59c04b2d383b3dce0a45f85422b3000bda7ec599
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39
40 struct mm_struct;
41
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68                                         bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
72
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77
78 struct kfd_procfs_tree {
79         struct kobject *kobj;
80 };
81
82 static struct kfd_procfs_tree procfs;
83
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88         struct work_struct sdma_activity_work;
89         struct kfd_process_device *pdd;
90         uint64_t sdma_activity_counter;
91 };
92
93 struct temp_sdma_queue_list {
94         uint64_t __user *rptr;
95         uint64_t sdma_val;
96         unsigned int queue_id;
97         struct list_head list;
98 };
99
100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102         struct kfd_sdma_activity_handler_workarea *workarea;
103         struct kfd_process_device *pdd;
104         uint64_t val;
105         struct mm_struct *mm;
106         struct queue *q;
107         struct qcm_process_device *qpd;
108         struct device_queue_manager *dqm;
109         int ret = 0;
110         struct temp_sdma_queue_list sdma_q_list;
111         struct temp_sdma_queue_list *sdma_q, *next;
112
113         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114                                 sdma_activity_work);
115
116         pdd = workarea->pdd;
117         if (!pdd)
118                 return;
119         dqm = pdd->dev->dqm;
120         qpd = &pdd->qpd;
121         if (!dqm || !qpd)
122                 return;
123         /*
124          * Total SDMA activity is current SDMA activity + past SDMA activity
125          * Past SDMA count is stored in pdd.
126          * To get the current activity counters for all active SDMA queues,
127          * we loop over all SDMA queues and get their counts from user-space.
128          *
129          * We cannot call get_user() with dqm_lock held as it can cause
130          * a circular lock dependency situation. To read the SDMA stats,
131          * we need to do the following:
132          *
133          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134          *    with dqm_lock/dqm_unlock().
135          * 2. Call get_user() for each node in temporary list without dqm_lock.
136          *    Save the SDMA count for each node and also add the count to the total
137          *    SDMA count counter.
138          *    Its possible, during this step, a few SDMA queue nodes got deleted
139          *    from the qpd->queues_list.
140          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141          *    If any node got deleted, its SDMA count would be captured in the sdma
142          *    past activity counter. So subtract the SDMA counter stored in step 2
143          *    for this node from the total SDMA count.
144          */
145         INIT_LIST_HEAD(&sdma_q_list.list);
146
147         /*
148          * Create the temp list of all SDMA queues
149          */
150         dqm_lock(dqm);
151
152         list_for_each_entry(q, &qpd->queues_list, list) {
153                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155                         continue;
156
157                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158                 if (!sdma_q) {
159                         dqm_unlock(dqm);
160                         goto cleanup;
161                 }
162
163                 INIT_LIST_HEAD(&sdma_q->list);
164                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165                 sdma_q->queue_id = q->properties.queue_id;
166                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
167         }
168
169         /*
170          * If the temp list is empty, then no SDMA queues nodes were found in
171          * qpd->queues_list. Return the past activity count as the total sdma
172          * count
173          */
174         if (list_empty(&sdma_q_list.list)) {
175                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176                 dqm_unlock(dqm);
177                 return;
178         }
179
180         dqm_unlock(dqm);
181
182         /*
183          * Get the usage count for each SDMA queue in temp_list.
184          */
185         mm = get_task_mm(pdd->process->lead_thread);
186         if (!mm)
187                 goto cleanup;
188
189         kthread_use_mm(mm);
190
191         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192                 val = 0;
193                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194                 if (ret) {
195                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196                                  sdma_q->queue_id);
197                 } else {
198                         sdma_q->sdma_val = val;
199                         workarea->sdma_activity_counter += val;
200                 }
201         }
202
203         kthread_unuse_mm(mm);
204         mmput(mm);
205
206         /*
207          * Do a second iteration over qpd_queues_list to check if any SDMA
208          * nodes got deleted while fetching SDMA counter.
209          */
210         dqm_lock(dqm);
211
212         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213
214         list_for_each_entry(q, &qpd->queues_list, list) {
215                 if (list_empty(&sdma_q_list.list))
216                         break;
217
218                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220                         continue;
221
222                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224                              (sdma_q->queue_id == q->properties.queue_id)) {
225                                 list_del(&sdma_q->list);
226                                 kfree(sdma_q);
227                                 break;
228                         }
229                 }
230         }
231
232         dqm_unlock(dqm);
233
234         /*
235          * If temp list is not empty, it implies some queues got deleted
236          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237          * count for each node from the total SDMA count.
238          */
239         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
241                 list_del(&sdma_q->list);
242                 kfree(sdma_q);
243         }
244
245         return;
246
247 cleanup:
248         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249                 list_del(&sdma_q->list);
250                 kfree(sdma_q);
251         }
252 }
253
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268         int cu_cnt;
269         int wave_cnt;
270         int max_waves_per_cu;
271         struct kfd_dev *dev = NULL;
272         struct kfd_process *proc = NULL;
273         struct kfd_process_device *pdd = NULL;
274
275         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276         dev = pdd->dev;
277         if (dev->kfd2kgd->get_cu_occupancy == NULL)
278                 return -EINVAL;
279
280         cu_cnt = 0;
281         proc = pdd->process;
282         if (pdd->qpd.queue_count == 0) {
283                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284                          dev->id, proc->pasid);
285                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286         }
287
288         /* Collect wave count from device if it supports */
289         wave_cnt = 0;
290         max_waves_per_cu = 0;
291         dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
292                         &max_waves_per_cu);
293
294         /* Translate wave count to number of compute units */
295         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298
299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300                                char *buffer)
301 {
302         if (strcmp(attr->name, "pasid") == 0) {
303                 struct kfd_process *p = container_of(attr, struct kfd_process,
304                                                      attr_pasid);
305
306                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307         } else if (strncmp(attr->name, "vram_", 5) == 0) {
308                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309                                                               attr_vram);
310                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
312                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313                                                               attr_sdma);
314                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315
316                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317                                         kfd_sdma_activity_worker);
318
319                 sdma_activity_work_handler.pdd = pdd;
320                 sdma_activity_work_handler.sdma_activity_counter = 0;
321
322                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323
324                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
325
326                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
327                                 (sdma_activity_work_handler.sdma_activity_counter)/
328                                  SDMA_ACTIVITY_DIVISOR);
329         } else {
330                 pr_err("Invalid attribute");
331                 return -EINVAL;
332         }
333
334         return 0;
335 }
336
337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339         kfree(kobj);
340 }
341
342 static const struct sysfs_ops kfd_procfs_ops = {
343         .show = kfd_procfs_show,
344 };
345
346 static struct kobj_type procfs_type = {
347         .release = kfd_procfs_kobj_release,
348         .sysfs_ops = &kfd_procfs_ops,
349 };
350
351 void kfd_procfs_init(void)
352 {
353         int ret = 0;
354
355         procfs.kobj = kfd_alloc_struct(procfs.kobj);
356         if (!procfs.kobj)
357                 return;
358
359         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360                                    &kfd_device->kobj, "proc");
361         if (ret) {
362                 pr_warn("Could not create procfs proc folder");
363                 /* If we fail to create the procfs, clean up */
364                 kfd_procfs_shutdown();
365         }
366 }
367
368 void kfd_procfs_shutdown(void)
369 {
370         if (procfs.kobj) {
371                 kobject_del(procfs.kobj);
372                 kobject_put(procfs.kobj);
373                 procfs.kobj = NULL;
374         }
375 }
376
377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378                                      struct attribute *attr, char *buffer)
379 {
380         struct queue *q = container_of(kobj, struct queue, kobj);
381
382         if (!strcmp(attr->name, "size"))
383                 return snprintf(buffer, PAGE_SIZE, "%llu",
384                                 q->properties.queue_size);
385         else if (!strcmp(attr->name, "type"))
386                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387         else if (!strcmp(attr->name, "gpuid"))
388                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389         else
390                 pr_err("Invalid attribute");
391
392         return 0;
393 }
394
395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396                                      struct attribute *attr, char *buffer)
397 {
398         if (strcmp(attr->name, "evicted_ms") == 0) {
399                 struct kfd_process_device *pdd = container_of(attr,
400                                 struct kfd_process_device,
401                                 attr_evict);
402                 uint64_t evict_jiffies;
403
404                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405
406                 return snprintf(buffer,
407                                 PAGE_SIZE,
408                                 "%llu\n",
409                                 jiffies64_to_msecs(evict_jiffies));
410
411         /* Sysfs handle that gets CU occupancy is per device */
412         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
413                 return kfd_get_cu_occupancy(attr, buffer);
414         } else {
415                 pr_err("Invalid attribute");
416         }
417
418         return 0;
419 }
420
421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422                                        struct attribute *attr, char *buf)
423 {
424         struct kfd_process_device *pdd;
425
426         if (!strcmp(attr->name, "faults")) {
427                 pdd = container_of(attr, struct kfd_process_device,
428                                    attr_faults);
429                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430         }
431         if (!strcmp(attr->name, "page_in")) {
432                 pdd = container_of(attr, struct kfd_process_device,
433                                    attr_page_in);
434                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435         }
436         if (!strcmp(attr->name, "page_out")) {
437                 pdd = container_of(attr, struct kfd_process_device,
438                                    attr_page_out);
439                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440         }
441         return 0;
442 }
443
444 static struct attribute attr_queue_size = {
445         .name = "size",
446         .mode = KFD_SYSFS_FILE_MODE
447 };
448
449 static struct attribute attr_queue_type = {
450         .name = "type",
451         .mode = KFD_SYSFS_FILE_MODE
452 };
453
454 static struct attribute attr_queue_gpuid = {
455         .name = "gpuid",
456         .mode = KFD_SYSFS_FILE_MODE
457 };
458
459 static struct attribute *procfs_queue_attrs[] = {
460         &attr_queue_size,
461         &attr_queue_type,
462         &attr_queue_gpuid,
463         NULL
464 };
465 ATTRIBUTE_GROUPS(procfs_queue);
466
467 static const struct sysfs_ops procfs_queue_ops = {
468         .show = kfd_procfs_queue_show,
469 };
470
471 static struct kobj_type procfs_queue_type = {
472         .sysfs_ops = &procfs_queue_ops,
473         .default_groups = procfs_queue_groups,
474 };
475
476 static const struct sysfs_ops procfs_stats_ops = {
477         .show = kfd_procfs_stats_show,
478 };
479
480 static struct kobj_type procfs_stats_type = {
481         .sysfs_ops = &procfs_stats_ops,
482         .release = kfd_procfs_kobj_release,
483 };
484
485 static const struct sysfs_ops sysfs_counters_ops = {
486         .show = kfd_sysfs_counters_show,
487 };
488
489 static struct kobj_type sysfs_counters_type = {
490         .sysfs_ops = &sysfs_counters_ops,
491         .release = kfd_procfs_kobj_release,
492 };
493
494 int kfd_procfs_add_queue(struct queue *q)
495 {
496         struct kfd_process *proc;
497         int ret;
498
499         if (!q || !q->process)
500                 return -EINVAL;
501         proc = q->process;
502
503         /* Create proc/<pid>/queues/<queue id> folder */
504         if (!proc->kobj_queues)
505                 return -EFAULT;
506         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
507                         proc->kobj_queues, "%u", q->properties.queue_id);
508         if (ret < 0) {
509                 pr_warn("Creating proc/<pid>/queues/%u failed",
510                         q->properties.queue_id);
511                 kobject_put(&q->kobj);
512                 return ret;
513         }
514
515         return 0;
516 }
517
518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
519                                  char *name)
520 {
521         int ret;
522
523         if (!kobj || !attr || !name)
524                 return;
525
526         attr->name = name;
527         attr->mode = KFD_SYSFS_FILE_MODE;
528         sysfs_attr_init(attr);
529
530         ret = sysfs_create_file(kobj, attr);
531         if (ret)
532                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
533 }
534
535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
536 {
537         int ret;
538         int i;
539         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
540
541         if (!p || !p->kobj)
542                 return;
543
544         /*
545          * Create sysfs files for each GPU:
546          * - proc/<pid>/stats_<gpuid>/
547          * - proc/<pid>/stats_<gpuid>/evicted_ms
548          * - proc/<pid>/stats_<gpuid>/cu_occupancy
549          */
550         for (i = 0; i < p->n_pdds; i++) {
551                 struct kfd_process_device *pdd = p->pdds[i];
552
553                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
554                                 "stats_%u", pdd->dev->id);
555                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
556                 if (!pdd->kobj_stats)
557                         return;
558
559                 ret = kobject_init_and_add(pdd->kobj_stats,
560                                            &procfs_stats_type,
561                                            p->kobj,
562                                            stats_dir_filename);
563
564                 if (ret) {
565                         pr_warn("Creating KFD proc/stats_%s folder failed",
566                                 stats_dir_filename);
567                         kobject_put(pdd->kobj_stats);
568                         pdd->kobj_stats = NULL;
569                         return;
570                 }
571
572                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
573                                       "evicted_ms");
574                 /* Add sysfs file to report compute unit occupancy */
575                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
576                         kfd_sysfs_create_file(pdd->kobj_stats,
577                                               &pdd->attr_cu_occupancy,
578                                               "cu_occupancy");
579         }
580 }
581
582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
583 {
584         int ret = 0;
585         int i;
586         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
587
588         if (!p || !p->kobj)
589                 return;
590
591         /*
592          * Create sysfs files for each GPU which supports SVM
593          * - proc/<pid>/counters_<gpuid>/
594          * - proc/<pid>/counters_<gpuid>/faults
595          * - proc/<pid>/counters_<gpuid>/page_in
596          * - proc/<pid>/counters_<gpuid>/page_out
597          */
598         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
599                 struct kfd_process_device *pdd = p->pdds[i];
600                 struct kobject *kobj_counters;
601
602                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
603                         "counters_%u", pdd->dev->id);
604                 kobj_counters = kfd_alloc_struct(kobj_counters);
605                 if (!kobj_counters)
606                         return;
607
608                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
609                                            p->kobj, counters_dir_filename);
610                 if (ret) {
611                         pr_warn("Creating KFD proc/%s folder failed",
612                                 counters_dir_filename);
613                         kobject_put(kobj_counters);
614                         return;
615                 }
616
617                 pdd->kobj_counters = kobj_counters;
618                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
619                                       "faults");
620                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
621                                       "page_in");
622                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
623                                       "page_out");
624         }
625 }
626
627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
628 {
629         int i;
630
631         if (!p || !p->kobj)
632                 return;
633
634         /*
635          * Create sysfs files for each GPU:
636          * - proc/<pid>/vram_<gpuid>
637          * - proc/<pid>/sdma_<gpuid>
638          */
639         for (i = 0; i < p->n_pdds; i++) {
640                 struct kfd_process_device *pdd = p->pdds[i];
641
642                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
643                          pdd->dev->id);
644                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
645                                       pdd->vram_filename);
646
647                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
648                          pdd->dev->id);
649                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
650                                             pdd->sdma_filename);
651         }
652 }
653
654 void kfd_procfs_del_queue(struct queue *q)
655 {
656         if (!q)
657                 return;
658
659         kobject_del(&q->kobj);
660         kobject_put(&q->kobj);
661 }
662
663 int kfd_process_create_wq(void)
664 {
665         if (!kfd_process_wq)
666                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
667         if (!kfd_restore_wq)
668                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
669
670         if (!kfd_process_wq || !kfd_restore_wq) {
671                 kfd_process_destroy_wq();
672                 return -ENOMEM;
673         }
674
675         return 0;
676 }
677
678 void kfd_process_destroy_wq(void)
679 {
680         if (kfd_process_wq) {
681                 destroy_workqueue(kfd_process_wq);
682                 kfd_process_wq = NULL;
683         }
684         if (kfd_restore_wq) {
685                 destroy_workqueue(kfd_restore_wq);
686                 kfd_restore_wq = NULL;
687         }
688 }
689
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691                         struct kfd_process_device *pdd, void *kptr)
692 {
693         struct kfd_dev *dev = pdd->dev;
694
695         if (kptr) {
696                 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem);
697                 kptr = NULL;
698         }
699
700         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702                                                NULL);
703 }
704
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *      This function should be only called right after the process
707  *      is created and when kfd_processes_mutex is still being held
708  *      to avoid concurrency. Because of that exclusiveness, we do
709  *      not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712                                    uint64_t gpu_va, uint32_t size,
713                                    uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715         struct kfd_dev *kdev = pdd->dev;
716         int err;
717
718         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719                                                  pdd->drm_priv, mem, NULL,
720                                                  flags, false);
721         if (err)
722                 goto err_alloc_mem;
723
724         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725                         pdd->drm_priv, NULL);
726         if (err)
727                 goto err_map_mem;
728
729         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730         if (err) {
731                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732                 goto sync_memory_failed;
733         }
734
735         if (kptr) {
736                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev,
737                                 (struct kgd_mem *)*mem, kptr, NULL);
738                 if (err) {
739                         pr_debug("Map GTT BO to kernel failed\n");
740                         goto sync_memory_failed;
741                 }
742         }
743
744         return err;
745
746 sync_memory_failed:
747         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749 err_map_mem:
750         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751                                                NULL);
752 err_alloc_mem:
753         *mem = NULL;
754         *kptr = NULL;
755         return err;
756 }
757
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *      process for IB usage The memory reserved is for KFD to submit
760  *      IB to AMDGPU from kernel.  If the memory is reserved
761  *      successfully, ib_kaddr will have the CPU/kernel
762  *      address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766         struct qcm_process_device *qpd = &pdd->qpd;
767         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771         struct kgd_mem *mem;
772         void *kaddr;
773         int ret;
774
775         if (qpd->ib_kaddr || !qpd->ib_base)
776                 return 0;
777
778         /* ib_base is only set for dGPU */
779         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780                                       &mem, &kaddr);
781         if (ret)
782                 return ret;
783
784         qpd->ib_mem = mem;
785         qpd->ib_kaddr = kaddr;
786
787         return 0;
788 }
789
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792         struct qcm_process_device *qpd = &pdd->qpd;
793
794         if (!qpd->ib_kaddr || !qpd->ib_base)
795                 return;
796
797         kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
798 }
799
800 struct kfd_process *kfd_create_process(struct file *filep)
801 {
802         struct kfd_process *process;
803         struct task_struct *thread = current;
804         int ret;
805
806         if (!thread->mm)
807                 return ERR_PTR(-EINVAL);
808
809         /* Only the pthreads threading model is supported. */
810         if (thread->group_leader->mm != thread->mm)
811                 return ERR_PTR(-EINVAL);
812
813         /*
814          * take kfd processes mutex before starting of process creation
815          * so there won't be a case where two threads of the same process
816          * create two kfd_process structures
817          */
818         mutex_lock(&kfd_processes_mutex);
819
820         /* A prior open of /dev/kfd could have already created the process. */
821         process = find_process(thread, false);
822         if (process) {
823                 pr_debug("Process already found\n");
824         } else {
825                 process = create_process(thread);
826                 if (IS_ERR(process))
827                         goto out;
828
829                 ret = kfd_process_init_cwsr_apu(process, filep);
830                 if (ret)
831                         goto out_destroy;
832
833                 if (!procfs.kobj)
834                         goto out;
835
836                 process->kobj = kfd_alloc_struct(process->kobj);
837                 if (!process->kobj) {
838                         pr_warn("Creating procfs kobject failed");
839                         goto out;
840                 }
841                 ret = kobject_init_and_add(process->kobj, &procfs_type,
842                                            procfs.kobj, "%d",
843                                            (int)process->lead_thread->pid);
844                 if (ret) {
845                         pr_warn("Creating procfs pid directory failed");
846                         kobject_put(process->kobj);
847                         goto out;
848                 }
849
850                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
851                                       "pasid");
852
853                 process->kobj_queues = kobject_create_and_add("queues",
854                                                         process->kobj);
855                 if (!process->kobj_queues)
856                         pr_warn("Creating KFD proc/queues folder failed");
857
858                 kfd_procfs_add_sysfs_stats(process);
859                 kfd_procfs_add_sysfs_files(process);
860                 kfd_procfs_add_sysfs_counters(process);
861         }
862 out:
863         if (!IS_ERR(process))
864                 kref_get(&process->ref);
865         mutex_unlock(&kfd_processes_mutex);
866
867         return process;
868
869 out_destroy:
870         hash_del_rcu(&process->kfd_processes);
871         mutex_unlock(&kfd_processes_mutex);
872         synchronize_srcu(&kfd_processes_srcu);
873         /* kfd_process_free_notifier will trigger the cleanup */
874         mmu_notifier_put(&process->mmu_notifier);
875         return ERR_PTR(ret);
876 }
877
878 struct kfd_process *kfd_get_process(const struct task_struct *thread)
879 {
880         struct kfd_process *process;
881
882         if (!thread->mm)
883                 return ERR_PTR(-EINVAL);
884
885         /* Only the pthreads threading model is supported. */
886         if (thread->group_leader->mm != thread->mm)
887                 return ERR_PTR(-EINVAL);
888
889         process = find_process(thread, false);
890         if (!process)
891                 return ERR_PTR(-EINVAL);
892
893         return process;
894 }
895
896 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
897 {
898         struct kfd_process *process;
899
900         hash_for_each_possible_rcu(kfd_processes_table, process,
901                                         kfd_processes, (uintptr_t)mm)
902                 if (process->mm == mm)
903                         return process;
904
905         return NULL;
906 }
907
908 static struct kfd_process *find_process(const struct task_struct *thread,
909                                         bool ref)
910 {
911         struct kfd_process *p;
912         int idx;
913
914         idx = srcu_read_lock(&kfd_processes_srcu);
915         p = find_process_by_mm(thread->mm);
916         if (p && ref)
917                 kref_get(&p->ref);
918         srcu_read_unlock(&kfd_processes_srcu, idx);
919
920         return p;
921 }
922
923 void kfd_unref_process(struct kfd_process *p)
924 {
925         kref_put(&p->ref, kfd_process_ref_release);
926 }
927
928 /* This increments the process->ref counter. */
929 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
930 {
931         struct task_struct *task = NULL;
932         struct kfd_process *p    = NULL;
933
934         if (!pid) {
935                 task = current;
936                 get_task_struct(task);
937         } else {
938                 task = get_pid_task(pid, PIDTYPE_PID);
939         }
940
941         if (task) {
942                 p = find_process(task, true);
943                 put_task_struct(task);
944         }
945
946         return p;
947 }
948
949 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
950 {
951         struct kfd_process *p = pdd->process;
952         void *mem;
953         int id;
954         int i;
955
956         /*
957          * Remove all handles from idr and release appropriate
958          * local memory object
959          */
960         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
961
962                 for (i = 0; i < p->n_pdds; i++) {
963                         struct kfd_process_device *peer_pdd = p->pdds[i];
964
965                         if (!peer_pdd->drm_priv)
966                                 continue;
967                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
968                                 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
969                 }
970
971                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
972                                                        pdd->drm_priv, NULL);
973                 kfd_process_device_remove_obj_handle(pdd, id);
974         }
975 }
976
977 /*
978  * Just kunmap and unpin signal BO here. It will be freed in
979  * kfd_process_free_outstanding_kfd_bos()
980  */
981 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
982 {
983         struct kfd_process_device *pdd;
984         struct kfd_dev *kdev;
985         void *mem;
986
987         kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
988         if (!kdev)
989                 return;
990
991         mutex_lock(&p->mutex);
992
993         pdd = kfd_get_process_device_data(kdev, p);
994         if (!pdd)
995                 goto out;
996
997         mem = kfd_process_device_translate_handle(
998                 pdd, GET_IDR_HANDLE(p->signal_handle));
999         if (!mem)
1000                 goto out;
1001
1002         amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem);
1003
1004 out:
1005         mutex_unlock(&p->mutex);
1006 }
1007
1008 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1009 {
1010         int i;
1011
1012         for (i = 0; i < p->n_pdds; i++)
1013                 kfd_process_device_free_bos(p->pdds[i]);
1014 }
1015
1016 static void kfd_process_destroy_pdds(struct kfd_process *p)
1017 {
1018         int i;
1019
1020         for (i = 0; i < p->n_pdds; i++) {
1021                 struct kfd_process_device *pdd = p->pdds[i];
1022
1023                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1024                                 pdd->dev->id, p->pasid);
1025
1026                 kfd_process_device_destroy_cwsr_dgpu(pdd);
1027                 kfd_process_device_destroy_ib_mem(pdd);
1028
1029                 if (pdd->drm_file) {
1030                         amdgpu_amdkfd_gpuvm_release_process_vm(
1031                                         pdd->dev->adev, pdd->drm_priv);
1032                         fput(pdd->drm_file);
1033                 }
1034
1035                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1036                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1037                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
1038
1039                 bitmap_free(pdd->qpd.doorbell_bitmap);
1040                 idr_destroy(&pdd->alloc_idr);
1041
1042                 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1043
1044                 /*
1045                  * before destroying pdd, make sure to report availability
1046                  * for auto suspend
1047                  */
1048                 if (pdd->runtime_inuse) {
1049                         pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1050                         pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1051                         pdd->runtime_inuse = false;
1052                 }
1053
1054                 kfree(pdd);
1055                 p->pdds[i] = NULL;
1056         }
1057         p->n_pdds = 0;
1058 }
1059
1060 static void kfd_process_remove_sysfs(struct kfd_process *p)
1061 {
1062         struct kfd_process_device *pdd;
1063         int i;
1064
1065         if (!p->kobj)
1066                 return;
1067
1068         sysfs_remove_file(p->kobj, &p->attr_pasid);
1069         kobject_del(p->kobj_queues);
1070         kobject_put(p->kobj_queues);
1071         p->kobj_queues = NULL;
1072
1073         for (i = 0; i < p->n_pdds; i++) {
1074                 pdd = p->pdds[i];
1075
1076                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078
1079                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081                         sysfs_remove_file(pdd->kobj_stats,
1082                                           &pdd->attr_cu_occupancy);
1083                 kobject_del(pdd->kobj_stats);
1084                 kobject_put(pdd->kobj_stats);
1085                 pdd->kobj_stats = NULL;
1086         }
1087
1088         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089                 pdd = p->pdds[i];
1090
1091                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094                 kobject_del(pdd->kobj_counters);
1095                 kobject_put(pdd->kobj_counters);
1096                 pdd->kobj_counters = NULL;
1097         }
1098
1099         kobject_del(p->kobj);
1100         kobject_put(p->kobj);
1101         p->kobj = NULL;
1102 }
1103
1104 /* No process locking is needed in this function, because the process
1105  * is not findable any more. We must assume that no other thread is
1106  * using it any more, otherwise we couldn't safely free the process
1107  * structure in the end.
1108  */
1109 static void kfd_process_wq_release(struct work_struct *work)
1110 {
1111         struct kfd_process *p = container_of(work, struct kfd_process,
1112                                              release_work);
1113
1114         kfd_process_remove_sysfs(p);
1115         kfd_iommu_unbind_process(p);
1116
1117         kfd_process_kunmap_signal_bo(p);
1118         kfd_process_free_outstanding_kfd_bos(p);
1119         svm_range_list_fini(p);
1120
1121         kfd_process_destroy_pdds(p);
1122         dma_fence_put(p->ef);
1123
1124         kfd_event_free_process(p);
1125
1126         kfd_pasid_free(p->pasid);
1127         mutex_destroy(&p->mutex);
1128
1129         put_task_struct(p->lead_thread);
1130
1131         kfree(p);
1132 }
1133
1134 static void kfd_process_ref_release(struct kref *ref)
1135 {
1136         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1137
1138         INIT_WORK(&p->release_work, kfd_process_wq_release);
1139         queue_work(kfd_process_wq, &p->release_work);
1140 }
1141
1142 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1143 {
1144         int idx = srcu_read_lock(&kfd_processes_srcu);
1145         struct kfd_process *p = find_process_by_mm(mm);
1146
1147         srcu_read_unlock(&kfd_processes_srcu, idx);
1148
1149         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1150 }
1151
1152 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1153 {
1154         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1155 }
1156
1157 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1158                                         struct mm_struct *mm)
1159 {
1160         struct kfd_process *p;
1161
1162         /*
1163          * The kfd_process structure can not be free because the
1164          * mmu_notifier srcu is read locked
1165          */
1166         p = container_of(mn, struct kfd_process, mmu_notifier);
1167         if (WARN_ON(p->mm != mm))
1168                 return;
1169
1170         mutex_lock(&kfd_processes_mutex);
1171         hash_del_rcu(&p->kfd_processes);
1172         mutex_unlock(&kfd_processes_mutex);
1173         synchronize_srcu(&kfd_processes_srcu);
1174
1175         cancel_delayed_work_sync(&p->eviction_work);
1176         cancel_delayed_work_sync(&p->restore_work);
1177
1178         mutex_lock(&p->mutex);
1179
1180         kfd_process_dequeue_from_all_devices(p);
1181         pqm_uninit(&p->pqm);
1182
1183         /* Indicate to other users that MM is no longer valid */
1184         p->mm = NULL;
1185         /* Signal the eviction fence after user mode queues are
1186          * destroyed. This allows any BOs to be freed without
1187          * triggering pointless evictions or waiting for fences.
1188          */
1189         dma_fence_signal(p->ef);
1190
1191         mutex_unlock(&p->mutex);
1192
1193         mmu_notifier_put(&p->mmu_notifier);
1194 }
1195
1196 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1197         .release = kfd_process_notifier_release,
1198         .alloc_notifier = kfd_process_alloc_notifier,
1199         .free_notifier = kfd_process_free_notifier,
1200 };
1201
1202 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1203 {
1204         unsigned long  offset;
1205         int i;
1206
1207         for (i = 0; i < p->n_pdds; i++) {
1208                 struct kfd_dev *dev = p->pdds[i]->dev;
1209                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1210
1211                 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1212                         continue;
1213
1214                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1215                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1216                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1217                         MAP_SHARED, offset);
1218
1219                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1220                         int err = qpd->tba_addr;
1221
1222                         pr_err("Failure to set tba address. error %d.\n", err);
1223                         qpd->tba_addr = 0;
1224                         qpd->cwsr_kaddr = NULL;
1225                         return err;
1226                 }
1227
1228                 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1229
1230                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1231                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1232                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1239 {
1240         struct kfd_dev *dev = pdd->dev;
1241         struct qcm_process_device *qpd = &pdd->qpd;
1242         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1243                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1244                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1245         struct kgd_mem *mem;
1246         void *kaddr;
1247         int ret;
1248
1249         if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1250                 return 0;
1251
1252         /* cwsr_base is only set for dGPU */
1253         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1254                                       KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1255         if (ret)
1256                 return ret;
1257
1258         qpd->cwsr_mem = mem;
1259         qpd->cwsr_kaddr = kaddr;
1260         qpd->tba_addr = qpd->cwsr_base;
1261
1262         memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1263
1264         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1265         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1266                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1267
1268         return 0;
1269 }
1270
1271 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1272 {
1273         struct kfd_dev *dev = pdd->dev;
1274         struct qcm_process_device *qpd = &pdd->qpd;
1275
1276         if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1277                 return;
1278
1279         kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1280 }
1281
1282 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1283                                   uint64_t tba_addr,
1284                                   uint64_t tma_addr)
1285 {
1286         if (qpd->cwsr_kaddr) {
1287                 /* KFD trap handler is bound, record as second-level TBA/TMA
1288                  * in first-level TMA. First-level trap will jump to second.
1289                  */
1290                 uint64_t *tma =
1291                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1292                 tma[0] = tba_addr;
1293                 tma[1] = tma_addr;
1294         } else {
1295                 /* No trap handler bound, bind as first-level TBA/TMA. */
1296                 qpd->tba_addr = tba_addr;
1297                 qpd->tma_addr = tma_addr;
1298         }
1299 }
1300
1301 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1302 {
1303         int i;
1304
1305         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1306          * boot time retry setting. Mixing processes with different
1307          * XNACK/retry settings can hang the GPU.
1308          *
1309          * Different GPUs can have different noretry settings depending
1310          * on HW bugs or limitations. We need to find at least one
1311          * XNACK mode for this process that's compatible with all GPUs.
1312          * Fortunately GPUs with retry enabled (noretry=0) can run code
1313          * built for XNACK-off. On GFXv9 it may perform slower.
1314          *
1315          * Therefore applications built for XNACK-off can always be
1316          * supported and will be our fallback if any GPU does not
1317          * support retry.
1318          */
1319         for (i = 0; i < p->n_pdds; i++) {
1320                 struct kfd_dev *dev = p->pdds[i]->dev;
1321
1322                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1323                  * support the SVM APIs and don't need to be considered
1324                  * for the XNACK mode selection.
1325                  */
1326                 if (!KFD_IS_SOC15(dev))
1327                         continue;
1328                 /* Aldebaran can always support XNACK because it can support
1329                  * per-process XNACK mode selection. But let the dev->noretry
1330                  * setting still influence the default XNACK mode.
1331                  */
1332                 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1333                         continue;
1334
1335                 /* GFXv10 and later GPUs do not support shader preemption
1336                  * during page faults. This can lead to poor QoS for queue
1337                  * management and memory-manager-related preemptions or
1338                  * even deadlocks.
1339                  */
1340                 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1341                         return false;
1342
1343                 if (dev->noretry)
1344                         return false;
1345         }
1346
1347         return true;
1348 }
1349
1350 /*
1351  * On return the kfd_process is fully operational and will be freed when the
1352  * mm is released
1353  */
1354 static struct kfd_process *create_process(const struct task_struct *thread)
1355 {
1356         struct kfd_process *process;
1357         struct mmu_notifier *mn;
1358         int err = -ENOMEM;
1359
1360         process = kzalloc(sizeof(*process), GFP_KERNEL);
1361         if (!process)
1362                 goto err_alloc_process;
1363
1364         kref_init(&process->ref);
1365         mutex_init(&process->mutex);
1366         process->mm = thread->mm;
1367         process->lead_thread = thread->group_leader;
1368         process->n_pdds = 0;
1369         process->queues_paused = false;
1370         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1371         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1372         process->last_restore_timestamp = get_jiffies_64();
1373         kfd_event_init_process(process);
1374         process->is_32bit_user_mode = in_compat_syscall();
1375
1376         process->pasid = kfd_pasid_alloc();
1377         if (process->pasid == 0)
1378                 goto err_alloc_pasid;
1379
1380         err = pqm_init(&process->pqm, process);
1381         if (err != 0)
1382                 goto err_process_pqm_init;
1383
1384         /* init process apertures*/
1385         err = kfd_init_apertures(process);
1386         if (err != 0)
1387                 goto err_init_apertures;
1388
1389         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1390         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1391
1392         err = svm_range_list_init(process);
1393         if (err)
1394                 goto err_init_svm_range_list;
1395
1396         /* alloc_notifier needs to find the process in the hash table */
1397         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1398                         (uintptr_t)process->mm);
1399
1400         /* MMU notifier registration must be the last call that can fail
1401          * because after this point we cannot unwind the process creation.
1402          * After this point, mmu_notifier_put will trigger the cleanup by
1403          * dropping the last process reference in the free_notifier.
1404          */
1405         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1406         if (IS_ERR(mn)) {
1407                 err = PTR_ERR(mn);
1408                 goto err_register_notifier;
1409         }
1410         BUG_ON(mn != &process->mmu_notifier);
1411
1412         get_task_struct(process->lead_thread);
1413
1414         return process;
1415
1416 err_register_notifier:
1417         hash_del_rcu(&process->kfd_processes);
1418         svm_range_list_fini(process);
1419 err_init_svm_range_list:
1420         kfd_process_free_outstanding_kfd_bos(process);
1421         kfd_process_destroy_pdds(process);
1422 err_init_apertures:
1423         pqm_uninit(&process->pqm);
1424 err_process_pqm_init:
1425         kfd_pasid_free(process->pasid);
1426 err_alloc_pasid:
1427         mutex_destroy(&process->mutex);
1428         kfree(process);
1429 err_alloc_process:
1430         return ERR_PTR(err);
1431 }
1432
1433 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1434                         struct kfd_dev *dev)
1435 {
1436         unsigned int i;
1437         int range_start = dev->shared_resources.non_cp_doorbells_start;
1438         int range_end = dev->shared_resources.non_cp_doorbells_end;
1439
1440         if (!KFD_IS_SOC15(dev))
1441                 return 0;
1442
1443         qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1444                                              GFP_KERNEL);
1445         if (!qpd->doorbell_bitmap)
1446                 return -ENOMEM;
1447
1448         /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1449         pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1450         pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1451                         range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1452                         range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1453
1454         for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1455                 if (i >= range_start && i <= range_end) {
1456                         __set_bit(i, qpd->doorbell_bitmap);
1457                         __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1458                                   qpd->doorbell_bitmap);
1459                 }
1460         }
1461
1462         return 0;
1463 }
1464
1465 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1466                                                         struct kfd_process *p)
1467 {
1468         int i;
1469
1470         for (i = 0; i < p->n_pdds; i++)
1471                 if (p->pdds[i]->dev == dev)
1472                         return p->pdds[i];
1473
1474         return NULL;
1475 }
1476
1477 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1478                                                         struct kfd_process *p)
1479 {
1480         struct kfd_process_device *pdd = NULL;
1481
1482         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1483                 return NULL;
1484         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1485         if (!pdd)
1486                 return NULL;
1487
1488         if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1489                 pr_err("Failed to alloc doorbell for pdd\n");
1490                 goto err_free_pdd;
1491         }
1492
1493         if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1494                 pr_err("Failed to init doorbell for process\n");
1495                 goto err_free_pdd;
1496         }
1497
1498         pdd->dev = dev;
1499         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1500         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1501         pdd->qpd.dqm = dev->dqm;
1502         pdd->qpd.pqm = &p->pqm;
1503         pdd->qpd.evicted = 0;
1504         pdd->qpd.mapped_gws_queue = false;
1505         pdd->process = p;
1506         pdd->bound = PDD_UNBOUND;
1507         pdd->already_dequeued = false;
1508         pdd->runtime_inuse = false;
1509         pdd->vram_usage = 0;
1510         pdd->sdma_past_activity_counter = 0;
1511         pdd->user_gpu_id = dev->id;
1512         atomic64_set(&pdd->evict_duration_counter, 0);
1513         p->pdds[p->n_pdds++] = pdd;
1514
1515         /* Init idr used for memory handle translation */
1516         idr_init(&pdd->alloc_idr);
1517
1518         return pdd;
1519
1520 err_free_pdd:
1521         kfree(pdd);
1522         return NULL;
1523 }
1524
1525 /**
1526  * kfd_process_device_init_vm - Initialize a VM for a process-device
1527  *
1528  * @pdd: The process-device
1529  * @drm_file: Optional pointer to a DRM file descriptor
1530  *
1531  * If @drm_file is specified, it will be used to acquire the VM from
1532  * that file descriptor. If successful, the @pdd takes ownership of
1533  * the file descriptor.
1534  *
1535  * If @drm_file is NULL, a new VM is created.
1536  *
1537  * Returns 0 on success, -errno on failure.
1538  */
1539 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1540                                struct file *drm_file)
1541 {
1542         struct kfd_process *p;
1543         struct kfd_dev *dev;
1544         int ret;
1545
1546         if (!drm_file)
1547                 return -EINVAL;
1548
1549         if (pdd->drm_priv)
1550                 return -EBUSY;
1551
1552         p = pdd->process;
1553         dev = pdd->dev;
1554
1555         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1556                 dev->adev, drm_file, p->pasid,
1557                 &p->kgd_process_info, &p->ef);
1558         if (ret) {
1559                 pr_err("Failed to create process VM object\n");
1560                 return ret;
1561         }
1562         pdd->drm_priv = drm_file->private_data;
1563
1564         ret = kfd_process_device_reserve_ib_mem(pdd);
1565         if (ret)
1566                 goto err_reserve_ib_mem;
1567         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1568         if (ret)
1569                 goto err_init_cwsr;
1570
1571         pdd->drm_file = drm_file;
1572
1573         return 0;
1574
1575 err_init_cwsr:
1576 err_reserve_ib_mem:
1577         kfd_process_device_free_bos(pdd);
1578         pdd->drm_priv = NULL;
1579
1580         return ret;
1581 }
1582
1583 /*
1584  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1585  * to the device.
1586  * Unbinding occurs when the process dies or the device is removed.
1587  *
1588  * Assumes that the process lock is held.
1589  */
1590 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1591                                                         struct kfd_process *p)
1592 {
1593         struct kfd_process_device *pdd;
1594         int err;
1595
1596         pdd = kfd_get_process_device_data(dev, p);
1597         if (!pdd) {
1598                 pr_err("Process device data doesn't exist\n");
1599                 return ERR_PTR(-ENOMEM);
1600         }
1601
1602         if (!pdd->drm_priv)
1603                 return ERR_PTR(-ENODEV);
1604
1605         /*
1606          * signal runtime-pm system to auto resume and prevent
1607          * further runtime suspend once device pdd is created until
1608          * pdd is destroyed.
1609          */
1610         if (!pdd->runtime_inuse) {
1611                 err = pm_runtime_get_sync(dev->ddev->dev);
1612                 if (err < 0) {
1613                         pm_runtime_put_autosuspend(dev->ddev->dev);
1614                         return ERR_PTR(err);
1615                 }
1616         }
1617
1618         err = kfd_iommu_bind_process_to_device(pdd);
1619         if (err)
1620                 goto out;
1621
1622         /*
1623          * make sure that runtime_usage counter is incremented just once
1624          * per pdd
1625          */
1626         pdd->runtime_inuse = true;
1627
1628         return pdd;
1629
1630 out:
1631         /* balance runpm reference count and exit with error */
1632         if (!pdd->runtime_inuse) {
1633                 pm_runtime_mark_last_busy(dev->ddev->dev);
1634                 pm_runtime_put_autosuspend(dev->ddev->dev);
1635         }
1636
1637         return ERR_PTR(err);
1638 }
1639
1640 /* Create specific handle mapped to mem from process local memory idr
1641  * Assumes that the process lock is held.
1642  */
1643 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1644                                         void *mem)
1645 {
1646         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1647 }
1648
1649 /* Translate specific handle from process local memory idr
1650  * Assumes that the process lock is held.
1651  */
1652 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1653                                         int handle)
1654 {
1655         if (handle < 0)
1656                 return NULL;
1657
1658         return idr_find(&pdd->alloc_idr, handle);
1659 }
1660
1661 /* Remove specific handle from process local memory idr
1662  * Assumes that the process lock is held.
1663  */
1664 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1665                                         int handle)
1666 {
1667         if (handle >= 0)
1668                 idr_remove(&pdd->alloc_idr, handle);
1669 }
1670
1671 /* This increments the process->ref counter. */
1672 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1673 {
1674         struct kfd_process *p, *ret_p = NULL;
1675         unsigned int temp;
1676
1677         int idx = srcu_read_lock(&kfd_processes_srcu);
1678
1679         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1680                 if (p->pasid == pasid) {
1681                         kref_get(&p->ref);
1682                         ret_p = p;
1683                         break;
1684                 }
1685         }
1686
1687         srcu_read_unlock(&kfd_processes_srcu, idx);
1688
1689         return ret_p;
1690 }
1691
1692 /* This increments the process->ref counter. */
1693 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1694 {
1695         struct kfd_process *p;
1696
1697         int idx = srcu_read_lock(&kfd_processes_srcu);
1698
1699         p = find_process_by_mm(mm);
1700         if (p)
1701                 kref_get(&p->ref);
1702
1703         srcu_read_unlock(&kfd_processes_srcu, idx);
1704
1705         return p;
1706 }
1707
1708 /* kfd_process_evict_queues - Evict all user queues of a process
1709  *
1710  * Eviction is reference-counted per process-device. This means multiple
1711  * evictions from different sources can be nested safely.
1712  */
1713 int kfd_process_evict_queues(struct kfd_process *p)
1714 {
1715         int r = 0;
1716         int i;
1717         unsigned int n_evicted = 0;
1718
1719         for (i = 0; i < p->n_pdds; i++) {
1720                 struct kfd_process_device *pdd = p->pdds[i];
1721
1722                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1723                                                             &pdd->qpd);
1724                 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1725                  * we would like to set all the queues to be in evicted state to prevent
1726                  * them been add back since they actually not be saved right now.
1727                  */
1728                 if (r && r != -EIO) {
1729                         pr_err("Failed to evict process queues\n");
1730                         goto fail;
1731                 }
1732                 n_evicted++;
1733         }
1734
1735         return r;
1736
1737 fail:
1738         /* To keep state consistent, roll back partial eviction by
1739          * restoring queues
1740          */
1741         for (i = 0; i < p->n_pdds; i++) {
1742                 struct kfd_process_device *pdd = p->pdds[i];
1743
1744                 if (n_evicted == 0)
1745                         break;
1746                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1747                                                               &pdd->qpd))
1748                         pr_err("Failed to restore queues\n");
1749
1750                 n_evicted--;
1751         }
1752
1753         return r;
1754 }
1755
1756 /* kfd_process_restore_queues - Restore all user queues of a process */
1757 int kfd_process_restore_queues(struct kfd_process *p)
1758 {
1759         int r, ret = 0;
1760         int i;
1761
1762         for (i = 0; i < p->n_pdds; i++) {
1763                 struct kfd_process_device *pdd = p->pdds[i];
1764
1765                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1766                                                               &pdd->qpd);
1767                 if (r) {
1768                         pr_err("Failed to restore process queues\n");
1769                         if (!ret)
1770                                 ret = r;
1771                 }
1772         }
1773
1774         return ret;
1775 }
1776
1777 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1778 {
1779         int i;
1780
1781         for (i = 0; i < p->n_pdds; i++)
1782                 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1783                         return i;
1784         return -EINVAL;
1785 }
1786
1787 int
1788 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1789                            uint32_t *gpuid, uint32_t *gpuidx)
1790 {
1791         int i;
1792
1793         for (i = 0; i < p->n_pdds; i++)
1794                 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1795                         *gpuid = p->pdds[i]->user_gpu_id;
1796                         *gpuidx = i;
1797                         return 0;
1798                 }
1799         return -EINVAL;
1800 }
1801
1802 static void evict_process_worker(struct work_struct *work)
1803 {
1804         int ret;
1805         struct kfd_process *p;
1806         struct delayed_work *dwork;
1807
1808         dwork = to_delayed_work(work);
1809
1810         /* Process termination destroys this worker thread. So during the
1811          * lifetime of this thread, kfd_process p will be valid
1812          */
1813         p = container_of(dwork, struct kfd_process, eviction_work);
1814         WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1815                   "Eviction fence mismatch\n");
1816
1817         /* Narrow window of overlap between restore and evict work
1818          * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1819          * unreserves KFD BOs, it is possible to evicted again. But
1820          * restore has few more steps of finish. So lets wait for any
1821          * previous restore work to complete
1822          */
1823         flush_delayed_work(&p->restore_work);
1824
1825         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1826         ret = kfd_process_evict_queues(p);
1827         if (!ret) {
1828                 dma_fence_signal(p->ef);
1829                 dma_fence_put(p->ef);
1830                 p->ef = NULL;
1831                 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1832                                 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1833
1834                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1835         } else
1836                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1837 }
1838
1839 static void restore_process_worker(struct work_struct *work)
1840 {
1841         struct delayed_work *dwork;
1842         struct kfd_process *p;
1843         int ret = 0;
1844
1845         dwork = to_delayed_work(work);
1846
1847         /* Process termination destroys this worker thread. So during the
1848          * lifetime of this thread, kfd_process p will be valid
1849          */
1850         p = container_of(dwork, struct kfd_process, restore_work);
1851         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1852
1853         /* Setting last_restore_timestamp before successful restoration.
1854          * Otherwise this would have to be set by KGD (restore_process_bos)
1855          * before KFD BOs are unreserved. If not, the process can be evicted
1856          * again before the timestamp is set.
1857          * If restore fails, the timestamp will be set again in the next
1858          * attempt. This would mean that the minimum GPU quanta would be
1859          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1860          * functions)
1861          */
1862
1863         p->last_restore_timestamp = get_jiffies_64();
1864         ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1865                                                      &p->ef);
1866         if (ret) {
1867                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1868                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
1869                 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1870                                 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1871                 WARN(!ret, "reschedule restore work failed\n");
1872                 return;
1873         }
1874
1875         ret = kfd_process_restore_queues(p);
1876         if (!ret)
1877                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1878         else
1879                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1880 }
1881
1882 void kfd_suspend_all_processes(void)
1883 {
1884         struct kfd_process *p;
1885         unsigned int temp;
1886         int idx = srcu_read_lock(&kfd_processes_srcu);
1887
1888         WARN(debug_evictions, "Evicting all processes");
1889         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1890                 cancel_delayed_work_sync(&p->eviction_work);
1891                 cancel_delayed_work_sync(&p->restore_work);
1892
1893                 if (kfd_process_evict_queues(p))
1894                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
1895                 dma_fence_signal(p->ef);
1896                 dma_fence_put(p->ef);
1897                 p->ef = NULL;
1898         }
1899         srcu_read_unlock(&kfd_processes_srcu, idx);
1900 }
1901
1902 int kfd_resume_all_processes(void)
1903 {
1904         struct kfd_process *p;
1905         unsigned int temp;
1906         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1907
1908         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1909                 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1910                         pr_err("Restore process %d failed during resume\n",
1911                                p->pasid);
1912                         ret = -EFAULT;
1913                 }
1914         }
1915         srcu_read_unlock(&kfd_processes_srcu, idx);
1916         return ret;
1917 }
1918
1919 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1920                           struct vm_area_struct *vma)
1921 {
1922         struct kfd_process_device *pdd;
1923         struct qcm_process_device *qpd;
1924
1925         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1926                 pr_err("Incorrect CWSR mapping size.\n");
1927                 return -EINVAL;
1928         }
1929
1930         pdd = kfd_get_process_device_data(dev, process);
1931         if (!pdd)
1932                 return -EINVAL;
1933         qpd = &pdd->qpd;
1934
1935         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1936                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
1937         if (!qpd->cwsr_kaddr) {
1938                 pr_err("Error allocating per process CWSR buffer.\n");
1939                 return -ENOMEM;
1940         }
1941
1942         vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1943                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1944         /* Mapping pages to user process */
1945         return remap_pfn_range(vma, vma->vm_start,
1946                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1947                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1948 }
1949
1950 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1951 {
1952         struct kfd_dev *dev = pdd->dev;
1953
1954         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1955                 /* Nothing to flush until a VMID is assigned, which
1956                  * only happens when the first queue is created.
1957                  */
1958                 if (pdd->qpd.vmid)
1959                         amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
1960                                                         pdd->qpd.vmid);
1961         } else {
1962                 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
1963                                         pdd->process->pasid, type);
1964         }
1965 }
1966
1967 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
1968 {
1969         int i;
1970
1971         if (gpu_id) {
1972                 for (i = 0; i < p->n_pdds; i++) {
1973                         struct kfd_process_device *pdd = p->pdds[i];
1974
1975                         if (pdd->user_gpu_id == gpu_id)
1976                                 return pdd;
1977                 }
1978         }
1979         return NULL;
1980 }
1981
1982 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
1983 {
1984         int i;
1985
1986         if (!actual_gpu_id)
1987                 return 0;
1988
1989         for (i = 0; i < p->n_pdds; i++) {
1990                 struct kfd_process_device *pdd = p->pdds[i];
1991
1992                 if (pdd->dev->id == actual_gpu_id)
1993                         return pdd->user_gpu_id;
1994         }
1995         return -EINVAL;
1996 }
1997
1998 #if defined(CONFIG_DEBUG_FS)
1999
2000 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2001 {
2002         struct kfd_process *p;
2003         unsigned int temp;
2004         int r = 0;
2005
2006         int idx = srcu_read_lock(&kfd_processes_srcu);
2007
2008         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2009                 seq_printf(m, "Process %d PASID 0x%x:\n",
2010                            p->lead_thread->tgid, p->pasid);
2011
2012                 mutex_lock(&p->mutex);
2013                 r = pqm_debugfs_mqds(m, &p->pqm);
2014                 mutex_unlock(&p->mutex);
2015
2016                 if (r)
2017                         break;
2018         }
2019
2020         srcu_read_unlock(&kfd_processes_srcu, idx);
2021
2022         return r;
2023 }
2024
2025 #endif
2026