surface;
2000
2001                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2002                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2003
2004                                 if (pipe_ctx->stream != stream)
2005                                         continue;
2006
2007                                 if (pipe_ctx->plane_state != plane_state)
2008                                         continue;
2009 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
2010                                 /*program triple buffer after lock based on flip type*/
2011                                 if (dc->hwss.program_triplebuffer != NULL &&
2012                                         !dc->debug.disable_tri_buf) {
2013                                         /*only enable triplebuffer for  fast_update*/
2014                                         dc->hwss.program_triplebuffer(
2015                                                 dc, pipe_ctx, plane_state->triplebuffer_flips);
2016                                 }
2017 #endif
2018                                 if (srf_updates[i].flip_addr)
2019                                         dc->hwss.update_plane_addr(dc, pipe_ctx);
2020                         }
2021                 }
2022
2023                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2024         }
2025
2026         // Fire manual trigger only when bottom plane is flipped
2027         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2028                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2029
2030                 if (pipe_ctx->bottom_pipe ||
2031                                 !pipe_ctx->stream ||
2032                                 pipe_ctx->stream != stream ||
2033                                 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2034                         continue;
2035
2036                 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2037                         pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2038         }
2039 }
2040
2041 void dc_commit_updates_for_stream(struct dc *dc,
2042                 struct dc_surface_update *srf_updates,
2043                 int surface_count,
2044                 struct dc_stream_state *stream,
2045                 struct dc_stream_update *stream_update,
2046                 struct dc_state *state)
2047 {
2048         const struct dc_stream_status *stream_status;
2049         enum surface_update_type update_type;
2050         struct dc_state *context;
2051         struct dc_context *dc_ctx = dc->ctx;
2052         int i, j;
2053
2054         stream_status = dc_stream_get_status(stream);
2055         context = dc->current_state;
2056
2057         update_type = dc_check_update_surfaces_for_stream(
2058                                 dc, srf_updates, surface_count, stream_update, stream_status);
2059
2060         if (update_type >= update_surface_trace_level)
2061                 update_surface_trace(dc, srf_updates, surface_count);
2062
2063
2064         if (update_type >= UPDATE_TYPE_FULL) {
2065
2066                 /* initialize scratch memory for building context */
2067                 context = dc_create_state(dc);
2068                 if (context == NULL) {
2069                         DC_ERROR("Failed to allocate new validate context!\n");
2070                         return;
2071                 }
2072
2073                 dc_resource_state_copy_construct(state, context);
2074
2075                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2076                         struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2077                         struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2078
2079                         if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2080                                 new_pipe->plane_state->force_full_update = true;
2081                 }
2082         }
2083
2084
2085         for (i = 0; i < surface_count; i++) {
2086                 struct dc_plane_state *surface = srf_updates[i].surface;
2087
2088                 copy_surface_update_to_plane(surface, &srf_updates[i]);
2089
2090                 if (update_type >= UPDATE_TYPE_MED) {
2091                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2092                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2093
2094                                 if (pipe_ctx->plane_state != surface)
2095                                         continue;
2096
2097                                 resource_build_scaling_params(pipe_ctx);
2098                         }
2099                 }
2100         }
2101
2102         copy_stream_update_to_stream(dc, context, stream, stream_update);
2103
2104         commit_planes_for_stream(
2105                                 dc,
2106                                 srf_updates,
2107                                 surface_count,
2108                                 stream,
2109                                 stream_update,
2110                                 update_type,
2111                                 context);
2112         /*update current_State*/
2113         if (dc->current_state != context) {
2114
2115                 struct dc_state *old = dc->current_state;
2116
2117                 dc->current_state = context;
2118                 dc_release_state(old);
2119
2120                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2121                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2122
2123                         if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2124                                 pipe_ctx->plane_state->force_full_update = false;
2125                 }
2126         }
2127         /*let's use current_state to update watermark etc*/
2128         if (update_type >= UPDATE_TYPE_FULL)
2129                 dc_post_update_surfaces_to_stream(dc);
2130
2131         return;
2132
2133 }
2134
2135 uint8_t dc_get_current_stream_count(struct dc *dc)
2136 {
2137         return dc->current_state->stream_count;
2138 }
2139
2140 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2141 {
2142         if (i < dc->current_state->stream_count)
2143                 return dc->current_state->streams[i];
2144         return NULL;
2145 }
2146
2147 enum dc_irq_source dc_interrupt_to_irq_source(
2148                 struct dc *dc,
2149                 uint32_t src_id,
2150                 uint32_t ext_id)
2151 {
2152         return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2153 }
2154
2155 /**
2156  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2157  */
2158 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2159 {
2160
2161         if (dc == NULL)
2162                 return false;
2163
2164         return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2165 }
2166
2167 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2168 {
2169         dal_irq_service_ack(dc->res_pool->irqs, src);
2170 }
2171
2172 void dc_set_power_state(
2173         struct dc *dc,
2174         enum dc_acpi_cm_power_state power_state)
2175 {
2176         struct kref refcount;
2177         struct display_mode_lib *dml = kzalloc(sizeof(struct display_mode_lib),
2178                                                 GFP_KERNEL);
2179
2180         ASSERT(dml);
2181         if (!dml)
2182                 return;
2183
2184         switch (power_state) {
2185         case DC_ACPI_CM_POWER_STATE_D0:
2186                 dc_resource_state_construct(dc, dc->current_state);
2187
2188                 dc->hwss.init_hw(dc);
2189                 break;
2190         default:
2191                 ASSERT(dc->current_state->stream_count == 0);
2192                 /* Zero out the current context so that on resume we start with
2193                  * clean state, and dc hw programming optimizations will not
2194                  * cause any trouble.
2195                  */
2196
2197                 /* Preserve refcount */
2198                 refcount = dc->current_state->refcount;
2199                 /* Preserve display mode lib */
2200                 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2201
2202                 dc_resource_state_destruct(dc->current_state);
2203                 memset(dc->current_state, 0,
2204                                 sizeof(*dc->current_state));
2205
2206                 dc->current_state->refcount = refcount;
2207                 dc->current_state->bw_ctx.dml = *dml;
2208
2209                 break;
2210         }
2211
2212         kfree(dml);
2213 }
2214
2215 void dc_resume(struct dc *dc)
2216 {
2217
2218         uint32_t i;
2219
2220         for (i = 0; i < dc->link_count; i++)
2221                 core_link_resume(dc->links[i]);
2222 }
2223
2224 unsigned int dc_get_current_backlight_pwm(struct dc *dc)
2225 {
2226         struct abm *abm = dc->res_pool->abm;
2227
2228         if (abm)
2229                 return abm->funcs->get_current_backlight(abm);
2230
2231         return 0;
2232 }
2233
2234 unsigned int dc_get_target_backlight_pwm(struct dc *dc)
2235 {
2236         struct abm *abm = dc->res_pool->abm;
2237
2238         if (abm)
2239                 return abm->funcs->get_target_backlight(abm);
2240
2241         return 0;
2242 }
2243
2244 bool dc_is_dmcu_initialized(struct dc *dc)
2245 {
2246         struct dmcu *dmcu = dc->res_pool->dmcu;
2247
2248         if (dmcu)
2249                 return dmcu->funcs->is_dmcu_initialized(dmcu);
2250         return false;
2251 }
2252
2253 bool dc_submit_i2c(
2254                 struct dc *dc,
2255                 uint32_t link_index,
2256                 struct i2c_command *cmd)
2257 {
2258
2259         struct dc_link *link = dc->links[link_index];
2260         struct ddc_service *ddc = link->ddc;
2261         return dce_i2c_submit_command(
2262                 dc->res_pool,
2263                 ddc->ddc_pin,
2264                 cmd);
2265 }
2266
2267 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2268 {
2269         if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2270                 BREAK_TO_DEBUGGER();
2271                 return false;
2272         }
2273
2274         dc_sink_retain(sink);
2275
2276         dc_link->remote_sinks[dc_link->sink_count] = sink;
2277         dc_link->sink_count++;
2278
2279         return true;
2280 }
2281
2282 /**
2283  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2284  *
2285  * EDID length is in bytes
2286  */
2287 struct dc_sink *dc_link_add_remote_sink(
2288                 struct dc_link *link,
2289                 const uint8_t *edid,
2290                 int len,
2291                 struct dc_sink_init_data *init_data)
2292 {
2293         struct dc_sink *dc_sink;
2294         enum dc_edid_status edid_status;
2295
2296         if (len > DC_MAX_EDID_BUFFER_SIZE) {
2297                 dm_error("Max EDID buffer size breached!\n");
2298                 return NULL;
2299         }
2300
2301         if (!init_data) {
2302                 BREAK_TO_DEBUGGER();
2303                 return NULL;
2304         }
2305
2306         if (!init_data->link) {
2307                 BREAK_TO_DEBUGGER();
2308                 return NULL;
2309         }
2310
2311         dc_sink = dc_sink_create(init_data);
2312
2313         if (!dc_sink)
2314                 return NULL;
2315
2316         memmove(dc_sink->dc_edid.raw_edid, edid, len);
2317         dc_sink->dc_edid.length = len;
2318
2319         if (!link_add_remote_sink_helper(
2320                         link,
2321                         dc_sink))
2322                 goto fail_add_sink;
2323
2324         edid_status = dm_helpers_parse_edid_caps(
2325                         link->ctx,
2326                         &dc_sink->dc_edid,
2327                         &dc_sink->edid_caps);
2328
2329         /*
2330          * Treat device as no EDID device if EDID
2331          * parsing fails
2332          */
2333         if (edid_status != EDID_OK) {
2334                 dc_sink->dc_edid.length = 0;
2335                 dm_error("Bad EDID, status%d!\n", edid_status);
2336         }
2337
2338         return dc_sink;
2339
2340 fail_add_sink:
2341         dc_sink_release(dc_sink);
2342         return NULL;
2343 }
2344
2345 /**
2346  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2347  *
2348  * Note that this just removes the struct dc_sink - it doesn't
2349  * program hardware or alter other members of dc_link
2350  */
2351 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2352 {
2353         int i;
2354
2355         if (!link->sink_count) {
2356                 BREAK_TO_DEBUGGER();
2357                 return;
2358         }
2359
2360         for (i = 0; i < link->sink_count; i++) {
2361                 if (link->remote_sinks[i] == sink) {
2362                         dc_sink_release(sink);
2363                         link->remote_sinks[i] = NULL;
2364
2365                         /* shrink array to remove empty place */
2366                         while (i < link->sink_count - 1) {
2367                                 link->remote_sinks[i] = link->remote_sinks[i+1];
2368                                 i++;
2369                         }
2370                         link->remote_sinks[i] = NULL;
2371                         link->sink_count--;
2372                         return;
2373                 }
2374         }
2375 }
2376
2377 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
2378 {
2379         info->displayClock                              = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
2380         info->engineClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
2381         info->memoryClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
2382         info->maxSupportedDppClock              = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
2383         info->dppClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
2384         info->socClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
2385         info->dcfClockDeepSleep                 = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
2386         info->fClock                                    = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
2387         info->phyClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
2388 }