drm/amd/display: check actual clock value.
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn21 / rn_clk_mgr.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32
33
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44
45
46 /* Constants */
47
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
58 int rn_get_active_display_cnt_wa(
59                 struct dc *dc,
60                 struct dc_state *context)
61 {
62         int i, display_count;
63         bool tmds_present = false;
64
65         display_count = 0;
66         for (i = 0; i < context->stream_count; i++) {
67                 const struct dc_stream_state *stream = context->streams[i];
68
69                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
70                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
71                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
72                         tmds_present = true;
73         }
74
75         for (i = 0; i < dc->link_count; i++) {
76                 const struct dc_link *link = dc->links[i];
77
78                 /*
79                  * Only notify active stream or virtual stream.
80                  * Need to notify virtual stream to work around
81                  * headless case. HPD does not fire when system is in
82                  * S0i2.
83                  */
84                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
85                 if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
86                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
87                         display_count++;
88         }
89
90         /* WA for hang on HDMI after display off back back on*/
91         if (display_count == 0 && tmds_present)
92                 display_count = 1;
93
94         return display_count;
95 }
96
97 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
98 {
99         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100
101         rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
102         /* update power state */
103         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
104 }
105
106 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
107                         struct dc_state *context,
108                         bool safe_to_lower)
109 {
110         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
111         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
112         struct dc *dc = clk_mgr_base->ctx->dc;
113         int display_count;
114         bool update_dppclk = false;
115         bool update_dispclk = false;
116         bool dpp_clock_lowered = false;
117
118         struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
119
120         if (dc->work_arounds.skip_clock_update)
121                 return;
122
123         /*
124          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
125          * also if safe to lower is false, we just go in the higher state
126          */
127         if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
128                 /* check that we're not already in lower */
129                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
130
131                         display_count = rn_get_active_display_cnt_wa(dc, context);
132                         /* if we can go lower, go lower */
133                         if (display_count == 0) {
134                                 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
135                                 /* update power state */
136                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
137                         }
138                 }
139         } else {
140                 /* check that we're not already in D0 */
141                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
142                         rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
143                         /* update power state */
144                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
145                 }
146         }
147
148         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
149                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
150                 rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
151         }
152
153         if (should_set_clock(safe_to_lower,
154                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
155                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
156                 rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
157         }
158
159         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
160         // Do not adjust dppclk if dppclk is 0 to avoid unexpected result
161         if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
162                 new_clocks->dppclk_khz = 100000;
163
164         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
165                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
166                         dpp_clock_lowered = true;
167                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
168                 update_dppclk = true;
169         }
170
171         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
172                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
173                 clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
174
175                 update_dispclk = true;
176         }
177
178         if (dpp_clock_lowered) {
179                 // increase per DPP DTO before lowering global dppclk
180                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
181                 clk_mgr_base->clks.actual_dppclk_khz =
182                                 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
183
184         } else {
185                 // increase global DPPCLK before lowering per DPP DTO
186                 if (update_dppclk || update_dispclk)
187                         clk_mgr_base->clks.actual_dppclk_khz =
188                                         rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
189                 // always update dtos unless clock is lowered and not safe to lower
190                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
191                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
192         }
193
194         if (update_dispclk &&
195                         dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
196                 /*update dmcu for wait_loop count*/
197                 dmcu->funcs->set_psr_wait_loop(dmcu,
198                         clk_mgr_base->clks.dispclk_khz / 1000 / 7);
199         }
200 }
201
202
203 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
204 {
205         /* get FbMult value */
206         struct fixed31_32 pll_req;
207         unsigned int fbmult_frac_val = 0;
208         unsigned int fbmult_int_val = 0;
209
210
211         /*
212          * Register value of fbmult is in 8.16 format, we are converting to 31.32
213          * to leverage the fix point operations available in driver
214          */
215
216         REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
217         REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
218
219         pll_req = dc_fixpt_from_int(fbmult_int_val);
220
221         /*
222          * since fractional part is only 16 bit in register definition but is 32 bit
223          * in our fix point definiton, need to shift left by 16 to obtain correct value
224          */
225         pll_req.value |= fbmult_frac_val << 16;
226
227         /* multiply by REFCLK period */
228         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
229
230         /* integer part is now VCO frequency in kHz */
231         return dc_fixpt_floor(pll_req);
232 }
233
234 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
235 {
236         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
237
238         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
239         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
240
241         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);      //dcf deep sleep divider
242         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
243
244         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
245         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
246
247         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
248         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
249
250         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
251         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
252 }
253
254 /* This function collect raw clk register values */
255 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
256                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
257 {
258         struct rn_clk_internal internal = {0};
259         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
260         unsigned int chars_printed = 0;
261         unsigned int remaining_buffer = log_info->bufSize;
262
263         rn_dump_clk_registers_internal(&internal, clk_mgr_base);
264
265         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
266         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
267         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
268         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
269         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
270         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
271
272         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
273         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
274                 regs_and_bypass->dppclk_bypass = 0;
275         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
276         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
277                 regs_and_bypass->dcfclk_bypass = 0;
278         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
279         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
280                 regs_and_bypass->dispclk_bypass = 0;
281         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
282         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
283                 regs_and_bypass->dprefclk_bypass = 0;
284
285         if (log_info->enabled) {
286                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
287                 remaining_buffer -= chars_printed;
288                 *log_info->sum_chars_printed += chars_printed;
289                 log_info->pBuf += chars_printed;
290
291                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
292                         regs_and_bypass->dcfclk,
293                         regs_and_bypass->dcf_deep_sleep_divider,
294                         regs_and_bypass->dcf_deep_sleep_allow,
295                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
296                 remaining_buffer -= chars_printed;
297                 *log_info->sum_chars_printed += chars_printed;
298                 log_info->pBuf += chars_printed;
299
300                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
301                         regs_and_bypass->dprefclk,
302                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
303                 remaining_buffer -= chars_printed;
304                 *log_info->sum_chars_printed += chars_printed;
305                 log_info->pBuf += chars_printed;
306
307                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
308                         regs_and_bypass->dispclk,
309                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
310                 remaining_buffer -= chars_printed;
311                 *log_info->sum_chars_printed += chars_printed;
312                 log_info->pBuf += chars_printed;
313
314                 //split
315                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
316                 remaining_buffer -= chars_printed;
317                 *log_info->sum_chars_printed += chars_printed;
318                 log_info->pBuf += chars_printed;
319
320                 // REGISTER VALUES
321                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
322                 remaining_buffer -= chars_printed;
323                 *log_info->sum_chars_printed += chars_printed;
324                 log_info->pBuf += chars_printed;
325
326                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
327                                 internal.CLK1_CLK3_CURRENT_CNT);
328                 remaining_buffer -= chars_printed;
329                 *log_info->sum_chars_printed += chars_printed;
330                 log_info->pBuf += chars_printed;
331
332                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
333                                         internal.CLK1_CLK3_DS_CNTL);
334                 remaining_buffer -= chars_printed;
335                 *log_info->sum_chars_printed += chars_printed;
336                 log_info->pBuf += chars_printed;
337
338                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
339                                         internal.CLK1_CLK3_ALLOW_DS);
340                 remaining_buffer -= chars_printed;
341                 *log_info->sum_chars_printed += chars_printed;
342                 log_info->pBuf += chars_printed;
343
344                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
345                                         internal.CLK1_CLK2_CURRENT_CNT);
346                 remaining_buffer -= chars_printed;
347                 *log_info->sum_chars_printed += chars_printed;
348                 log_info->pBuf += chars_printed;
349
350                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
351                                         internal.CLK1_CLK0_CURRENT_CNT);
352                 remaining_buffer -= chars_printed;
353                 *log_info->sum_chars_printed += chars_printed;
354                 log_info->pBuf += chars_printed;
355
356                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
357                                         internal.CLK1_CLK1_CURRENT_CNT);
358                 remaining_buffer -= chars_printed;
359                 *log_info->sum_chars_printed += chars_printed;
360                 log_info->pBuf += chars_printed;
361
362                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
363                                         internal.CLK1_CLK3_BYPASS_CNTL);
364                 remaining_buffer -= chars_printed;
365                 *log_info->sum_chars_printed += chars_printed;
366                 log_info->pBuf += chars_printed;
367
368                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
369                                         internal.CLK1_CLK2_BYPASS_CNTL);
370                 remaining_buffer -= chars_printed;
371                 *log_info->sum_chars_printed += chars_printed;
372                 log_info->pBuf += chars_printed;
373
374                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
375                                         internal.CLK1_CLK0_BYPASS_CNTL);
376                 remaining_buffer -= chars_printed;
377                 *log_info->sum_chars_printed += chars_printed;
378                 log_info->pBuf += chars_printed;
379
380                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
381                                         internal.CLK1_CLK1_BYPASS_CNTL);
382                 remaining_buffer -= chars_printed;
383                 *log_info->sum_chars_printed += chars_printed;
384                 log_info->pBuf += chars_printed;
385         }
386 }
387
388 /* This function produce translated logical clk state values*/
389 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
390 {
391         struct clk_state_registers_and_bypass sb = { 0 };
392         struct clk_log_info log_info = { 0 };
393
394         rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
395
396         s->dprefclk_khz = sb.dprefclk * 1000;
397 }
398
399 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
400 {
401         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
402
403         rn_vbios_smu_enable_pme_wa(clk_mgr);
404 }
405
406 void rn_init_clocks(struct clk_mgr *clk_mgr)
407 {
408         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
409         // Assumption is that boot state always supports pstate
410         clk_mgr->clks.p_state_change_support = true;
411         clk_mgr->clks.prev_p_state_change_support = true;
412         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
413 }
414
415 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
416 {
417         int i, num_valid_sets;
418
419         num_valid_sets = 0;
420
421         for (i = 0; i < WM_SET_COUNT; i++) {
422                 /* skip empty entries, the smu array has no holes*/
423                 if (!bw_params->wm_table.entries[i].valid)
424                         continue;
425
426                 ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
427                 ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
428                 /* We will not select WM based on fclk, so leave it as unconstrained */
429                 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
430                 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
431                 /* dcfclk wil be used to select WM*/
432
433                 if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
434                         if (i == 0)
435                                 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
436                         else {
437                                 /* add 1 to make it non-overlapping with next lvl */
438                                 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
439                         }
440                         ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
441
442                 } else {
443                         /* unconstrained for memory retraining */
444                         ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
445                         ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
446
447                         /* Modify previous watermark range to cover up to max */
448                         ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
449                 }
450                 num_valid_sets++;
451         }
452
453         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
454         ranges->num_reader_wm_sets = num_valid_sets;
455
456         /* modify the min and max to make sure we cover the whole range*/
457         ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
458         ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
459         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
460         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
461
462         /* This is for writeback only, does not matter currently as no writeback support*/
463         ranges->num_writer_wm_sets = 1;
464         ranges->writer_wm_sets[0].wm_inst = WM_A;
465         ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
466         ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
467         ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
468         ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
469
470 }
471
472 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
473 {
474         struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
475         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
476         struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
477
478         if (!debug->disable_pplib_wm_range) {
479                 build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
480
481                 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
482                 if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
483                         pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
484         }
485
486 }
487
488 static bool rn_are_clock_states_equal(struct dc_clocks *a,
489                 struct dc_clocks *b)
490 {
491         if (a->dispclk_khz != b->dispclk_khz)
492                 return false;
493         else if (a->dppclk_khz != b->dppclk_khz)
494                 return false;
495         else if (a->dcfclk_khz != b->dcfclk_khz)
496                 return false;
497         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
498                 return false;
499
500         return true;
501 }
502
503
504 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
505 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
506 {
507         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
508         unsigned int i, max_phyclk_req = 0;
509
510         clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
511
512         for (i = 0; i < MAX_PIPES * 2; i++) {
513                 if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
514                         max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
515         }
516
517         if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
518                 clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
519                 rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
520         }
521 }
522
523 static struct clk_mgr_funcs dcn21_funcs = {
524         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
525         .update_clocks = rn_update_clocks,
526         .init_clocks = rn_init_clocks,
527         .enable_pme_wa = rn_enable_pme_wa,
528         .are_clock_states_equal = rn_are_clock_states_equal,
529         .set_low_power_state = rn_set_low_power_state,
530         .notify_wm_ranges = rn_notify_wm_ranges,
531         .notify_link_rate_change = rn_notify_link_rate_change,
532 };
533
534 static struct clk_bw_params rn_bw_params = {
535         .vram_type = Ddr4MemType,
536         .num_channels = 1,
537         .clk_table = {
538                 .entries = {
539                         {
540                                 .voltage = 0,
541                                 .dcfclk_mhz = 400,
542                                 .fclk_mhz = 400,
543                                 .memclk_mhz = 800,
544                                 .socclk_mhz = 0,
545                         },
546                         {
547                                 .voltage = 0,
548                                 .dcfclk_mhz = 483,
549                                 .fclk_mhz = 800,
550                                 .memclk_mhz = 1600,
551                                 .socclk_mhz = 0,
552                         },
553                         {
554                                 .voltage = 0,
555                                 .dcfclk_mhz = 602,
556                                 .fclk_mhz = 1067,
557                                 .memclk_mhz = 1067,
558                                 .socclk_mhz = 0,
559                         },
560                         {
561                                 .voltage = 0,
562                                 .dcfclk_mhz = 738,
563                                 .fclk_mhz = 1333,
564                                 .memclk_mhz = 1600,
565                                 .socclk_mhz = 0,
566                         },
567                 },
568
569                 .num_entries = 4,
570         },
571
572 };
573
574 static struct wm_table ddr4_wm_table = {
575         .entries = {
576                 {
577                         .wm_inst = WM_A,
578                         .wm_type = WM_TYPE_PSTATE_CHG,
579                         .pstate_latency_us = 11.72,
580                         .sr_exit_time_us = 6.09,
581                         .sr_enter_plus_exit_time_us = 7.14,
582                         .valid = true,
583                 },
584                 {
585                         .wm_inst = WM_B,
586                         .wm_type = WM_TYPE_PSTATE_CHG,
587                         .pstate_latency_us = 11.72,
588                         .sr_exit_time_us = 10.12,
589                         .sr_enter_plus_exit_time_us = 11.48,
590                         .valid = true,
591                 },
592                 {
593                         .wm_inst = WM_C,
594                         .wm_type = WM_TYPE_PSTATE_CHG,
595                         .pstate_latency_us = 11.72,
596                         .sr_exit_time_us = 10.12,
597                         .sr_enter_plus_exit_time_us = 11.48,
598                         .valid = true,
599                 },
600                 {
601                         .wm_inst = WM_D,
602                         .wm_type = WM_TYPE_PSTATE_CHG,
603                         .pstate_latency_us = 11.72,
604                         .sr_exit_time_us = 10.12,
605                         .sr_enter_plus_exit_time_us = 11.48,
606                         .valid = true,
607                 },
608         }
609 };
610
611 static struct wm_table lpddr4_wm_table = {
612         .entries = {
613                 {
614                         .wm_inst = WM_A,
615                         .wm_type = WM_TYPE_PSTATE_CHG,
616                         .pstate_latency_us = 11.65333,
617                         .sr_exit_time_us = 5.32,
618                         .sr_enter_plus_exit_time_us = 6.38,
619                         .valid = true,
620                 },
621                 {
622                         .wm_inst = WM_B,
623                         .wm_type = WM_TYPE_PSTATE_CHG,
624                         .pstate_latency_us = 11.65333,
625                         .sr_exit_time_us = 9.82,
626                         .sr_enter_plus_exit_time_us = 11.196,
627                         .valid = true,
628                 },
629                 {
630                         .wm_inst = WM_C,
631                         .wm_type = WM_TYPE_PSTATE_CHG,
632                         .pstate_latency_us = 11.65333,
633                         .sr_exit_time_us = 9.89,
634                         .sr_enter_plus_exit_time_us = 11.24,
635                         .valid = true,
636                 },
637                 {
638                         .wm_inst = WM_D,
639                         .wm_type = WM_TYPE_PSTATE_CHG,
640                         .pstate_latency_us = 11.65333,
641                         .sr_exit_time_us = 9.748,
642                         .sr_enter_plus_exit_time_us = 11.102,
643                         .valid = true,
644                 },
645         }
646 };
647
648 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
649         .entries = {
650                 {
651                         .wm_inst = WM_A,
652                         .wm_type = WM_TYPE_PSTATE_CHG,
653                         .pstate_latency_us = 11.65333,
654                         .sr_exit_time_us = 8.32,
655                         .sr_enter_plus_exit_time_us = 9.38,
656                         .valid = true,
657                 },
658                 {
659                         .wm_inst = WM_B,
660                         .wm_type = WM_TYPE_PSTATE_CHG,
661                         .pstate_latency_us = 11.65333,
662                         .sr_exit_time_us = 9.82,
663                         .sr_enter_plus_exit_time_us = 11.196,
664                         .valid = true,
665                 },
666                 {
667                         .wm_inst = WM_C,
668                         .wm_type = WM_TYPE_PSTATE_CHG,
669                         .pstate_latency_us = 11.65333,
670                         .sr_exit_time_us = 9.89,
671                         .sr_enter_plus_exit_time_us = 11.24,
672                         .valid = true,
673                 },
674                 {
675                         .wm_inst = WM_D,
676                         .wm_type = WM_TYPE_PSTATE_CHG,
677                         .pstate_latency_us = 11.65333,
678                         .sr_exit_time_us = 9.748,
679                         .sr_enter_plus_exit_time_us = 11.102,
680                         .valid = true,
681                 },
682         }
683 };
684
685 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
686 {
687         int i;
688
689         for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
690                 if (clock_table->DcfClocks[i].Vol == voltage)
691                         return clock_table->DcfClocks[i].Freq;
692         }
693
694         ASSERT(0);
695         return 0;
696 }
697
698 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
699 {
700         int i, j = 0;
701
702         j = -1;
703
704         ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
705
706         /* Find lowest DPM, FCLK is filled in reverse order*/
707
708         for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
709                 if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
710                         j = i;
711                         break;
712                 }
713         }
714
715         if (j == -1) {
716                 /* clock table is all 0s, just use our own hardcode */
717                 ASSERT(0);
718                 return;
719         }
720
721         bw_params->clk_table.num_entries = j + 1;
722
723         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
724                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
725                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
726                 bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
727                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
728         }
729
730         bw_params->vram_type = bios_info->memory_type;
731         bw_params->num_channels = bios_info->ma_channel_number;
732
733         for (i = 0; i < WM_SET_COUNT; i++) {
734                 bw_params->wm_table.entries[i].wm_inst = i;
735
736                 if (i >= bw_params->clk_table.num_entries) {
737                         bw_params->wm_table.entries[i].valid = false;
738                         continue;
739                 }
740
741                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
742                 bw_params->wm_table.entries[i].valid = true;
743         }
744
745         if (bw_params->vram_type == LpDdr4MemType) {
746                 /*
747                  * WM set D will be re-purposed for memory retraining
748                  */
749                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
750                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
751                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
752                 bw_params->wm_table.entries[WM_D].valid = true;
753         }
754
755 }
756
757 void rn_clk_mgr_construct(
758                 struct dc_context *ctx,
759                 struct clk_mgr_internal *clk_mgr,
760                 struct pp_smu_funcs *pp_smu,
761                 struct dccg *dccg)
762 {
763         struct dc_debug_options *debug = &ctx->dc->debug;
764         struct dpm_clocks clock_table = { 0 };
765         enum pp_smu_status status = 0;
766
767         clk_mgr->base.ctx = ctx;
768         clk_mgr->base.funcs = &dcn21_funcs;
769
770         clk_mgr->pp_smu = pp_smu;
771
772         clk_mgr->dccg = dccg;
773         clk_mgr->dfs_bypass_disp_clk = 0;
774
775         clk_mgr->dprefclk_ss_percentage = 0;
776         clk_mgr->dprefclk_ss_divider = 1000;
777         clk_mgr->ss_on_dprefclk = false;
778         clk_mgr->dfs_ref_freq_khz = 48000;
779
780         clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
781
782         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
783                 dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
784                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
785         } else {
786                 struct clk_log_info log_info = {0};
787
788                 clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
789
790                 /* SMU Version 55.51.0 and up no longer have an issue
791                  * that needs to limit minimum dispclk */
792                 if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
793                         debug->min_disp_clk_khz = 0;
794
795                 /* TODO: Check we get what we expect during bringup */
796                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
797
798                 /* in case we don't get a value from the register, use default */
799                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
800                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
801
802                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
803                         if (clk_mgr->periodic_retraining_disabled) {
804                                 rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
805                         } else {
806                                 rn_bw_params.wm_table = lpddr4_wm_table;
807                         }
808                 } else {
809                         rn_bw_params.wm_table = ddr4_wm_table;
810                 }
811                 /* Saved clocks configured at boot for debug purposes */
812                 rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
813         }
814
815         clk_mgr->base.dprefclk_khz = 600000;
816         dce_clock_read_ss_info(clk_mgr);
817
818
819         clk_mgr->base.bw_params = &rn_bw_params;
820
821         if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
822                 status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
823
824                 if (status == PP_SMU_RESULT_OK &&
825                     ctx->dc_bios && ctx->dc_bios->integrated_info) {
826                         rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
827                 }
828         }
829
830         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
831                 /* enable powerfeatures when displaycount goes to 0 */
832                 rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
833         }
834 }
835