cde5e4c7caa166e9a648596d234d9c0913c66247
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_priv.h
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <kgd_kfd_interface.h>
44 #include <linux/swap.h>
45
46 #include "amd_shared.h"
47
48 #define KFD_MAX_RING_ENTRY_SIZE 8
49
50 #define KFD_SYSFS_FILE_MODE 0444
51
52 /* GPU ID hash width in bits */
53 #define KFD_GPU_ID_HASH_WIDTH 16
54
55 /* Use upper bits of mmap offset to store KFD driver specific information.
56  * BITS[63:62] - Encode MMAP type
57  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
58  * BITS[45:0]  - MMAP offset value
59  *
60  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
61  *  defines are w.r.t to PAGE_SIZE
62  */
63 #define KFD_MMAP_TYPE_SHIFT     62
64 #define KFD_MMAP_TYPE_MASK      (0x3ULL << KFD_MMAP_TYPE_SHIFT)
65 #define KFD_MMAP_TYPE_DOORBELL  (0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_EVENTS    (0x2ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_RESERVED_MEM      (0x1ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_MMIO      (0x0ULL << KFD_MMAP_TYPE_SHIFT)
69
70 #define KFD_MMAP_GPU_ID_SHIFT 46
71 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
72                                 << KFD_MMAP_GPU_ID_SHIFT)
73 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
74                                 & KFD_MMAP_GPU_ID_MASK)
75 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
76                                 >> KFD_MMAP_GPU_ID_SHIFT)
77
78 /*
79  * When working with cp scheduler we should assign the HIQ manually or via
80  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
81  * definitions for Kaveri. In Kaveri only the first ME queues participates
82  * in the cp scheduling taking that in mind we set the HIQ slot in the
83  * second ME.
84  */
85 #define KFD_CIK_HIQ_PIPE 4
86 #define KFD_CIK_HIQ_QUEUE 0
87
88 /* Macro for allocating structures */
89 #define kfd_alloc_struct(ptr_to_struct) \
90         ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
91
92 #define KFD_MAX_NUM_OF_PROCESSES 512
93 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
94
95 /*
96  * Size of the per-process TBA+TMA buffer: 2 pages
97  *
98  * The first page is the TBA used for the CWSR ISA code. The second
99  * page is used as TMA for daisy changing a user-mode trap handler.
100  */
101 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
102 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
103
104 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE                \
105         (KFD_MAX_NUM_OF_PROCESSES *                     \
106                         KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
107
108 #define KFD_KERNEL_QUEUE_SIZE 2048
109
110 #define KFD_UNMAP_LATENCY_MS    (4000)
111
112 /*
113  * 512 = 0x200
114  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
115  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
116  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
117  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
118  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
119  */
120 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
121
122
123 /*
124  * Kernel module parameter to specify maximum number of supported queues per
125  * device
126  */
127 extern int max_num_of_queues_per_device;
128
129
130 /* Kernel module parameter to specify the scheduling policy */
131 extern int sched_policy;
132
133 /*
134  * Kernel module parameter to specify the maximum process
135  * number per HW scheduler
136  */
137 extern int hws_max_conc_proc;
138
139 extern int cwsr_enable;
140
141 /*
142  * Kernel module parameter to specify whether to send sigterm to HSA process on
143  * unhandled exception
144  */
145 extern int send_sigterm;
146
147 /*
148  * This kernel module is used to simulate large bar machine on non-large bar
149  * enabled machines.
150  */
151 extern int debug_largebar;
152
153 /*
154  * Ignore CRAT table during KFD initialization, can be used to work around
155  * broken CRAT tables on some AMD systems
156  */
157 extern int ignore_crat;
158
159 /*
160  * Set sh_mem_config.retry_disable on Vega10
161  */
162 extern int amdgpu_noretry;
163
164 /*
165  * Halt if HWS hang is detected
166  */
167 extern int halt_if_hws_hang;
168
169 /*
170  * Whether MEC FW support GWS barriers
171  */
172 extern bool hws_gws_support;
173
174 /*
175  * Queue preemption timeout in ms
176  */
177 extern int queue_preemption_timeout_ms;
178
179 enum cache_policy {
180         cache_policy_coherent,
181         cache_policy_noncoherent
182 };
183
184 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
185
186 struct kfd_event_interrupt_class {
187         bool (*interrupt_isr)(struct kfd_dev *dev,
188                         const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
189                         bool *patched_flag);
190         void (*interrupt_wq)(struct kfd_dev *dev,
191                         const uint32_t *ih_ring_entry);
192 };
193
194 struct kfd_device_info {
195         enum amd_asic_type asic_family;
196         const char *asic_name;
197         const struct kfd_event_interrupt_class *event_interrupt_class;
198         unsigned int max_pasid_bits;
199         unsigned int max_no_of_hqd;
200         unsigned int doorbell_size;
201         size_t ih_ring_entry_size;
202         uint8_t num_of_watch_points;
203         uint16_t mqd_size_aligned;
204         bool supports_cwsr;
205         bool needs_iommu_device;
206         bool needs_pci_atomics;
207         unsigned int num_sdma_engines;
208         unsigned int num_xgmi_sdma_engines;
209         unsigned int num_sdma_queues_per_engine;
210 };
211
212 struct kfd_mem_obj {
213         uint32_t range_start;
214         uint32_t range_end;
215         uint64_t gpu_addr;
216         uint32_t *cpu_ptr;
217         void *gtt_mem;
218 };
219
220 struct kfd_vmid_info {
221         uint32_t first_vmid_kfd;
222         uint32_t last_vmid_kfd;
223         uint32_t vmid_num_kfd;
224 };
225
226 struct kfd_dev {
227         struct kgd_dev *kgd;
228
229         const struct kfd_device_info *device_info;
230         struct pci_dev *pdev;
231         struct drm_device *ddev;
232
233         unsigned int id;                /* topology stub index */
234
235         phys_addr_t doorbell_base;      /* Start of actual doorbells used by
236                                          * KFD. It is aligned for mapping
237                                          * into user mode
238                                          */
239         size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
240                                          * doorbell BAR to the first KFD
241                                          * doorbell in dwords. GFX reserves
242                                          * the segment before this offset.
243                                          */
244         u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
245                                            * page used by kernel queue
246                                            */
247
248         struct kgd2kfd_shared_resources shared_resources;
249         struct kfd_vmid_info vm_info;
250
251         const struct kfd2kgd_calls *kfd2kgd;
252         struct mutex doorbell_mutex;
253         DECLARE_BITMAP(doorbell_available_index,
254                         KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
255
256         void *gtt_mem;
257         uint64_t gtt_start_gpu_addr;
258         void *gtt_start_cpu_ptr;
259         void *gtt_sa_bitmap;
260         struct mutex gtt_sa_lock;
261         unsigned int gtt_sa_chunk_size;
262         unsigned int gtt_sa_num_of_chunks;
263
264         /* Interrupts */
265         struct kfifo ih_fifo;
266         struct workqueue_struct *ih_wq;
267         struct work_struct interrupt_work;
268         spinlock_t interrupt_lock;
269
270         /* QCM Device instance */
271         struct device_queue_manager *dqm;
272
273         bool init_complete;
274         /*
275          * Interrupts of interest to KFD are copied
276          * from the HW ring into a SW ring.
277          */
278         bool interrupts_active;
279
280         /* Debug manager */
281         struct kfd_dbgmgr *dbgmgr;
282
283         /* Firmware versions */
284         uint16_t mec_fw_version;
285         uint16_t mec2_fw_version;
286         uint16_t sdma_fw_version;
287
288         /* Maximum process number mapped to HW scheduler */
289         unsigned int max_proc_per_quantum;
290
291         /* CWSR */
292         bool cwsr_enabled;
293         const void *cwsr_isa;
294         unsigned int cwsr_isa_size;
295
296         /* xGMI */
297         uint64_t hive_id;
298     
299         /* UUID */
300         uint64_t unique_id;
301
302         bool pci_atomic_requested;
303
304         /* SRAM ECC flag */
305         atomic_t sram_ecc_flag;
306
307         /* Compute Profile ref. count */
308         atomic_t compute_profile;
309
310         /* Global GWS resource shared b/t processes*/
311         void *gws;
312 };
313
314 enum kfd_mempool {
315         KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
316         KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
317         KFD_MEMPOOL_FRAMEBUFFER = 3,
318 };
319
320 /* Character device interface */
321 int kfd_chardev_init(void);
322 void kfd_chardev_exit(void);
323 struct device *kfd_chardev(void);
324
325 /**
326  * enum kfd_unmap_queues_filter
327  *
328  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
329  *
330  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
331  *                                              running queues list.
332  *
333  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
334  *                                              specific process.
335  *
336  */
337 enum kfd_unmap_queues_filter {
338         KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
339         KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
340         KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
341         KFD_UNMAP_QUEUES_FILTER_BY_PASID
342 };
343
344 /**
345  * enum kfd_queue_type
346  *
347  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
348  *
349  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
350  *
351  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
352  *
353  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
354  */
355 enum kfd_queue_type  {
356         KFD_QUEUE_TYPE_COMPUTE,
357         KFD_QUEUE_TYPE_SDMA,
358         KFD_QUEUE_TYPE_HIQ,
359         KFD_QUEUE_TYPE_DIQ,
360         KFD_QUEUE_TYPE_SDMA_XGMI
361 };
362
363 enum kfd_queue_format {
364         KFD_QUEUE_FORMAT_PM4,
365         KFD_QUEUE_FORMAT_AQL
366 };
367
368 enum KFD_QUEUE_PRIORITY {
369         KFD_QUEUE_PRIORITY_MINIMUM = 0,
370         KFD_QUEUE_PRIORITY_MAXIMUM = 15
371 };
372
373 /**
374  * struct queue_properties
375  *
376  * @type: The queue type.
377  *
378  * @queue_id: Queue identifier.
379  *
380  * @queue_address: Queue ring buffer address.
381  *
382  * @queue_size: Queue ring buffer size.
383  *
384  * @priority: Defines the queue priority relative to other queues in the
385  * process.
386  * This is just an indication and HW scheduling may override the priority as
387  * necessary while keeping the relative prioritization.
388  * the priority granularity is from 0 to f which f is the highest priority.
389  * currently all queues are initialized with the highest priority.
390  *
391  * @queue_percent: This field is partially implemented and currently a zero in
392  * this field defines that the queue is non active.
393  *
394  * @read_ptr: User space address which points to the number of dwords the
395  * cp read from the ring buffer. This field updates automatically by the H/W.
396  *
397  * @write_ptr: Defines the number of dwords written to the ring buffer.
398  *
399  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
400  * the queue ring buffer. This field should be similar to write_ptr and the
401  * user should update this field after he updated the write_ptr.
402  *
403  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
404  *
405  * @is_interop: Defines if this is a interop queue. Interop queue means that
406  * the queue can access both graphics and compute resources.
407  *
408  * @is_evicted: Defines if the queue is evicted. Only active queues
409  * are evicted, rendering them inactive.
410  *
411  * @is_active: Defines if the queue is active or not. @is_active and
412  * @is_evicted are protected by the DQM lock.
413  *
414  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
415  * @is_gws should be protected by the DQM lock, since changing it can yield the
416  * possibility of updating DQM state on number of GWS queues.
417  *
418  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
419  * of the queue.
420  *
421  * This structure represents the queue properties for each queue no matter if
422  * it's user mode or kernel mode queue.
423  *
424  */
425 struct queue_properties {
426         enum kfd_queue_type type;
427         enum kfd_queue_format format;
428         unsigned int queue_id;
429         uint64_t queue_address;
430         uint64_t  queue_size;
431         uint32_t priority;
432         uint32_t queue_percent;
433         uint32_t *read_ptr;
434         uint32_t *write_ptr;
435         void __iomem *doorbell_ptr;
436         uint32_t doorbell_off;
437         bool is_interop;
438         bool is_evicted;
439         bool is_active;
440         bool is_gws;
441         /* Not relevant for user mode queues in cp scheduling */
442         unsigned int vmid;
443         /* Relevant only for sdma queues*/
444         uint32_t sdma_engine_id;
445         uint32_t sdma_queue_id;
446         uint32_t sdma_vm_addr;
447         /* Relevant only for VI */
448         uint64_t eop_ring_buffer_address;
449         uint32_t eop_ring_buffer_size;
450         uint64_t ctx_save_restore_area_address;
451         uint32_t ctx_save_restore_area_size;
452         uint32_t ctl_stack_size;
453         uint64_t tba_addr;
454         uint64_t tma_addr;
455         /* Relevant for CU */
456         uint32_t cu_mask_count; /* Must be a multiple of 32 */
457         uint32_t *cu_mask;
458 };
459
460 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&       \
461                             (q).queue_address != 0 &&   \
462                             (q).queue_percent > 0 &&    \
463                             !(q).is_evicted)
464
465 /**
466  * struct queue
467  *
468  * @list: Queue linked list.
469  *
470  * @mqd: The queue MQD.
471  *
472  * @mqd_mem_obj: The MQD local gpu memory object.
473  *
474  * @gart_mqd_addr: The MQD gart mc address.
475  *
476  * @properties: The queue properties.
477  *
478  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
479  *       that the queue should be execute on.
480  *
481  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
482  *        id.
483  *
484  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
485  *
486  * @process: The kfd process that created this queue.
487  *
488  * @device: The kfd device that created this queue.
489  *
490  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
491  * otherwise.
492  *
493  * This structure represents user mode compute queues.
494  * It contains all the necessary data to handle such queues.
495  *
496  */
497
498 struct queue {
499         struct list_head list;
500         void *mqd;
501         struct kfd_mem_obj *mqd_mem_obj;
502         uint64_t gart_mqd_addr;
503         struct queue_properties properties;
504
505         uint32_t mec;
506         uint32_t pipe;
507         uint32_t queue;
508
509         unsigned int sdma_id;
510         unsigned int doorbell_id;
511
512         struct kfd_process      *process;
513         struct kfd_dev          *device;
514         void *gws;
515
516         /* procfs */
517         struct kobject kobj;
518 };
519
520 /*
521  * Please read the kfd_mqd_manager.h description.
522  */
523 enum KFD_MQD_TYPE {
524         KFD_MQD_TYPE_HIQ = 0,           /* for hiq */
525         KFD_MQD_TYPE_CP,                /* for cp queues and diq */
526         KFD_MQD_TYPE_SDMA,              /* for sdma queues */
527         KFD_MQD_TYPE_DIQ,               /* for diq */
528         KFD_MQD_TYPE_MAX
529 };
530
531 enum KFD_PIPE_PRIORITY {
532         KFD_PIPE_PRIORITY_CS_LOW = 0,
533         KFD_PIPE_PRIORITY_CS_MEDIUM,
534         KFD_PIPE_PRIORITY_CS_HIGH
535 };
536
537 struct scheduling_resources {
538         unsigned int vmid_mask;
539         enum kfd_queue_type type;
540         uint64_t queue_mask;
541         uint64_t gws_mask;
542         uint32_t oac_mask;
543         uint32_t gds_heap_base;
544         uint32_t gds_heap_size;
545 };
546
547 struct process_queue_manager {
548         /* data */
549         struct kfd_process      *process;
550         struct list_head        queues;
551         unsigned long           *queue_slot_bitmap;
552 };
553
554 struct qcm_process_device {
555         /* The Device Queue Manager that owns this data */
556         struct device_queue_manager *dqm;
557         struct process_queue_manager *pqm;
558         /* Queues list */
559         struct list_head queues_list;
560         struct list_head priv_queue_list;
561
562         unsigned int queue_count;
563         unsigned int vmid;
564         bool is_debug;
565         unsigned int evicted; /* eviction counter, 0=active */
566
567         /* This flag tells if we should reset all wavefronts on
568          * process termination
569          */
570         bool reset_wavefronts;
571
572         /* This flag tells us if this process has a GWS-capable
573          * queue that will be mapped into the runlist. It's
574          * possible to request a GWS BO, but not have the queue
575          * currently mapped, and this changes how the MAP_PROCESS
576          * PM4 packet is configured.
577          */
578         bool mapped_gws_queue;
579
580         /*
581          * All the memory management data should be here too
582          */
583         uint64_t gds_context_area;
584         /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
585         uint64_t page_table_base;
586         uint32_t sh_mem_config;
587         uint32_t sh_mem_bases;
588         uint32_t sh_mem_ape1_base;
589         uint32_t sh_mem_ape1_limit;
590         uint32_t gds_size;
591         uint32_t num_gws;
592         uint32_t num_oac;
593         uint32_t sh_hidden_private_base;
594
595         /* CWSR memory */
596         void *cwsr_kaddr;
597         uint64_t cwsr_base;
598         uint64_t tba_addr;
599         uint64_t tma_addr;
600
601         /* IB memory */
602         uint64_t ib_base;
603         void *ib_kaddr;
604
605         /* doorbell resources per process per device */
606         unsigned long *doorbell_bitmap;
607 };
608
609 /* KFD Memory Eviction */
610
611 /* Approx. wait time before attempting to restore evicted BOs */
612 #define PROCESS_RESTORE_TIME_MS 100
613 /* Approx. back off time if restore fails due to lack of memory */
614 #define PROCESS_BACK_OFF_TIME_MS 100
615 /* Approx. time before evicting the process again */
616 #define PROCESS_ACTIVE_TIME_MS 10
617
618 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
619  * idr_handle in the least significant 4 bytes
620  */
621 #define MAKE_HANDLE(gpu_id, idr_handle) \
622         (((uint64_t)(gpu_id) << 32) + idr_handle)
623 #define GET_GPU_ID(handle) (handle >> 32)
624 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
625
626 enum kfd_pdd_bound {
627         PDD_UNBOUND = 0,
628         PDD_BOUND,
629         PDD_BOUND_SUSPENDED,
630 };
631
632 #define MAX_VRAM_FILENAME_LEN 11
633
634 /* Data that is per-process-per device. */
635 struct kfd_process_device {
636         /*
637          * List of all per-device data for a process.
638          * Starts from kfd_process.per_device_data.
639          */
640         struct list_head per_device_list;
641
642         /* The device that owns this data. */
643         struct kfd_dev *dev;
644
645         /* The process that owns this kfd_process_device. */
646         struct kfd_process *process;
647
648         /* per-process-per device QCM data structure */
649         struct qcm_process_device qpd;
650
651         /*Apertures*/
652         uint64_t lds_base;
653         uint64_t lds_limit;
654         uint64_t gpuvm_base;
655         uint64_t gpuvm_limit;
656         uint64_t scratch_base;
657         uint64_t scratch_limit;
658
659         /* VM context for GPUVM allocations */
660         struct file *drm_file;
661         void *vm;
662
663         /* GPUVM allocations storage */
664         struct idr alloc_idr;
665
666         /* Flag used to tell the pdd has dequeued from the dqm.
667          * This is used to prevent dev->dqm->ops.process_termination() from
668          * being called twice when it is already called in IOMMU callback
669          * function.
670          */
671         bool already_dequeued;
672         bool runtime_inuse;
673
674         /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
675         enum kfd_pdd_bound bound;
676
677         /* VRAM usage */
678         uint64_t vram_usage;
679         struct attribute attr_vram;
680         char vram_filename[MAX_VRAM_FILENAME_LEN];
681 };
682
683 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
684
685 /* Process data */
686 struct kfd_process {
687         /*
688          * kfd_process are stored in an mm_struct*->kfd_process*
689          * hash table (kfd_processes in kfd_process.c)
690          */
691         struct hlist_node kfd_processes;
692
693         /*
694          * Opaque pointer to mm_struct. We don't hold a reference to
695          * it so it should never be dereferenced from here. This is
696          * only used for looking up processes by their mm.
697          */
698         void *mm;
699
700         struct kref ref;
701         struct work_struct release_work;
702
703         struct mutex mutex;
704
705         /*
706          * In any process, the thread that started main() is the lead
707          * thread and outlives the rest.
708          * It is here because amd_iommu_bind_pasid wants a task_struct.
709          * It can also be used for safely getting a reference to the
710          * mm_struct of the process.
711          */
712         struct task_struct *lead_thread;
713
714         /* We want to receive a notification when the mm_struct is destroyed */
715         struct mmu_notifier mmu_notifier;
716
717         uint16_t pasid;
718         unsigned int doorbell_index;
719
720         /*
721          * List of kfd_process_device structures,
722          * one for each device the process is using.
723          */
724         struct list_head per_device_data;
725
726         struct process_queue_manager pqm;
727
728         /*Is the user space process 32 bit?*/
729         bool is_32bit_user_mode;
730
731         /* Event-related data */
732         struct mutex event_mutex;
733         /* Event ID allocator and lookup */
734         struct idr event_idr;
735         /* Event page */
736         struct kfd_signal_page *signal_page;
737         size_t signal_mapped_size;
738         size_t signal_event_count;
739         bool signal_event_limit_reached;
740
741         /* Information used for memory eviction */
742         void *kgd_process_info;
743         /* Eviction fence that is attached to all the BOs of this process. The
744          * fence will be triggered during eviction and new one will be created
745          * during restore
746          */
747         struct dma_fence *ef;
748
749         /* Work items for evicting and restoring BOs */
750         struct delayed_work eviction_work;
751         struct delayed_work restore_work;
752         /* seqno of the last scheduled eviction */
753         unsigned int last_eviction_seqno;
754         /* Approx. the last timestamp (in jiffies) when the process was
755          * restored after an eviction
756          */
757         unsigned long last_restore_timestamp;
758
759         /* Kobj for our procfs */
760         struct kobject *kobj;
761         struct kobject *kobj_queues;
762         struct attribute attr_pasid;
763 };
764
765 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
766 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
767 extern struct srcu_struct kfd_processes_srcu;
768
769 /**
770  * Ioctl function type.
771  *
772  * \param filep pointer to file structure.
773  * \param p amdkfd process pointer.
774  * \param data pointer to arg that was copied from user.
775  */
776 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
777                                 void *data);
778
779 struct amdkfd_ioctl_desc {
780         unsigned int cmd;
781         int flags;
782         amdkfd_ioctl_t *func;
783         unsigned int cmd_drv;
784         const char *name;
785 };
786 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
787
788 int kfd_process_create_wq(void);
789 void kfd_process_destroy_wq(void);
790 struct kfd_process *kfd_create_process(struct file *filep);
791 struct kfd_process *kfd_get_process(const struct task_struct *);
792 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
793 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
794 void kfd_unref_process(struct kfd_process *p);
795 int kfd_process_evict_queues(struct kfd_process *p);
796 int kfd_process_restore_queues(struct kfd_process *p);
797 void kfd_suspend_all_processes(void);
798 int kfd_resume_all_processes(void);
799
800 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
801                                struct file *drm_file);
802 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
803                                                 struct kfd_process *p);
804 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
805                                                         struct kfd_process *p);
806 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
807                                                         struct kfd_process *p);
808
809 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
810                           struct vm_area_struct *vma);
811
812 /* KFD process API for creating and translating handles */
813 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
814                                         void *mem);
815 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
816                                         int handle);
817 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
818                                         int handle);
819
820 /* Process device data iterator */
821 struct kfd_process_device *kfd_get_first_process_device_data(
822                                                         struct kfd_process *p);
823 struct kfd_process_device *kfd_get_next_process_device_data(
824                                                 struct kfd_process *p,
825                                                 struct kfd_process_device *pdd);
826 bool kfd_has_process_device_data(struct kfd_process *p);
827
828 /* PASIDs */
829 int kfd_pasid_init(void);
830 void kfd_pasid_exit(void);
831 bool kfd_set_pasid_limit(unsigned int new_limit);
832 unsigned int kfd_get_pasid_limit(void);
833 unsigned int kfd_pasid_alloc(void);
834 void kfd_pasid_free(unsigned int pasid);
835
836 /* Doorbells */
837 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
838 int kfd_doorbell_init(struct kfd_dev *kfd);
839 void kfd_doorbell_fini(struct kfd_dev *kfd);
840 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
841                       struct vm_area_struct *vma);
842 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
843                                         unsigned int *doorbell_off);
844 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
845 u32 read_kernel_doorbell(u32 __iomem *db);
846 void write_kernel_doorbell(void __iomem *db, u32 value);
847 void write_kernel_doorbell64(void __iomem *db, u64 value);
848 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
849                                         struct kfd_process *process,
850                                         unsigned int doorbell_id);
851 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
852                                         struct kfd_process *process);
853 int kfd_alloc_process_doorbells(struct kfd_process *process);
854 void kfd_free_process_doorbells(struct kfd_process *process);
855
856 /* GTT Sub-Allocator */
857
858 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
859                         struct kfd_mem_obj **mem_obj);
860
861 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
862
863 extern struct device *kfd_device;
864
865 /* KFD's procfs */
866 void kfd_procfs_init(void);
867 void kfd_procfs_shutdown(void);
868 int kfd_procfs_add_queue(struct queue *q);
869 void kfd_procfs_del_queue(struct queue *q);
870
871 /* Topology */
872 int kfd_topology_init(void);
873 void kfd_topology_shutdown(void);
874 int kfd_topology_add_device(struct kfd_dev *gpu);
875 int kfd_topology_remove_device(struct kfd_dev *gpu);
876 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
877                                                 uint32_t proximity_domain);
878 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
879 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
880 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
881 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
882 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
883 int kfd_numa_node_to_apic_id(int numa_node_id);
884
885 /* Interrupts */
886 int kfd_interrupt_init(struct kfd_dev *dev);
887 void kfd_interrupt_exit(struct kfd_dev *dev);
888 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
889 bool interrupt_is_wanted(struct kfd_dev *dev,
890                                 const uint32_t *ih_ring_entry,
891                                 uint32_t *patched_ihre, bool *flag);
892
893 /* amdkfd Apertures */
894 int kfd_init_apertures(struct kfd_process *process);
895
896 /* Queue Context Management */
897 int init_queue(struct queue **q, const struct queue_properties *properties);
898 void uninit_queue(struct queue *q);
899 void print_queue_properties(struct queue_properties *q);
900 void print_queue(struct queue *q);
901
902 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
903                 struct kfd_dev *dev);
904 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
905                 struct kfd_dev *dev);
906 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
907                 struct kfd_dev *dev);
908 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
909                 struct kfd_dev *dev);
910 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
911                 struct kfd_dev *dev);
912 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
913                 struct kfd_dev *dev);
914 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
915 void device_queue_manager_uninit(struct device_queue_manager *dqm);
916 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
917                                         enum kfd_queue_type type);
918 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
919 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
920
921 /* Process Queue Manager */
922 struct process_queue_node {
923         struct queue *q;
924         struct kernel_queue *kq;
925         struct list_head process_queue_list;
926 };
927
928 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
929 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
930 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
931 void pqm_uninit(struct process_queue_manager *pqm);
932 int pqm_create_queue(struct process_queue_manager *pqm,
933                             struct kfd_dev *dev,
934                             struct file *f,
935                             struct queue_properties *properties,
936                             unsigned int *qid,
937                             uint32_t *p_doorbell_offset_in_process);
938 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
939 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
940                         struct queue_properties *p);
941 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
942                         struct queue_properties *p);
943 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
944                         void *gws);
945 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
946                                                 unsigned int qid);
947 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
948                                                 unsigned int qid);
949 int pqm_get_wave_state(struct process_queue_manager *pqm,
950                        unsigned int qid,
951                        void __user *ctl_stack,
952                        u32 *ctl_stack_used_size,
953                        u32 *save_area_used_size);
954
955 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
956                               unsigned int fence_value,
957                               unsigned int timeout_ms);
958
959 /* Packet Manager */
960
961 #define KFD_FENCE_COMPLETED (100)
962 #define KFD_FENCE_INIT   (10)
963
964 struct packet_manager {
965         struct device_queue_manager *dqm;
966         struct kernel_queue *priv_queue;
967         struct mutex lock;
968         bool allocated;
969         struct kfd_mem_obj *ib_buffer_obj;
970         unsigned int ib_size_bytes;
971         bool is_over_subscription;
972
973         const struct packet_manager_funcs *pmf;
974 };
975
976 struct packet_manager_funcs {
977         /* Support ASIC-specific packet formats for PM4 packets */
978         int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
979                         struct qcm_process_device *qpd);
980         int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
981                         uint64_t ib, size_t ib_size_in_dwords, bool chain);
982         int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
983                         struct scheduling_resources *res);
984         int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
985                         struct queue *q, bool is_static);
986         int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
987                         enum kfd_queue_type type,
988                         enum kfd_unmap_queues_filter mode,
989                         uint32_t filter_param, bool reset,
990                         unsigned int sdma_engine);
991         int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
992                         uint64_t fence_address, uint32_t fence_value);
993         int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
994
995         /* Packet sizes */
996         int map_process_size;
997         int runlist_size;
998         int set_resources_size;
999         int map_queues_size;
1000         int unmap_queues_size;
1001         int query_status_size;
1002         int release_mem_size;
1003 };
1004
1005 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1006 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1007
1008 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1009 void pm_uninit(struct packet_manager *pm, bool hanging);
1010 int pm_send_set_resources(struct packet_manager *pm,
1011                                 struct scheduling_resources *res);
1012 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1013 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1014                                 uint32_t fence_value);
1015
1016 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1017                         enum kfd_unmap_queues_filter mode,
1018                         uint32_t filter_param, bool reset,
1019                         unsigned int sdma_engine);
1020
1021 void pm_release_ib(struct packet_manager *pm);
1022
1023 /* Following PM funcs can be shared among VI and AI */
1024 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1025
1026 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1027
1028 /* Events */
1029 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1030 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1031
1032 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1033
1034 void kfd_event_init_process(struct kfd_process *p);
1035 void kfd_event_free_process(struct kfd_process *p);
1036 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1037 int kfd_wait_on_events(struct kfd_process *p,
1038                        uint32_t num_events, void __user *data,
1039                        bool all, uint32_t user_timeout_ms,
1040                        uint32_t *wait_result);
1041 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1042                                 uint32_t valid_id_bits);
1043 void kfd_signal_iommu_event(struct kfd_dev *dev,
1044                 unsigned int pasid, unsigned long address,
1045                 bool is_write_requested, bool is_execute_requested);
1046 void kfd_signal_hw_exception_event(unsigned int pasid);
1047 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1048 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1049 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1050                        uint64_t size);
1051 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1052                      uint32_t event_type, bool auto_reset, uint32_t node_id,
1053                      uint32_t *event_id, uint32_t *event_trigger_data,
1054                      uint64_t *event_page_offset, uint32_t *event_slot_index);
1055 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1056
1057 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1058                                 struct kfd_vm_fault_info *info);
1059
1060 void kfd_signal_reset_event(struct kfd_dev *dev);
1061
1062 void kfd_flush_tlb(struct kfd_process_device *pdd);
1063
1064 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1065
1066 bool kfd_is_locked(void);
1067
1068 /* Compute profile */
1069 void kfd_inc_compute_active(struct kfd_dev *dev);
1070 void kfd_dec_compute_active(struct kfd_dev *dev);
1071
1072 /* Cgroup Support */
1073 /* Check with device cgroup if @kfd device is accessible */
1074 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1075 {
1076 #if defined(CONFIG_CGROUP_DEVICE)
1077         struct drm_device *ddev = kfd->ddev;
1078
1079         return devcgroup_check_permission(DEVCG_DEV_CHAR, ddev->driver->major,
1080                                           ddev->render->index,
1081                                           DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1082 #else
1083         return 0;
1084 #endif
1085 }
1086
1087 /* Debugfs */
1088 #if defined(CONFIG_DEBUG_FS)
1089
1090 void kfd_debugfs_init(void);
1091 void kfd_debugfs_fini(void);
1092 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1093 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1094 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1095 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1096 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1097 int pm_debugfs_runlist(struct seq_file *m, void *data);
1098
1099 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1100 int pm_debugfs_hang_hws(struct packet_manager *pm);
1101 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1102
1103 #else
1104
1105 static inline void kfd_debugfs_init(void) {}
1106 static inline void kfd_debugfs_fini(void) {}
1107
1108 #endif
1109
1110 #endif