Merge tag 'nfsd-6.3-3' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39
40 struct mm_struct;
41
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 #include "kfd_smi_events.h"
47
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 static DEFINE_MUTEX(kfd_processes_mutex);
54
55 DEFINE_SRCU(kfd_processes_srcu);
56
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67
68 static struct kfd_process *find_process(const struct task_struct *thread,
69                                         bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
73
74 static void evict_process_worker(struct work_struct *work);
75 static void restore_process_worker(struct work_struct *work);
76
77 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
78
79 struct kfd_procfs_tree {
80         struct kobject *kobj;
81 };
82
83 static struct kfd_procfs_tree procfs;
84
85 /*
86  * Structure for SDMA activity tracking
87  */
88 struct kfd_sdma_activity_handler_workarea {
89         struct work_struct sdma_activity_work;
90         struct kfd_process_device *pdd;
91         uint64_t sdma_activity_counter;
92 };
93
94 struct temp_sdma_queue_list {
95         uint64_t __user *rptr;
96         uint64_t sdma_val;
97         unsigned int queue_id;
98         struct list_head list;
99 };
100
101 static void kfd_sdma_activity_worker(struct work_struct *work)
102 {
103         struct kfd_sdma_activity_handler_workarea *workarea;
104         struct kfd_process_device *pdd;
105         uint64_t val;
106         struct mm_struct *mm;
107         struct queue *q;
108         struct qcm_process_device *qpd;
109         struct device_queue_manager *dqm;
110         int ret = 0;
111         struct temp_sdma_queue_list sdma_q_list;
112         struct temp_sdma_queue_list *sdma_q, *next;
113
114         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
115                                 sdma_activity_work);
116
117         pdd = workarea->pdd;
118         if (!pdd)
119                 return;
120         dqm = pdd->dev->dqm;
121         qpd = &pdd->qpd;
122         if (!dqm || !qpd)
123                 return;
124         /*
125          * Total SDMA activity is current SDMA activity + past SDMA activity
126          * Past SDMA count is stored in pdd.
127          * To get the current activity counters for all active SDMA queues,
128          * we loop over all SDMA queues and get their counts from user-space.
129          *
130          * We cannot call get_user() with dqm_lock held as it can cause
131          * a circular lock dependency situation. To read the SDMA stats,
132          * we need to do the following:
133          *
134          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
135          *    with dqm_lock/dqm_unlock().
136          * 2. Call get_user() for each node in temporary list without dqm_lock.
137          *    Save the SDMA count for each node and also add the count to the total
138          *    SDMA count counter.
139          *    Its possible, during this step, a few SDMA queue nodes got deleted
140          *    from the qpd->queues_list.
141          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
142          *    If any node got deleted, its SDMA count would be captured in the sdma
143          *    past activity counter. So subtract the SDMA counter stored in step 2
144          *    for this node from the total SDMA count.
145          */
146         INIT_LIST_HEAD(&sdma_q_list.list);
147
148         /*
149          * Create the temp list of all SDMA queues
150          */
151         dqm_lock(dqm);
152
153         list_for_each_entry(q, &qpd->queues_list, list) {
154                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
155                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
156                         continue;
157
158                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
159                 if (!sdma_q) {
160                         dqm_unlock(dqm);
161                         goto cleanup;
162                 }
163
164                 INIT_LIST_HEAD(&sdma_q->list);
165                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
166                 sdma_q->queue_id = q->properties.queue_id;
167                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
168         }
169
170         /*
171          * If the temp list is empty, then no SDMA queues nodes were found in
172          * qpd->queues_list. Return the past activity count as the total sdma
173          * count
174          */
175         if (list_empty(&sdma_q_list.list)) {
176                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
177                 dqm_unlock(dqm);
178                 return;
179         }
180
181         dqm_unlock(dqm);
182
183         /*
184          * Get the usage count for each SDMA queue in temp_list.
185          */
186         mm = get_task_mm(pdd->process->lead_thread);
187         if (!mm)
188                 goto cleanup;
189
190         kthread_use_mm(mm);
191
192         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
193                 val = 0;
194                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
195                 if (ret) {
196                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
197                                  sdma_q->queue_id);
198                 } else {
199                         sdma_q->sdma_val = val;
200                         workarea->sdma_activity_counter += val;
201                 }
202         }
203
204         kthread_unuse_mm(mm);
205         mmput(mm);
206
207         /*
208          * Do a second iteration over qpd_queues_list to check if any SDMA
209          * nodes got deleted while fetching SDMA counter.
210          */
211         dqm_lock(dqm);
212
213         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
214
215         list_for_each_entry(q, &qpd->queues_list, list) {
216                 if (list_empty(&sdma_q_list.list))
217                         break;
218
219                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
220                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
221                         continue;
222
223                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
224                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
225                              (sdma_q->queue_id == q->properties.queue_id)) {
226                                 list_del(&sdma_q->list);
227                                 kfree(sdma_q);
228                                 break;
229                         }
230                 }
231         }
232
233         dqm_unlock(dqm);
234
235         /*
236          * If temp list is not empty, it implies some queues got deleted
237          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
238          * count for each node from the total SDMA count.
239          */
240         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
241                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
242                 list_del(&sdma_q->list);
243                 kfree(sdma_q);
244         }
245
246         return;
247
248 cleanup:
249         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
250                 list_del(&sdma_q->list);
251                 kfree(sdma_q);
252         }
253 }
254
255 /**
256  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
257  * by current process. Translates acquired wave count into number of compute units
258  * that are occupied.
259  *
260  * @attr: Handle of attribute that allows reporting of wave count. The attribute
261  * handle encapsulates GPU device it is associated with, thereby allowing collection
262  * of waves in flight, etc
263  * @buffer: Handle of user provided buffer updated with wave count
264  *
265  * Return: Number of bytes written to user buffer or an error value
266  */
267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
268 {
269         int cu_cnt;
270         int wave_cnt;
271         int max_waves_per_cu;
272         struct kfd_dev *dev = NULL;
273         struct kfd_process *proc = NULL;
274         struct kfd_process_device *pdd = NULL;
275
276         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
277         dev = pdd->dev;
278         if (dev->kfd2kgd->get_cu_occupancy == NULL)
279                 return -EINVAL;
280
281         cu_cnt = 0;
282         proc = pdd->process;
283         if (pdd->qpd.queue_count == 0) {
284                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
285                          dev->id, proc->pasid);
286                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
287         }
288
289         /* Collect wave count from device if it supports */
290         wave_cnt = 0;
291         max_waves_per_cu = 0;
292         dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
293                         &max_waves_per_cu);
294
295         /* Translate wave count to number of compute units */
296         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
297         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
298 }
299
300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
301                                char *buffer)
302 {
303         if (strcmp(attr->name, "pasid") == 0) {
304                 struct kfd_process *p = container_of(attr, struct kfd_process,
305                                                      attr_pasid);
306
307                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
308         } else if (strncmp(attr->name, "vram_", 5) == 0) {
309                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
310                                                               attr_vram);
311                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
312         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
313                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
314                                                               attr_sdma);
315                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
316
317                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
318                                         kfd_sdma_activity_worker);
319
320                 sdma_activity_work_handler.pdd = pdd;
321                 sdma_activity_work_handler.sdma_activity_counter = 0;
322
323                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
324
325                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
326
327                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
328                                 (sdma_activity_work_handler.sdma_activity_counter)/
329                                  SDMA_ACTIVITY_DIVISOR);
330         } else {
331                 pr_err("Invalid attribute");
332                 return -EINVAL;
333         }
334
335         return 0;
336 }
337
338 static void kfd_procfs_kobj_release(struct kobject *kobj)
339 {
340         kfree(kobj);
341 }
342
343 static const struct sysfs_ops kfd_procfs_ops = {
344         .show = kfd_procfs_show,
345 };
346
347 static struct kobj_type procfs_type = {
348         .release = kfd_procfs_kobj_release,
349         .sysfs_ops = &kfd_procfs_ops,
350 };
351
352 void kfd_procfs_init(void)
353 {
354         int ret = 0;
355
356         procfs.kobj = kfd_alloc_struct(procfs.kobj);
357         if (!procfs.kobj)
358                 return;
359
360         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
361                                    &kfd_device->kobj, "proc");
362         if (ret) {
363                 pr_warn("Could not create procfs proc folder");
364                 /* If we fail to create the procfs, clean up */
365                 kfd_procfs_shutdown();
366         }
367 }
368
369 void kfd_procfs_shutdown(void)
370 {
371         if (procfs.kobj) {
372                 kobject_del(procfs.kobj);
373                 kobject_put(procfs.kobj);
374                 procfs.kobj = NULL;
375         }
376 }
377
378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
379                                      struct attribute *attr, char *buffer)
380 {
381         struct queue *q = container_of(kobj, struct queue, kobj);
382
383         if (!strcmp(attr->name, "size"))
384                 return snprintf(buffer, PAGE_SIZE, "%llu",
385                                 q->properties.queue_size);
386         else if (!strcmp(attr->name, "type"))
387                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
388         else if (!strcmp(attr->name, "gpuid"))
389                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
390         else
391                 pr_err("Invalid attribute");
392
393         return 0;
394 }
395
396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
397                                      struct attribute *attr, char *buffer)
398 {
399         if (strcmp(attr->name, "evicted_ms") == 0) {
400                 struct kfd_process_device *pdd = container_of(attr,
401                                 struct kfd_process_device,
402                                 attr_evict);
403                 uint64_t evict_jiffies;
404
405                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
406
407                 return snprintf(buffer,
408                                 PAGE_SIZE,
409                                 "%llu\n",
410                                 jiffies64_to_msecs(evict_jiffies));
411
412         /* Sysfs handle that gets CU occupancy is per device */
413         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
414                 return kfd_get_cu_occupancy(attr, buffer);
415         } else {
416                 pr_err("Invalid attribute");
417         }
418
419         return 0;
420 }
421
422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
423                                        struct attribute *attr, char *buf)
424 {
425         struct kfd_process_device *pdd;
426
427         if (!strcmp(attr->name, "faults")) {
428                 pdd = container_of(attr, struct kfd_process_device,
429                                    attr_faults);
430                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
431         }
432         if (!strcmp(attr->name, "page_in")) {
433                 pdd = container_of(attr, struct kfd_process_device,
434                                    attr_page_in);
435                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
436         }
437         if (!strcmp(attr->name, "page_out")) {
438                 pdd = container_of(attr, struct kfd_process_device,
439                                    attr_page_out);
440                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
441         }
442         return 0;
443 }
444
445 static struct attribute attr_queue_size = {
446         .name = "size",
447         .mode = KFD_SYSFS_FILE_MODE
448 };
449
450 static struct attribute attr_queue_type = {
451         .name = "type",
452         .mode = KFD_SYSFS_FILE_MODE
453 };
454
455 static struct attribute attr_queue_gpuid = {
456         .name = "gpuid",
457         .mode = KFD_SYSFS_FILE_MODE
458 };
459
460 static struct attribute *procfs_queue_attrs[] = {
461         &attr_queue_size,
462         &attr_queue_type,
463         &attr_queue_gpuid,
464         NULL
465 };
466 ATTRIBUTE_GROUPS(procfs_queue);
467
468 static const struct sysfs_ops procfs_queue_ops = {
469         .show = kfd_procfs_queue_show,
470 };
471
472 static struct kobj_type procfs_queue_type = {
473         .sysfs_ops = &procfs_queue_ops,
474         .default_groups = procfs_queue_groups,
475 };
476
477 static const struct sysfs_ops procfs_stats_ops = {
478         .show = kfd_procfs_stats_show,
479 };
480
481 static struct kobj_type procfs_stats_type = {
482         .sysfs_ops = &procfs_stats_ops,
483         .release = kfd_procfs_kobj_release,
484 };
485
486 static const struct sysfs_ops sysfs_counters_ops = {
487         .show = kfd_sysfs_counters_show,
488 };
489
490 static struct kobj_type sysfs_counters_type = {
491         .sysfs_ops = &sysfs_counters_ops,
492         .release = kfd_procfs_kobj_release,
493 };
494
495 int kfd_procfs_add_queue(struct queue *q)
496 {
497         struct kfd_process *proc;
498         int ret;
499
500         if (!q || !q->process)
501                 return -EINVAL;
502         proc = q->process;
503
504         /* Create proc/<pid>/queues/<queue id> folder */
505         if (!proc->kobj_queues)
506                 return -EFAULT;
507         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
508                         proc->kobj_queues, "%u", q->properties.queue_id);
509         if (ret < 0) {
510                 pr_warn("Creating proc/<pid>/queues/%u failed",
511                         q->properties.queue_id);
512                 kobject_put(&q->kobj);
513                 return ret;
514         }
515
516         return 0;
517 }
518
519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
520                                  char *name)
521 {
522         int ret;
523
524         if (!kobj || !attr || !name)
525                 return;
526
527         attr->name = name;
528         attr->mode = KFD_SYSFS_FILE_MODE;
529         sysfs_attr_init(attr);
530
531         ret = sysfs_create_file(kobj, attr);
532         if (ret)
533                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
534 }
535
536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
537 {
538         int ret;
539         int i;
540         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
541
542         if (!p || !p->kobj)
543                 return;
544
545         /*
546          * Create sysfs files for each GPU:
547          * - proc/<pid>/stats_<gpuid>/
548          * - proc/<pid>/stats_<gpuid>/evicted_ms
549          * - proc/<pid>/stats_<gpuid>/cu_occupancy
550          */
551         for (i = 0; i < p->n_pdds; i++) {
552                 struct kfd_process_device *pdd = p->pdds[i];
553
554                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
555                                 "stats_%u", pdd->dev->id);
556                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
557                 if (!pdd->kobj_stats)
558                         return;
559
560                 ret = kobject_init_and_add(pdd->kobj_stats,
561                                            &procfs_stats_type,
562                                            p->kobj,
563                                            stats_dir_filename);
564
565                 if (ret) {
566                         pr_warn("Creating KFD proc/stats_%s folder failed",
567                                 stats_dir_filename);
568                         kobject_put(pdd->kobj_stats);
569                         pdd->kobj_stats = NULL;
570                         return;
571                 }
572
573                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
574                                       "evicted_ms");
575                 /* Add sysfs file to report compute unit occupancy */
576                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
577                         kfd_sysfs_create_file(pdd->kobj_stats,
578                                               &pdd->attr_cu_occupancy,
579                                               "cu_occupancy");
580         }
581 }
582
583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
584 {
585         int ret = 0;
586         int i;
587         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
588
589         if (!p || !p->kobj)
590                 return;
591
592         /*
593          * Create sysfs files for each GPU which supports SVM
594          * - proc/<pid>/counters_<gpuid>/
595          * - proc/<pid>/counters_<gpuid>/faults
596          * - proc/<pid>/counters_<gpuid>/page_in
597          * - proc/<pid>/counters_<gpuid>/page_out
598          */
599         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
600                 struct kfd_process_device *pdd = p->pdds[i];
601                 struct kobject *kobj_counters;
602
603                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
604                         "counters_%u", pdd->dev->id);
605                 kobj_counters = kfd_alloc_struct(kobj_counters);
606                 if (!kobj_counters)
607                         return;
608
609                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
610                                            p->kobj, counters_dir_filename);
611                 if (ret) {
612                         pr_warn("Creating KFD proc/%s folder failed",
613                                 counters_dir_filename);
614                         kobject_put(kobj_counters);
615                         return;
616                 }
617
618                 pdd->kobj_counters = kobj_counters;
619                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
620                                       "faults");
621                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
622                                       "page_in");
623                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
624                                       "page_out");
625         }
626 }
627
628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
629 {
630         int i;
631
632         if (!p || !p->kobj)
633                 return;
634
635         /*
636          * Create sysfs files for each GPU:
637          * - proc/<pid>/vram_<gpuid>
638          * - proc/<pid>/sdma_<gpuid>
639          */
640         for (i = 0; i < p->n_pdds; i++) {
641                 struct kfd_process_device *pdd = p->pdds[i];
642
643                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
644                          pdd->dev->id);
645                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
646                                       pdd->vram_filename);
647
648                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
649                          pdd->dev->id);
650                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
651                                             pdd->sdma_filename);
652         }
653 }
654
655 void kfd_procfs_del_queue(struct queue *q)
656 {
657         if (!q)
658                 return;
659
660         kobject_del(&q->kobj);
661         kobject_put(&q->kobj);
662 }
663
664 int kfd_process_create_wq(void)
665 {
666         if (!kfd_process_wq)
667                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
668         if (!kfd_restore_wq)
669                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
670
671         if (!kfd_process_wq || !kfd_restore_wq) {
672                 kfd_process_destroy_wq();
673                 return -ENOMEM;
674         }
675
676         return 0;
677 }
678
679 void kfd_process_destroy_wq(void)
680 {
681         if (kfd_process_wq) {
682                 destroy_workqueue(kfd_process_wq);
683                 kfd_process_wq = NULL;
684         }
685         if (kfd_restore_wq) {
686                 destroy_workqueue(kfd_restore_wq);
687                 kfd_restore_wq = NULL;
688         }
689 }
690
691 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
692                         struct kfd_process_device *pdd, void **kptr)
693 {
694         struct kfd_dev *dev = pdd->dev;
695
696         if (kptr && *kptr) {
697                 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
698                 *kptr = NULL;
699         }
700
701         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
702         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
703                                                NULL);
704 }
705
706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
707  *      This function should be only called right after the process
708  *      is created and when kfd_processes_mutex is still being held
709  *      to avoid concurrency. Because of that exclusiveness, we do
710  *      not need to take p->mutex.
711  */
712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
713                                    uint64_t gpu_va, uint32_t size,
714                                    uint32_t flags, struct kgd_mem **mem, void **kptr)
715 {
716         struct kfd_dev *kdev = pdd->dev;
717         int err;
718
719         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
720                                                  pdd->drm_priv, mem, NULL,
721                                                  flags, false);
722         if (err)
723                 goto err_alloc_mem;
724
725         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
726                         pdd->drm_priv);
727         if (err)
728                 goto err_map_mem;
729
730         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
731         if (err) {
732                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
733                 goto sync_memory_failed;
734         }
735
736         if (kptr) {
737                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
738                                 (struct kgd_mem *)*mem, kptr, NULL);
739                 if (err) {
740                         pr_debug("Map GTT BO to kernel failed\n");
741                         goto sync_memory_failed;
742                 }
743         }
744
745         return err;
746
747 sync_memory_failed:
748         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
749
750 err_map_mem:
751         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
752                                                NULL);
753 err_alloc_mem:
754         *mem = NULL;
755         *kptr = NULL;
756         return err;
757 }
758
759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
760  *      process for IB usage The memory reserved is for KFD to submit
761  *      IB to AMDGPU from kernel.  If the memory is reserved
762  *      successfully, ib_kaddr will have the CPU/kernel
763  *      address. Check ib_kaddr before accessing the memory.
764  */
765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
766 {
767         struct qcm_process_device *qpd = &pdd->qpd;
768         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
769                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
770                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
771                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
772         struct kgd_mem *mem;
773         void *kaddr;
774         int ret;
775
776         if (qpd->ib_kaddr || !qpd->ib_base)
777                 return 0;
778
779         /* ib_base is only set for dGPU */
780         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
781                                       &mem, &kaddr);
782         if (ret)
783                 return ret;
784
785         qpd->ib_mem = mem;
786         qpd->ib_kaddr = kaddr;
787
788         return 0;
789 }
790
791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
792 {
793         struct qcm_process_device *qpd = &pdd->qpd;
794
795         if (!qpd->ib_kaddr || !qpd->ib_base)
796                 return;
797
798         kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
799 }
800
801 struct kfd_process *kfd_create_process(struct file *filep)
802 {
803         struct kfd_process *process;
804         struct task_struct *thread = current;
805         int ret;
806
807         if (!thread->mm)
808                 return ERR_PTR(-EINVAL);
809
810         /* Only the pthreads threading model is supported. */
811         if (thread->group_leader->mm != thread->mm)
812                 return ERR_PTR(-EINVAL);
813
814         /*
815          * take kfd processes mutex before starting of process creation
816          * so there won't be a case where two threads of the same process
817          * create two kfd_process structures
818          */
819         mutex_lock(&kfd_processes_mutex);
820
821         /* A prior open of /dev/kfd could have already created the process. */
822         process = find_process(thread, false);
823         if (process) {
824                 pr_debug("Process already found\n");
825         } else {
826                 process = create_process(thread);
827                 if (IS_ERR(process))
828                         goto out;
829
830                 ret = kfd_process_init_cwsr_apu(process, filep);
831                 if (ret)
832                         goto out_destroy;
833
834                 if (!procfs.kobj)
835                         goto out;
836
837                 process->kobj = kfd_alloc_struct(process->kobj);
838                 if (!process->kobj) {
839                         pr_warn("Creating procfs kobject failed");
840                         goto out;
841                 }
842                 ret = kobject_init_and_add(process->kobj, &procfs_type,
843                                            procfs.kobj, "%d",
844                                            (int)process->lead_thread->pid);
845                 if (ret) {
846                         pr_warn("Creating procfs pid directory failed");
847                         kobject_put(process->kobj);
848                         goto out;
849                 }
850
851                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
852                                       "pasid");
853
854                 process->kobj_queues = kobject_create_and_add("queues",
855                                                         process->kobj);
856                 if (!process->kobj_queues)
857                         pr_warn("Creating KFD proc/queues folder failed");
858
859                 kfd_procfs_add_sysfs_stats(process);
860                 kfd_procfs_add_sysfs_files(process);
861                 kfd_procfs_add_sysfs_counters(process);
862         }
863 out:
864         if (!IS_ERR(process))
865                 kref_get(&process->ref);
866         mutex_unlock(&kfd_processes_mutex);
867
868         return process;
869
870 out_destroy:
871         hash_del_rcu(&process->kfd_processes);
872         mutex_unlock(&kfd_processes_mutex);
873         synchronize_srcu(&kfd_processes_srcu);
874         /* kfd_process_free_notifier will trigger the cleanup */
875         mmu_notifier_put(&process->mmu_notifier);
876         return ERR_PTR(ret);
877 }
878
879 struct kfd_process *kfd_get_process(const struct task_struct *thread)
880 {
881         struct kfd_process *process;
882
883         if (!thread->mm)
884                 return ERR_PTR(-EINVAL);
885
886         /* Only the pthreads threading model is supported. */
887         if (thread->group_leader->mm != thread->mm)
888                 return ERR_PTR(-EINVAL);
889
890         process = find_process(thread, false);
891         if (!process)
892                 return ERR_PTR(-EINVAL);
893
894         return process;
895 }
896
897 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
898 {
899         struct kfd_process *process;
900
901         hash_for_each_possible_rcu(kfd_processes_table, process,
902                                         kfd_processes, (uintptr_t)mm)
903                 if (process->mm == mm)
904                         return process;
905
906         return NULL;
907 }
908
909 static struct kfd_process *find_process(const struct task_struct *thread,
910                                         bool ref)
911 {
912         struct kfd_process *p;
913         int idx;
914
915         idx = srcu_read_lock(&kfd_processes_srcu);
916         p = find_process_by_mm(thread->mm);
917         if (p && ref)
918                 kref_get(&p->ref);
919         srcu_read_unlock(&kfd_processes_srcu, idx);
920
921         return p;
922 }
923
924 void kfd_unref_process(struct kfd_process *p)
925 {
926         kref_put(&p->ref, kfd_process_ref_release);
927 }
928
929 /* This increments the process->ref counter. */
930 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
931 {
932         struct task_struct *task = NULL;
933         struct kfd_process *p    = NULL;
934
935         if (!pid) {
936                 task = current;
937                 get_task_struct(task);
938         } else {
939                 task = get_pid_task(pid, PIDTYPE_PID);
940         }
941
942         if (task) {
943                 p = find_process(task, true);
944                 put_task_struct(task);
945         }
946
947         return p;
948 }
949
950 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
951 {
952         struct kfd_process *p = pdd->process;
953         void *mem;
954         int id;
955         int i;
956
957         /*
958          * Remove all handles from idr and release appropriate
959          * local memory object
960          */
961         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
962
963                 for (i = 0; i < p->n_pdds; i++) {
964                         struct kfd_process_device *peer_pdd = p->pdds[i];
965
966                         if (!peer_pdd->drm_priv)
967                                 continue;
968                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
969                                 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
970                 }
971
972                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
973                                                        pdd->drm_priv, NULL);
974                 kfd_process_device_remove_obj_handle(pdd, id);
975         }
976 }
977
978 /*
979  * Just kunmap and unpin signal BO here. It will be freed in
980  * kfd_process_free_outstanding_kfd_bos()
981  */
982 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
983 {
984         struct kfd_process_device *pdd;
985         struct kfd_dev *kdev;
986         void *mem;
987
988         kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
989         if (!kdev)
990                 return;
991
992         mutex_lock(&p->mutex);
993
994         pdd = kfd_get_process_device_data(kdev, p);
995         if (!pdd)
996                 goto out;
997
998         mem = kfd_process_device_translate_handle(
999                 pdd, GET_IDR_HANDLE(p->signal_handle));
1000         if (!mem)
1001                 goto out;
1002
1003         amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005 out:
1006         mutex_unlock(&p->mutex);
1007 }
1008
1009 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010 {
1011         int i;
1012
1013         for (i = 0; i < p->n_pdds; i++)
1014                 kfd_process_device_free_bos(p->pdds[i]);
1015 }
1016
1017 static void kfd_process_destroy_pdds(struct kfd_process *p)
1018 {
1019         int i;
1020
1021         for (i = 0; i < p->n_pdds; i++) {
1022                 struct kfd_process_device *pdd = p->pdds[i];
1023
1024                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025                                 pdd->dev->id, p->pasid);
1026
1027                 kfd_process_device_destroy_cwsr_dgpu(pdd);
1028                 kfd_process_device_destroy_ib_mem(pdd);
1029
1030                 if (pdd->drm_file) {
1031                         amdgpu_amdkfd_gpuvm_release_process_vm(
1032                                         pdd->dev->adev, pdd->drm_priv);
1033                         fput(pdd->drm_file);
1034                 }
1035
1036                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040                 bitmap_free(pdd->qpd.doorbell_bitmap);
1041                 idr_destroy(&pdd->alloc_idr);
1042
1043                 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045                 if (pdd->dev->shared_resources.enable_mes)
1046                         amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047                                                    pdd->proc_ctx_bo);
1048                 /*
1049                  * before destroying pdd, make sure to report availability
1050                  * for auto suspend
1051                  */
1052                 if (pdd->runtime_inuse) {
1053                         pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1054                         pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1055                         pdd->runtime_inuse = false;
1056                 }
1057
1058                 kfree(pdd);
1059                 p->pdds[i] = NULL;
1060         }
1061         p->n_pdds = 0;
1062 }
1063
1064 static void kfd_process_remove_sysfs(struct kfd_process *p)
1065 {
1066         struct kfd_process_device *pdd;
1067         int i;
1068
1069         if (!p->kobj)
1070                 return;
1071
1072         sysfs_remove_file(p->kobj, &p->attr_pasid);
1073         kobject_del(p->kobj_queues);
1074         kobject_put(p->kobj_queues);
1075         p->kobj_queues = NULL;
1076
1077         for (i = 0; i < p->n_pdds; i++) {
1078                 pdd = p->pdds[i];
1079
1080                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085                         sysfs_remove_file(pdd->kobj_stats,
1086                                           &pdd->attr_cu_occupancy);
1087                 kobject_del(pdd->kobj_stats);
1088                 kobject_put(pdd->kobj_stats);
1089                 pdd->kobj_stats = NULL;
1090         }
1091
1092         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093                 pdd = p->pdds[i];
1094
1095                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098                 kobject_del(pdd->kobj_counters);
1099                 kobject_put(pdd->kobj_counters);
1100                 pdd->kobj_counters = NULL;
1101         }
1102
1103         kobject_del(p->kobj);
1104         kobject_put(p->kobj);
1105         p->kobj = NULL;
1106 }
1107
1108 /* No process locking is needed in this function, because the process
1109  * is not findable any more. We must assume that no other thread is
1110  * using it any more, otherwise we couldn't safely free the process
1111  * structure in the end.
1112  */
1113 static void kfd_process_wq_release(struct work_struct *work)
1114 {
1115         struct kfd_process *p = container_of(work, struct kfd_process,
1116                                              release_work);
1117
1118         kfd_process_dequeue_from_all_devices(p);
1119         pqm_uninit(&p->pqm);
1120
1121         /* Signal the eviction fence after user mode queues are
1122          * destroyed. This allows any BOs to be freed without
1123          * triggering pointless evictions or waiting for fences.
1124          */
1125         dma_fence_signal(p->ef);
1126
1127         kfd_process_remove_sysfs(p);
1128         kfd_iommu_unbind_process(p);
1129
1130         kfd_process_kunmap_signal_bo(p);
1131         kfd_process_free_outstanding_kfd_bos(p);
1132         svm_range_list_fini(p);
1133
1134         kfd_process_destroy_pdds(p);
1135         dma_fence_put(p->ef);
1136
1137         kfd_event_free_process(p);
1138
1139         kfd_pasid_free(p->pasid);
1140         mutex_destroy(&p->mutex);
1141
1142         put_task_struct(p->lead_thread);
1143
1144         kfree(p);
1145 }
1146
1147 static void kfd_process_ref_release(struct kref *ref)
1148 {
1149         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151         INIT_WORK(&p->release_work, kfd_process_wq_release);
1152         queue_work(kfd_process_wq, &p->release_work);
1153 }
1154
1155 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156 {
1157         int idx = srcu_read_lock(&kfd_processes_srcu);
1158         struct kfd_process *p = find_process_by_mm(mm);
1159
1160         srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163 }
1164
1165 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166 {
1167         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168 }
1169
1170 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1171 {
1172         cancel_delayed_work_sync(&p->eviction_work);
1173         cancel_delayed_work_sync(&p->restore_work);
1174
1175         /* Indicate to other users that MM is no longer valid */
1176         p->mm = NULL;
1177
1178         mmu_notifier_put(&p->mmu_notifier);
1179 }
1180
1181 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1182                                         struct mm_struct *mm)
1183 {
1184         struct kfd_process *p;
1185
1186         /*
1187          * The kfd_process structure can not be free because the
1188          * mmu_notifier srcu is read locked
1189          */
1190         p = container_of(mn, struct kfd_process, mmu_notifier);
1191         if (WARN_ON(p->mm != mm))
1192                 return;
1193
1194         mutex_lock(&kfd_processes_mutex);
1195         /*
1196          * Do early return if table is empty.
1197          *
1198          * This could potentially happen if this function is called concurrently
1199          * by mmu_notifier and by kfd_cleanup_pocesses.
1200          *
1201          */
1202         if (hash_empty(kfd_processes_table)) {
1203                 mutex_unlock(&kfd_processes_mutex);
1204                 return;
1205         }
1206         hash_del_rcu(&p->kfd_processes);
1207         mutex_unlock(&kfd_processes_mutex);
1208         synchronize_srcu(&kfd_processes_srcu);
1209
1210         kfd_process_notifier_release_internal(p);
1211 }
1212
1213 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1214         .release = kfd_process_notifier_release,
1215         .alloc_notifier = kfd_process_alloc_notifier,
1216         .free_notifier = kfd_process_free_notifier,
1217 };
1218
1219 /*
1220  * This code handles the case when driver is being unloaded before all
1221  * mm_struct are released.  We need to safely free the kfd_process and
1222  * avoid race conditions with mmu_notifier that might try to free them.
1223  *
1224  */
1225 void kfd_cleanup_processes(void)
1226 {
1227         struct kfd_process *p;
1228         struct hlist_node *p_temp;
1229         unsigned int temp;
1230         HLIST_HEAD(cleanup_list);
1231
1232         /*
1233          * Move all remaining kfd_process from the process table to a
1234          * temp list for processing.   Once done, callback from mmu_notifier
1235          * release will not see the kfd_process in the table and do early return,
1236          * avoiding double free issues.
1237          */
1238         mutex_lock(&kfd_processes_mutex);
1239         hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1240                 hash_del_rcu(&p->kfd_processes);
1241                 synchronize_srcu(&kfd_processes_srcu);
1242                 hlist_add_head(&p->kfd_processes, &cleanup_list);
1243         }
1244         mutex_unlock(&kfd_processes_mutex);
1245
1246         hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1247                 kfd_process_notifier_release_internal(p);
1248
1249         /*
1250          * Ensures that all outstanding free_notifier get called, triggering
1251          * the release of the kfd_process struct.
1252          */
1253         mmu_notifier_synchronize();
1254 }
1255
1256 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1257 {
1258         unsigned long  offset;
1259         int i;
1260
1261         for (i = 0; i < p->n_pdds; i++) {
1262                 struct kfd_dev *dev = p->pdds[i]->dev;
1263                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1264
1265                 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1266                         continue;
1267
1268                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1269                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1270                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1271                         MAP_SHARED, offset);
1272
1273                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1274                         int err = qpd->tba_addr;
1275
1276                         pr_err("Failure to set tba address. error %d.\n", err);
1277                         qpd->tba_addr = 0;
1278                         qpd->cwsr_kaddr = NULL;
1279                         return err;
1280                 }
1281
1282                 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1283
1284                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1285                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1286                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1287         }
1288
1289         return 0;
1290 }
1291
1292 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1293 {
1294         struct kfd_dev *dev = pdd->dev;
1295         struct qcm_process_device *qpd = &pdd->qpd;
1296         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1297                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1298                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1299         struct kgd_mem *mem;
1300         void *kaddr;
1301         int ret;
1302
1303         if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1304                 return 0;
1305
1306         /* cwsr_base is only set for dGPU */
1307         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1308                                       KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1309         if (ret)
1310                 return ret;
1311
1312         qpd->cwsr_mem = mem;
1313         qpd->cwsr_kaddr = kaddr;
1314         qpd->tba_addr = qpd->cwsr_base;
1315
1316         memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1317
1318         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1319         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1320                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1321
1322         return 0;
1323 }
1324
1325 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1326 {
1327         struct kfd_dev *dev = pdd->dev;
1328         struct qcm_process_device *qpd = &pdd->qpd;
1329
1330         if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1331                 return;
1332
1333         kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1334 }
1335
1336 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1337                                   uint64_t tba_addr,
1338                                   uint64_t tma_addr)
1339 {
1340         if (qpd->cwsr_kaddr) {
1341                 /* KFD trap handler is bound, record as second-level TBA/TMA
1342                  * in first-level TMA. First-level trap will jump to second.
1343                  */
1344                 uint64_t *tma =
1345                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1346                 tma[0] = tba_addr;
1347                 tma[1] = tma_addr;
1348         } else {
1349                 /* No trap handler bound, bind as first-level TBA/TMA. */
1350                 qpd->tba_addr = tba_addr;
1351                 qpd->tma_addr = tma_addr;
1352         }
1353 }
1354
1355 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1356 {
1357         int i;
1358
1359         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1360          * boot time retry setting. Mixing processes with different
1361          * XNACK/retry settings can hang the GPU.
1362          *
1363          * Different GPUs can have different noretry settings depending
1364          * on HW bugs or limitations. We need to find at least one
1365          * XNACK mode for this process that's compatible with all GPUs.
1366          * Fortunately GPUs with retry enabled (noretry=0) can run code
1367          * built for XNACK-off. On GFXv9 it may perform slower.
1368          *
1369          * Therefore applications built for XNACK-off can always be
1370          * supported and will be our fallback if any GPU does not
1371          * support retry.
1372          */
1373         for (i = 0; i < p->n_pdds; i++) {
1374                 struct kfd_dev *dev = p->pdds[i]->dev;
1375
1376                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1377                  * support the SVM APIs and don't need to be considered
1378                  * for the XNACK mode selection.
1379                  */
1380                 if (!KFD_IS_SOC15(dev))
1381                         continue;
1382                 /* Aldebaran can always support XNACK because it can support
1383                  * per-process XNACK mode selection. But let the dev->noretry
1384                  * setting still influence the default XNACK mode.
1385                  */
1386                 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1387                         continue;
1388
1389                 /* GFXv10 and later GPUs do not support shader preemption
1390                  * during page faults. This can lead to poor QoS for queue
1391                  * management and memory-manager-related preemptions or
1392                  * even deadlocks.
1393                  */
1394                 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1395                         return false;
1396
1397                 if (dev->noretry)
1398                         return false;
1399         }
1400
1401         return true;
1402 }
1403
1404 /*
1405  * On return the kfd_process is fully operational and will be freed when the
1406  * mm is released
1407  */
1408 static struct kfd_process *create_process(const struct task_struct *thread)
1409 {
1410         struct kfd_process *process;
1411         struct mmu_notifier *mn;
1412         int err = -ENOMEM;
1413
1414         process = kzalloc(sizeof(*process), GFP_KERNEL);
1415         if (!process)
1416                 goto err_alloc_process;
1417
1418         kref_init(&process->ref);
1419         mutex_init(&process->mutex);
1420         process->mm = thread->mm;
1421         process->lead_thread = thread->group_leader;
1422         process->n_pdds = 0;
1423         process->queues_paused = false;
1424         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1425         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1426         process->last_restore_timestamp = get_jiffies_64();
1427         err = kfd_event_init_process(process);
1428         if (err)
1429                 goto err_event_init;
1430         process->is_32bit_user_mode = in_compat_syscall();
1431
1432         process->pasid = kfd_pasid_alloc();
1433         if (process->pasid == 0) {
1434                 err = -ENOSPC;
1435                 goto err_alloc_pasid;
1436         }
1437
1438         err = pqm_init(&process->pqm, process);
1439         if (err != 0)
1440                 goto err_process_pqm_init;
1441
1442         /* init process apertures*/
1443         err = kfd_init_apertures(process);
1444         if (err != 0)
1445                 goto err_init_apertures;
1446
1447         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1448         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1449
1450         err = svm_range_list_init(process);
1451         if (err)
1452                 goto err_init_svm_range_list;
1453
1454         /* alloc_notifier needs to find the process in the hash table */
1455         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1456                         (uintptr_t)process->mm);
1457
1458         /* Avoid free_notifier to start kfd_process_wq_release if
1459          * mmu_notifier_get failed because of pending signal.
1460          */
1461         kref_get(&process->ref);
1462
1463         /* MMU notifier registration must be the last call that can fail
1464          * because after this point we cannot unwind the process creation.
1465          * After this point, mmu_notifier_put will trigger the cleanup by
1466          * dropping the last process reference in the free_notifier.
1467          */
1468         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1469         if (IS_ERR(mn)) {
1470                 err = PTR_ERR(mn);
1471                 goto err_register_notifier;
1472         }
1473         BUG_ON(mn != &process->mmu_notifier);
1474
1475         kfd_unref_process(process);
1476         get_task_struct(process->lead_thread);
1477
1478         return process;
1479
1480 err_register_notifier:
1481         hash_del_rcu(&process->kfd_processes);
1482         svm_range_list_fini(process);
1483 err_init_svm_range_list:
1484         kfd_process_free_outstanding_kfd_bos(process);
1485         kfd_process_destroy_pdds(process);
1486 err_init_apertures:
1487         pqm_uninit(&process->pqm);
1488 err_process_pqm_init:
1489         kfd_pasid_free(process->pasid);
1490 err_alloc_pasid:
1491         kfd_event_free_process(process);
1492 err_event_init:
1493         mutex_destroy(&process->mutex);
1494         kfree(process);
1495 err_alloc_process:
1496         return ERR_PTR(err);
1497 }
1498
1499 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1500                         struct kfd_dev *dev)
1501 {
1502         unsigned int i;
1503         int range_start = dev->shared_resources.non_cp_doorbells_start;
1504         int range_end = dev->shared_resources.non_cp_doorbells_end;
1505
1506         if (!KFD_IS_SOC15(dev))
1507                 return 0;
1508
1509         qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1510                                              GFP_KERNEL);
1511         if (!qpd->doorbell_bitmap)
1512                 return -ENOMEM;
1513
1514         /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1515         pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1516         pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1517                         range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1518                         range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1519
1520         for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1521                 if (i >= range_start && i <= range_end) {
1522                         __set_bit(i, qpd->doorbell_bitmap);
1523                         __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1524                                   qpd->doorbell_bitmap);
1525                 }
1526         }
1527
1528         return 0;
1529 }
1530
1531 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1532                                                         struct kfd_process *p)
1533 {
1534         int i;
1535
1536         for (i = 0; i < p->n_pdds; i++)
1537                 if (p->pdds[i]->dev == dev)
1538                         return p->pdds[i];
1539
1540         return NULL;
1541 }
1542
1543 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1544                                                         struct kfd_process *p)
1545 {
1546         struct kfd_process_device *pdd = NULL;
1547         int retval = 0;
1548
1549         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1550                 return NULL;
1551         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1552         if (!pdd)
1553                 return NULL;
1554
1555         if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1556                 pr_err("Failed to init doorbell for process\n");
1557                 goto err_free_pdd;
1558         }
1559
1560         pdd->dev = dev;
1561         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1562         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1563         pdd->qpd.dqm = dev->dqm;
1564         pdd->qpd.pqm = &p->pqm;
1565         pdd->qpd.evicted = 0;
1566         pdd->qpd.mapped_gws_queue = false;
1567         pdd->process = p;
1568         pdd->bound = PDD_UNBOUND;
1569         pdd->already_dequeued = false;
1570         pdd->runtime_inuse = false;
1571         pdd->vram_usage = 0;
1572         pdd->sdma_past_activity_counter = 0;
1573         pdd->user_gpu_id = dev->id;
1574         atomic64_set(&pdd->evict_duration_counter, 0);
1575
1576         if (dev->shared_resources.enable_mes) {
1577                 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1578                                                 AMDGPU_MES_PROC_CTX_SIZE,
1579                                                 &pdd->proc_ctx_bo,
1580                                                 &pdd->proc_ctx_gpu_addr,
1581                                                 &pdd->proc_ctx_cpu_ptr,
1582                                                 false);
1583                 if (retval) {
1584                         pr_err("failed to allocate process context bo\n");
1585                         goto err_free_pdd;
1586                 }
1587                 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1588         }
1589
1590         p->pdds[p->n_pdds++] = pdd;
1591
1592         /* Init idr used for memory handle translation */
1593         idr_init(&pdd->alloc_idr);
1594
1595         return pdd;
1596
1597 err_free_pdd:
1598         kfree(pdd);
1599         return NULL;
1600 }
1601
1602 /**
1603  * kfd_process_device_init_vm - Initialize a VM for a process-device
1604  *
1605  * @pdd: The process-device
1606  * @drm_file: Optional pointer to a DRM file descriptor
1607  *
1608  * If @drm_file is specified, it will be used to acquire the VM from
1609  * that file descriptor. If successful, the @pdd takes ownership of
1610  * the file descriptor.
1611  *
1612  * If @drm_file is NULL, a new VM is created.
1613  *
1614  * Returns 0 on success, -errno on failure.
1615  */
1616 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1617                                struct file *drm_file)
1618 {
1619         struct amdgpu_fpriv *drv_priv;
1620         struct amdgpu_vm *avm;
1621         struct kfd_process *p;
1622         struct kfd_dev *dev;
1623         int ret;
1624
1625         if (!drm_file)
1626                 return -EINVAL;
1627
1628         if (pdd->drm_priv)
1629                 return -EBUSY;
1630
1631         ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1632         if (ret)
1633                 return ret;
1634         avm = &drv_priv->vm;
1635
1636         p = pdd->process;
1637         dev = pdd->dev;
1638
1639         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1640                                                      &p->kgd_process_info,
1641                                                      &p->ef);
1642         if (ret) {
1643                 pr_err("Failed to create process VM object\n");
1644                 return ret;
1645         }
1646         pdd->drm_priv = drm_file->private_data;
1647         atomic64_set(&pdd->tlb_seq, 0);
1648
1649         ret = kfd_process_device_reserve_ib_mem(pdd);
1650         if (ret)
1651                 goto err_reserve_ib_mem;
1652         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1653         if (ret)
1654                 goto err_init_cwsr;
1655
1656         ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1657         if (ret)
1658                 goto err_set_pasid;
1659
1660         pdd->drm_file = drm_file;
1661
1662         return 0;
1663
1664 err_set_pasid:
1665         kfd_process_device_destroy_cwsr_dgpu(pdd);
1666 err_init_cwsr:
1667         kfd_process_device_destroy_ib_mem(pdd);
1668 err_reserve_ib_mem:
1669         pdd->drm_priv = NULL;
1670         amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1671
1672         return ret;
1673 }
1674
1675 /*
1676  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1677  * to the device.
1678  * Unbinding occurs when the process dies or the device is removed.
1679  *
1680  * Assumes that the process lock is held.
1681  */
1682 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1683                                                         struct kfd_process *p)
1684 {
1685         struct kfd_process_device *pdd;
1686         int err;
1687
1688         pdd = kfd_get_process_device_data(dev, p);
1689         if (!pdd) {
1690                 pr_err("Process device data doesn't exist\n");
1691                 return ERR_PTR(-ENOMEM);
1692         }
1693
1694         if (!pdd->drm_priv)
1695                 return ERR_PTR(-ENODEV);
1696
1697         /*
1698          * signal runtime-pm system to auto resume and prevent
1699          * further runtime suspend once device pdd is created until
1700          * pdd is destroyed.
1701          */
1702         if (!pdd->runtime_inuse) {
1703                 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1704                 if (err < 0) {
1705                         pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1706                         return ERR_PTR(err);
1707                 }
1708         }
1709
1710         err = kfd_iommu_bind_process_to_device(pdd);
1711         if (err)
1712                 goto out;
1713
1714         /*
1715          * make sure that runtime_usage counter is incremented just once
1716          * per pdd
1717          */
1718         pdd->runtime_inuse = true;
1719
1720         return pdd;
1721
1722 out:
1723         /* balance runpm reference count and exit with error */
1724         if (!pdd->runtime_inuse) {
1725                 pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1726                 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1727         }
1728
1729         return ERR_PTR(err);
1730 }
1731
1732 /* Create specific handle mapped to mem from process local memory idr
1733  * Assumes that the process lock is held.
1734  */
1735 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1736                                         void *mem)
1737 {
1738         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1739 }
1740
1741 /* Translate specific handle from process local memory idr
1742  * Assumes that the process lock is held.
1743  */
1744 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1745                                         int handle)
1746 {
1747         if (handle < 0)
1748                 return NULL;
1749
1750         return idr_find(&pdd->alloc_idr, handle);
1751 }
1752
1753 /* Remove specific handle from process local memory idr
1754  * Assumes that the process lock is held.
1755  */
1756 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1757                                         int handle)
1758 {
1759         if (handle >= 0)
1760                 idr_remove(&pdd->alloc_idr, handle);
1761 }
1762
1763 /* This increments the process->ref counter. */
1764 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1765 {
1766         struct kfd_process *p, *ret_p = NULL;
1767         unsigned int temp;
1768
1769         int idx = srcu_read_lock(&kfd_processes_srcu);
1770
1771         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1772                 if (p->pasid == pasid) {
1773                         kref_get(&p->ref);
1774                         ret_p = p;
1775                         break;
1776                 }
1777         }
1778
1779         srcu_read_unlock(&kfd_processes_srcu, idx);
1780
1781         return ret_p;
1782 }
1783
1784 /* This increments the process->ref counter. */
1785 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1786 {
1787         struct kfd_process *p;
1788
1789         int idx = srcu_read_lock(&kfd_processes_srcu);
1790
1791         p = find_process_by_mm(mm);
1792         if (p)
1793                 kref_get(&p->ref);
1794
1795         srcu_read_unlock(&kfd_processes_srcu, idx);
1796
1797         return p;
1798 }
1799
1800 /* kfd_process_evict_queues - Evict all user queues of a process
1801  *
1802  * Eviction is reference-counted per process-device. This means multiple
1803  * evictions from different sources can be nested safely.
1804  */
1805 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1806 {
1807         int r = 0;
1808         int i;
1809         unsigned int n_evicted = 0;
1810
1811         for (i = 0; i < p->n_pdds; i++) {
1812                 struct kfd_process_device *pdd = p->pdds[i];
1813
1814                 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1815                                              trigger);
1816
1817                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1818                                                             &pdd->qpd);
1819                 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1820                  * we would like to set all the queues to be in evicted state to prevent
1821                  * them been add back since they actually not be saved right now.
1822                  */
1823                 if (r && r != -EIO) {
1824                         pr_err("Failed to evict process queues\n");
1825                         goto fail;
1826                 }
1827                 n_evicted++;
1828         }
1829
1830         return r;
1831
1832 fail:
1833         /* To keep state consistent, roll back partial eviction by
1834          * restoring queues
1835          */
1836         for (i = 0; i < p->n_pdds; i++) {
1837                 struct kfd_process_device *pdd = p->pdds[i];
1838
1839                 if (n_evicted == 0)
1840                         break;
1841
1842                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1843
1844                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1845                                                               &pdd->qpd))
1846                         pr_err("Failed to restore queues\n");
1847
1848                 n_evicted--;
1849         }
1850
1851         return r;
1852 }
1853
1854 /* kfd_process_restore_queues - Restore all user queues of a process */
1855 int kfd_process_restore_queues(struct kfd_process *p)
1856 {
1857         int r, ret = 0;
1858         int i;
1859
1860         for (i = 0; i < p->n_pdds; i++) {
1861                 struct kfd_process_device *pdd = p->pdds[i];
1862
1863                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1864
1865                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1866                                                               &pdd->qpd);
1867                 if (r) {
1868                         pr_err("Failed to restore process queues\n");
1869                         if (!ret)
1870                                 ret = r;
1871                 }
1872         }
1873
1874         return ret;
1875 }
1876
1877 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1878 {
1879         int i;
1880
1881         for (i = 0; i < p->n_pdds; i++)
1882                 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1883                         return i;
1884         return -EINVAL;
1885 }
1886
1887 int
1888 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1889                            uint32_t *gpuid, uint32_t *gpuidx)
1890 {
1891         int i;
1892
1893         for (i = 0; i < p->n_pdds; i++)
1894                 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1895                         *gpuid = p->pdds[i]->user_gpu_id;
1896                         *gpuidx = i;
1897                         return 0;
1898                 }
1899         return -EINVAL;
1900 }
1901
1902 static void evict_process_worker(struct work_struct *work)
1903 {
1904         int ret;
1905         struct kfd_process *p;
1906         struct delayed_work *dwork;
1907
1908         dwork = to_delayed_work(work);
1909
1910         /* Process termination destroys this worker thread. So during the
1911          * lifetime of this thread, kfd_process p will be valid
1912          */
1913         p = container_of(dwork, struct kfd_process, eviction_work);
1914         WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1915                   "Eviction fence mismatch\n");
1916
1917         /* Narrow window of overlap between restore and evict work
1918          * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1919          * unreserves KFD BOs, it is possible to evicted again. But
1920          * restore has few more steps of finish. So lets wait for any
1921          * previous restore work to complete
1922          */
1923         flush_delayed_work(&p->restore_work);
1924
1925         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1926         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1927         if (!ret) {
1928                 dma_fence_signal(p->ef);
1929                 dma_fence_put(p->ef);
1930                 p->ef = NULL;
1931                 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1932                                 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1933
1934                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1935         } else
1936                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1937 }
1938
1939 static void restore_process_worker(struct work_struct *work)
1940 {
1941         struct delayed_work *dwork;
1942         struct kfd_process *p;
1943         int ret = 0;
1944
1945         dwork = to_delayed_work(work);
1946
1947         /* Process termination destroys this worker thread. So during the
1948          * lifetime of this thread, kfd_process p will be valid
1949          */
1950         p = container_of(dwork, struct kfd_process, restore_work);
1951         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1952
1953         /* Setting last_restore_timestamp before successful restoration.
1954          * Otherwise this would have to be set by KGD (restore_process_bos)
1955          * before KFD BOs are unreserved. If not, the process can be evicted
1956          * again before the timestamp is set.
1957          * If restore fails, the timestamp will be set again in the next
1958          * attempt. This would mean that the minimum GPU quanta would be
1959          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1960          * functions)
1961          */
1962
1963         p->last_restore_timestamp = get_jiffies_64();
1964         ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1965                                                      &p->ef);
1966         if (ret) {
1967                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1968                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
1969                 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1970                                 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1971                 WARN(!ret, "reschedule restore work failed\n");
1972                 return;
1973         }
1974
1975         ret = kfd_process_restore_queues(p);
1976         if (!ret)
1977                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978         else
1979                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980 }
1981
1982 void kfd_suspend_all_processes(void)
1983 {
1984         struct kfd_process *p;
1985         unsigned int temp;
1986         int idx = srcu_read_lock(&kfd_processes_srcu);
1987
1988         WARN(debug_evictions, "Evicting all processes");
1989         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1990                 cancel_delayed_work_sync(&p->eviction_work);
1991                 cancel_delayed_work_sync(&p->restore_work);
1992
1993                 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1994                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
1995                 dma_fence_signal(p->ef);
1996                 dma_fence_put(p->ef);
1997                 p->ef = NULL;
1998         }
1999         srcu_read_unlock(&kfd_processes_srcu, idx);
2000 }
2001
2002 int kfd_resume_all_processes(void)
2003 {
2004         struct kfd_process *p;
2005         unsigned int temp;
2006         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2007
2008         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2009                 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2010                         pr_err("Restore process %d failed during resume\n",
2011                                p->pasid);
2012                         ret = -EFAULT;
2013                 }
2014         }
2015         srcu_read_unlock(&kfd_processes_srcu, idx);
2016         return ret;
2017 }
2018
2019 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
2020                           struct vm_area_struct *vma)
2021 {
2022         struct kfd_process_device *pdd;
2023         struct qcm_process_device *qpd;
2024
2025         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2026                 pr_err("Incorrect CWSR mapping size.\n");
2027                 return -EINVAL;
2028         }
2029
2030         pdd = kfd_get_process_device_data(dev, process);
2031         if (!pdd)
2032                 return -EINVAL;
2033         qpd = &pdd->qpd;
2034
2035         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2036                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
2037         if (!qpd->cwsr_kaddr) {
2038                 pr_err("Error allocating per process CWSR buffer.\n");
2039                 return -ENOMEM;
2040         }
2041
2042         vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2043                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2044         /* Mapping pages to user process */
2045         return remap_pfn_range(vma, vma->vm_start,
2046                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2047                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2048 }
2049
2050 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2051 {
2052         struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2053         uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2054         struct kfd_dev *dev = pdd->dev;
2055
2056         /*
2057          * It can be that we race and lose here, but that is extremely unlikely
2058          * and the worst thing which could happen is that we flush the changes
2059          * into the TLB once more which is harmless.
2060          */
2061         if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2062                 return;
2063
2064         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2065                 /* Nothing to flush until a VMID is assigned, which
2066                  * only happens when the first queue is created.
2067                  */
2068                 if (pdd->qpd.vmid)
2069                         amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2070                                                         pdd->qpd.vmid);
2071         } else {
2072                 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2073                                         pdd->process->pasid, type);
2074         }
2075 }
2076
2077 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2078 {
2079         int i;
2080
2081         if (gpu_id) {
2082                 for (i = 0; i < p->n_pdds; i++) {
2083                         struct kfd_process_device *pdd = p->pdds[i];
2084
2085                         if (pdd->user_gpu_id == gpu_id)
2086                                 return pdd;
2087                 }
2088         }
2089         return NULL;
2090 }
2091
2092 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2093 {
2094         int i;
2095
2096         if (!actual_gpu_id)
2097                 return 0;
2098
2099         for (i = 0; i < p->n_pdds; i++) {
2100                 struct kfd_process_device *pdd = p->pdds[i];
2101
2102                 if (pdd->dev->id == actual_gpu_id)
2103                         return pdd->user_gpu_id;
2104         }
2105         return -EINVAL;
2106 }
2107
2108 #if defined(CONFIG_DEBUG_FS)
2109
2110 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2111 {
2112         struct kfd_process *p;
2113         unsigned int temp;
2114         int r = 0;
2115
2116         int idx = srcu_read_lock(&kfd_processes_srcu);
2117
2118         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2119                 seq_printf(m, "Process %d PASID 0x%x:\n",
2120                            p->lead_thread->tgid, p->pasid);
2121
2122                 mutex_lock(&p->mutex);
2123                 r = pqm_debugfs_mqds(m, &p->pqm);
2124                 mutex_unlock(&p->mutex);
2125
2126                 if (r)
2127                         break;
2128         }
2129
2130         srcu_read_unlock(&kfd_processes_srcu, idx);
2131
2132         return r;
2133 }
2134
2135 #endif
2136