Merge tag 'irq-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43                                         unsigned int pasid, unsigned int vmid);
44
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46                                 enum kfd_unmap_queues_filter filter,
47                                 uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49                                 enum kfd_unmap_queues_filter filter,
50                                 uint32_t filter_param);
51
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55                                 struct queue *q);
56
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58                                 struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61                                 struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63
64 static inline
65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67         if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68                 return KFD_MQD_TYPE_SDMA;
69         return KFD_MQD_TYPE_CP;
70 }
71
72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74         int i;
75         int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76                 + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77
78         /* queue is available for KFD usage if bit is 1 */
79         for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80                 if (test_bit(pipe_offset + i,
81                               dqm->dev->shared_resources.queue_bitmap))
82                         return true;
83         return false;
84 }
85
86 unsigned int get_queues_num(struct device_queue_manager *dqm)
87 {
88         return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
89                                 KGD_MAX_QUEUES);
90 }
91
92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94         return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96
97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99         return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101
102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104         return dqm->dev->device_info->num_sdma_engines;
105 }
106
107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109         return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111
112 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
113 {
114         return dqm->dev->device_info->num_sdma_engines
115                         * dqm->dev->device_info->num_sdma_queues_per_engine;
116 }
117
118 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
119 {
120         return dqm->dev->device_info->num_xgmi_sdma_engines
121                         * dqm->dev->device_info->num_sdma_queues_per_engine;
122 }
123
124 void program_sh_mem_settings(struct device_queue_manager *dqm,
125                                         struct qcm_process_device *qpd)
126 {
127         return dqm->dev->kfd2kgd->program_sh_mem_settings(
128                                                 dqm->dev->kgd, qpd->vmid,
129                                                 qpd->sh_mem_config,
130                                                 qpd->sh_mem_ape1_base,
131                                                 qpd->sh_mem_ape1_limit,
132                                                 qpd->sh_mem_bases);
133 }
134
135 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
136 {
137         struct kfd_dev *dev = qpd->dqm->dev;
138
139         if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
140                 /* On pre-SOC15 chips we need to use the queue ID to
141                  * preserve the user mode ABI.
142                  */
143                 q->doorbell_id = q->properties.queue_id;
144         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
145                         q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
146                 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
147                  * doorbell assignments based on the engine and queue id.
148                  * The doobell index distance between RLC (2*i) and (2*i+1)
149                  * for a SDMA engine is 512.
150                  */
151                 uint32_t *idx_offset =
152                                 dev->shared_resources.sdma_doorbell_idx;
153
154                 q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
155                         + (q->properties.sdma_queue_id & 1)
156                         * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
157                         + (q->properties.sdma_queue_id >> 1);
158         } else {
159                 /* For CP queues on SOC15 reserve a free doorbell ID */
160                 unsigned int found;
161
162                 found = find_first_zero_bit(qpd->doorbell_bitmap,
163                                             KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
164                 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
165                         pr_debug("No doorbells available");
166                         return -EBUSY;
167                 }
168                 set_bit(found, qpd->doorbell_bitmap);
169                 q->doorbell_id = found;
170         }
171
172         q->properties.doorbell_off =
173                 kfd_get_doorbell_dw_offset_in_bar(dev, q->process,
174                                           q->doorbell_id);
175
176         return 0;
177 }
178
179 static void deallocate_doorbell(struct qcm_process_device *qpd,
180                                 struct queue *q)
181 {
182         unsigned int old;
183         struct kfd_dev *dev = qpd->dqm->dev;
184
185         if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
186             q->properties.type == KFD_QUEUE_TYPE_SDMA ||
187             q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
188                 return;
189
190         old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
191         WARN_ON(!old);
192 }
193
194 static int allocate_vmid(struct device_queue_manager *dqm,
195                         struct qcm_process_device *qpd,
196                         struct queue *q)
197 {
198         int allocated_vmid = -1, i;
199
200         for (i = dqm->dev->vm_info.first_vmid_kfd;
201                         i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
202                 if (!dqm->vmid_pasid[i]) {
203                         allocated_vmid = i;
204                         break;
205                 }
206         }
207
208         if (allocated_vmid < 0) {
209                 pr_err("no more vmid to allocate\n");
210                 return -ENOSPC;
211         }
212
213         pr_debug("vmid allocated: %d\n", allocated_vmid);
214
215         dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
216
217         set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
218
219         qpd->vmid = allocated_vmid;
220         q->properties.vmid = allocated_vmid;
221
222         program_sh_mem_settings(dqm, qpd);
223
224         /* qpd->page_table_base is set earlier when register_process()
225          * is called, i.e. when the first queue is created.
226          */
227         dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
228                         qpd->vmid,
229                         qpd->page_table_base);
230         /* invalidate the VM context after pasid and vmid mapping is set up */
231         kfd_flush_tlb(qpd_to_pdd(qpd));
232
233         if (dqm->dev->kfd2kgd->set_scratch_backing_va)
234                 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
235                                 qpd->sh_hidden_private_base, qpd->vmid);
236
237         return 0;
238 }
239
240 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
241                                 struct qcm_process_device *qpd)
242 {
243         const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
244         int ret;
245
246         if (!qpd->ib_kaddr)
247                 return -ENOMEM;
248
249         ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
250         if (ret)
251                 return ret;
252
253         return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
254                                 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
255                                 pmf->release_mem_size / sizeof(uint32_t));
256 }
257
258 static void deallocate_vmid(struct device_queue_manager *dqm,
259                                 struct qcm_process_device *qpd,
260                                 struct queue *q)
261 {
262         /* On GFX v7, CP doesn't flush TC at dequeue */
263         if (q->device->device_info->asic_family == CHIP_HAWAII)
264                 if (flush_texture_cache_nocpsch(q->device, qpd))
265                         pr_err("Failed to flush TC\n");
266
267         kfd_flush_tlb(qpd_to_pdd(qpd));
268
269         /* Release the vmid mapping */
270         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
271         dqm->vmid_pasid[qpd->vmid] = 0;
272
273         qpd->vmid = 0;
274         q->properties.vmid = 0;
275 }
276
277 static int create_queue_nocpsch(struct device_queue_manager *dqm,
278                                 struct queue *q,
279                                 struct qcm_process_device *qpd)
280 {
281         struct mqd_manager *mqd_mgr;
282         int retval;
283
284         print_queue(q);
285
286         dqm_lock(dqm);
287
288         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
289                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
290                                 dqm->total_queue_count);
291                 retval = -EPERM;
292                 goto out_unlock;
293         }
294
295         if (list_empty(&qpd->queues_list)) {
296                 retval = allocate_vmid(dqm, qpd, q);
297                 if (retval)
298                         goto out_unlock;
299         }
300         q->properties.vmid = qpd->vmid;
301         /*
302          * Eviction state logic: mark all queues as evicted, even ones
303          * not currently active. Restoring inactive queues later only
304          * updates the is_evicted flag but is a no-op otherwise.
305          */
306         q->properties.is_evicted = !!qpd->evicted;
307
308         q->properties.tba_addr = qpd->tba_addr;
309         q->properties.tma_addr = qpd->tma_addr;
310
311         mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
312                         q->properties.type)];
313         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
314                 retval = allocate_hqd(dqm, q);
315                 if (retval)
316                         goto deallocate_vmid;
317                 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
318                         q->pipe, q->queue);
319         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
320                 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
321                 retval = allocate_sdma_queue(dqm, q);
322                 if (retval)
323                         goto deallocate_vmid;
324                 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
325         }
326
327         retval = allocate_doorbell(qpd, q);
328         if (retval)
329                 goto out_deallocate_hqd;
330
331         /* Temporarily release dqm lock to avoid a circular lock dependency */
332         dqm_unlock(dqm);
333         q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
334         dqm_lock(dqm);
335
336         if (!q->mqd_mem_obj) {
337                 retval = -ENOMEM;
338                 goto out_deallocate_doorbell;
339         }
340         mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
341                                 &q->gart_mqd_addr, &q->properties);
342         if (q->properties.is_active) {
343                 if (!dqm->sched_running) {
344                         WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
345                         goto add_queue_to_list;
346                 }
347
348                 if (WARN(q->process->mm != current->mm,
349                                         "should only run in user thread"))
350                         retval = -EFAULT;
351                 else
352                         retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
353                                         q->queue, &q->properties, current->mm);
354                 if (retval)
355                         goto out_free_mqd;
356         }
357
358 add_queue_to_list:
359         list_add(&q->list, &qpd->queues_list);
360         qpd->queue_count++;
361         if (q->properties.is_active)
362                 dqm->queue_count++;
363
364         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
365                 dqm->sdma_queue_count++;
366         else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
367                 dqm->xgmi_sdma_queue_count++;
368
369         /*
370          * Unconditionally increment this counter, regardless of the queue's
371          * type or whether the queue is active.
372          */
373         dqm->total_queue_count++;
374         pr_debug("Total of %d queues are accountable so far\n",
375                         dqm->total_queue_count);
376         goto out_unlock;
377
378 out_free_mqd:
379         mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
380 out_deallocate_doorbell:
381         deallocate_doorbell(qpd, q);
382 out_deallocate_hqd:
383         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
384                 deallocate_hqd(dqm, q);
385         else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
386                 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
387                 deallocate_sdma_queue(dqm, q);
388 deallocate_vmid:
389         if (list_empty(&qpd->queues_list))
390                 deallocate_vmid(dqm, qpd, q);
391 out_unlock:
392         dqm_unlock(dqm);
393         return retval;
394 }
395
396 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
397 {
398         bool set;
399         int pipe, bit, i;
400
401         set = false;
402
403         for (pipe = dqm->next_pipe_to_allocate, i = 0;
404                         i < get_pipes_per_mec(dqm);
405                         pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
406
407                 if (!is_pipe_enabled(dqm, 0, pipe))
408                         continue;
409
410                 if (dqm->allocated_queues[pipe] != 0) {
411                         bit = ffs(dqm->allocated_queues[pipe]) - 1;
412                         dqm->allocated_queues[pipe] &= ~(1 << bit);
413                         q->pipe = pipe;
414                         q->queue = bit;
415                         set = true;
416                         break;
417                 }
418         }
419
420         if (!set)
421                 return -EBUSY;
422
423         pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
424         /* horizontal hqd allocation */
425         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
426
427         return 0;
428 }
429
430 static inline void deallocate_hqd(struct device_queue_manager *dqm,
431                                 struct queue *q)
432 {
433         dqm->allocated_queues[q->pipe] |= (1 << q->queue);
434 }
435
436 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
437  * to avoid asynchronized access
438  */
439 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
440                                 struct qcm_process_device *qpd,
441                                 struct queue *q)
442 {
443         int retval;
444         struct mqd_manager *mqd_mgr;
445
446         mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
447                         q->properties.type)];
448
449         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
450                 deallocate_hqd(dqm, q);
451         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
452                 dqm->sdma_queue_count--;
453                 deallocate_sdma_queue(dqm, q);
454         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
455                 dqm->xgmi_sdma_queue_count--;
456                 deallocate_sdma_queue(dqm, q);
457         } else {
458                 pr_debug("q->properties.type %d is invalid\n",
459                                 q->properties.type);
460                 return -EINVAL;
461         }
462         dqm->total_queue_count--;
463
464         deallocate_doorbell(qpd, q);
465
466         if (!dqm->sched_running) {
467                 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
468                 return 0;
469         }
470
471         retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
472                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
473                                 KFD_UNMAP_LATENCY_MS,
474                                 q->pipe, q->queue);
475         if (retval == -ETIME)
476                 qpd->reset_wavefronts = true;
477
478         mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
479
480         list_del(&q->list);
481         if (list_empty(&qpd->queues_list)) {
482                 if (qpd->reset_wavefronts) {
483                         pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
484                                         dqm->dev);
485                         /* dbgdev_wave_reset_wavefronts has to be called before
486                          * deallocate_vmid(), i.e. when vmid is still in use.
487                          */
488                         dbgdev_wave_reset_wavefronts(dqm->dev,
489                                         qpd->pqm->process);
490                         qpd->reset_wavefronts = false;
491                 }
492
493                 deallocate_vmid(dqm, qpd, q);
494         }
495         qpd->queue_count--;
496         if (q->properties.is_active)
497                 dqm->queue_count--;
498
499         return retval;
500 }
501
502 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
503                                 struct qcm_process_device *qpd,
504                                 struct queue *q)
505 {
506         int retval;
507
508         dqm_lock(dqm);
509         retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
510         dqm_unlock(dqm);
511
512         return retval;
513 }
514
515 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
516 {
517         int retval = 0;
518         struct mqd_manager *mqd_mgr;
519         struct kfd_process_device *pdd;
520         bool prev_active = false;
521
522         dqm_lock(dqm);
523         pdd = kfd_get_process_device_data(q->device, q->process);
524         if (!pdd) {
525                 retval = -ENODEV;
526                 goto out_unlock;
527         }
528         mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
529                         q->properties.type)];
530
531         /* Save previous activity state for counters */
532         prev_active = q->properties.is_active;
533
534         /* Make sure the queue is unmapped before updating the MQD */
535         if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
536                 retval = unmap_queues_cpsch(dqm,
537                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
538                 if (retval) {
539                         pr_err("unmap queue failed\n");
540                         goto out_unlock;
541                 }
542         } else if (prev_active &&
543                    (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
544                     q->properties.type == KFD_QUEUE_TYPE_SDMA ||
545                     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
546
547                 if (!dqm->sched_running) {
548                         WARN_ONCE(1, "Update non-HWS queue while stopped\n");
549                         goto out_unlock;
550                 }
551
552                 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
553                                 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
554                                 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
555                 if (retval) {
556                         pr_err("destroy mqd failed\n");
557                         goto out_unlock;
558                 }
559         }
560
561         mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
562
563         /*
564          * check active state vs. the previous state and modify
565          * counter accordingly. map_queues_cpsch uses the
566          * dqm->queue_count to determine whether a new runlist must be
567          * uploaded.
568          */
569         if (q->properties.is_active && !prev_active)
570                 dqm->queue_count++;
571         else if (!q->properties.is_active && prev_active)
572                 dqm->queue_count--;
573
574         if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
575                 retval = map_queues_cpsch(dqm);
576         else if (q->properties.is_active &&
577                  (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
578                   q->properties.type == KFD_QUEUE_TYPE_SDMA ||
579                   q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
580                 if (WARN(q->process->mm != current->mm,
581                          "should only run in user thread"))
582                         retval = -EFAULT;
583                 else
584                         retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
585                                                    q->pipe, q->queue,
586                                                    &q->properties, current->mm);
587         }
588
589 out_unlock:
590         dqm_unlock(dqm);
591         return retval;
592 }
593
594 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
595                                         struct qcm_process_device *qpd)
596 {
597         struct queue *q;
598         struct mqd_manager *mqd_mgr;
599         struct kfd_process_device *pdd;
600         int retval, ret = 0;
601
602         dqm_lock(dqm);
603         if (qpd->evicted++ > 0) /* already evicted, do nothing */
604                 goto out;
605
606         pdd = qpd_to_pdd(qpd);
607         pr_info_ratelimited("Evicting PASID 0x%x queues\n",
608                             pdd->process->pasid);
609
610         /* Mark all queues as evicted. Deactivate all active queues on
611          * the qpd.
612          */
613         list_for_each_entry(q, &qpd->queues_list, list) {
614                 q->properties.is_evicted = true;
615                 if (!q->properties.is_active)
616                         continue;
617
618                 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
619                                 q->properties.type)];
620                 q->properties.is_active = false;
621                 dqm->queue_count--;
622
623                 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
624                         continue;
625
626                 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
627                                 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
628                                 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
629                 if (retval && !ret)
630                         /* Return the first error, but keep going to
631                          * maintain a consistent eviction state
632                          */
633                         ret = retval;
634         }
635
636 out:
637         dqm_unlock(dqm);
638         return ret;
639 }
640
641 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
642                                       struct qcm_process_device *qpd)
643 {
644         struct queue *q;
645         struct kfd_process_device *pdd;
646         int retval = 0;
647
648         dqm_lock(dqm);
649         if (qpd->evicted++ > 0) /* already evicted, do nothing */
650                 goto out;
651
652         pdd = qpd_to_pdd(qpd);
653         pr_info_ratelimited("Evicting PASID 0x%x queues\n",
654                             pdd->process->pasid);
655
656         /* Mark all queues as evicted. Deactivate all active queues on
657          * the qpd.
658          */
659         list_for_each_entry(q, &qpd->queues_list, list) {
660                 q->properties.is_evicted = true;
661                 if (!q->properties.is_active)
662                         continue;
663
664                 q->properties.is_active = false;
665                 dqm->queue_count--;
666         }
667         retval = execute_queues_cpsch(dqm,
668                                 qpd->is_debug ?
669                                 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
670                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
671
672 out:
673         dqm_unlock(dqm);
674         return retval;
675 }
676
677 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
678                                           struct qcm_process_device *qpd)
679 {
680         struct mm_struct *mm = NULL;
681         struct queue *q;
682         struct mqd_manager *mqd_mgr;
683         struct kfd_process_device *pdd;
684         uint64_t pd_base;
685         int retval, ret = 0;
686
687         pdd = qpd_to_pdd(qpd);
688         /* Retrieve PD base */
689         pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
690
691         dqm_lock(dqm);
692         if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
693                 goto out;
694         if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
695                 qpd->evicted--;
696                 goto out;
697         }
698
699         pr_info_ratelimited("Restoring PASID 0x%x queues\n",
700                             pdd->process->pasid);
701
702         /* Update PD Base in QPD */
703         qpd->page_table_base = pd_base;
704         pr_debug("Updated PD address to 0x%llx\n", pd_base);
705
706         if (!list_empty(&qpd->queues_list)) {
707                 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
708                                 dqm->dev->kgd,
709                                 qpd->vmid,
710                                 qpd->page_table_base);
711                 kfd_flush_tlb(pdd);
712         }
713
714         /* Take a safe reference to the mm_struct, which may otherwise
715          * disappear even while the kfd_process is still referenced.
716          */
717         mm = get_task_mm(pdd->process->lead_thread);
718         if (!mm) {
719                 ret = -EFAULT;
720                 goto out;
721         }
722
723         /* Remove the eviction flags. Activate queues that are not
724          * inactive for other reasons.
725          */
726         list_for_each_entry(q, &qpd->queues_list, list) {
727                 q->properties.is_evicted = false;
728                 if (!QUEUE_IS_ACTIVE(q->properties))
729                         continue;
730
731                 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
732                                 q->properties.type)];
733                 q->properties.is_active = true;
734                 dqm->queue_count++;
735
736                 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
737                         continue;
738
739                 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
740                                        q->queue, &q->properties, mm);
741                 if (retval && !ret)
742                         /* Return the first error, but keep going to
743                          * maintain a consistent eviction state
744                          */
745                         ret = retval;
746         }
747         qpd->evicted = 0;
748 out:
749         if (mm)
750                 mmput(mm);
751         dqm_unlock(dqm);
752         return ret;
753 }
754
755 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
756                                         struct qcm_process_device *qpd)
757 {
758         struct queue *q;
759         struct kfd_process_device *pdd;
760         uint64_t pd_base;
761         int retval = 0;
762
763         pdd = qpd_to_pdd(qpd);
764         /* Retrieve PD base */
765         pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
766
767         dqm_lock(dqm);
768         if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
769                 goto out;
770         if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
771                 qpd->evicted--;
772                 goto out;
773         }
774
775         pr_info_ratelimited("Restoring PASID 0x%x queues\n",
776                             pdd->process->pasid);
777
778         /* Update PD Base in QPD */
779         qpd->page_table_base = pd_base;
780         pr_debug("Updated PD address to 0x%llx\n", pd_base);
781
782         /* activate all active queues on the qpd */
783         list_for_each_entry(q, &qpd->queues_list, list) {
784                 q->properties.is_evicted = false;
785                 if (!QUEUE_IS_ACTIVE(q->properties))
786                         continue;
787
788                 q->properties.is_active = true;
789                 dqm->queue_count++;
790         }
791         retval = execute_queues_cpsch(dqm,
792                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
793         qpd->evicted = 0;
794 out:
795         dqm_unlock(dqm);
796         return retval;
797 }
798
799 static int register_process(struct device_queue_manager *dqm,
800                                         struct qcm_process_device *qpd)
801 {
802         struct device_process_node *n;
803         struct kfd_process_device *pdd;
804         uint64_t pd_base;
805         int retval;
806
807         n = kzalloc(sizeof(*n), GFP_KERNEL);
808         if (!n)
809                 return -ENOMEM;
810
811         n->qpd = qpd;
812
813         pdd = qpd_to_pdd(qpd);
814         /* Retrieve PD base */
815         pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
816
817         dqm_lock(dqm);
818         list_add(&n->list, &dqm->queues);
819
820         /* Update PD Base in QPD */
821         qpd->page_table_base = pd_base;
822         pr_debug("Updated PD address to 0x%llx\n", pd_base);
823
824         retval = dqm->asic_ops.update_qpd(dqm, qpd);
825
826         dqm->processes_count++;
827
828         dqm_unlock(dqm);
829
830         /* Outside the DQM lock because under the DQM lock we can't do
831          * reclaim or take other locks that others hold while reclaiming.
832          */
833         kfd_inc_compute_active(dqm->dev);
834
835         return retval;
836 }
837
838 static int unregister_process(struct device_queue_manager *dqm,
839                                         struct qcm_process_device *qpd)
840 {
841         int retval;
842         struct device_process_node *cur, *next;
843
844         pr_debug("qpd->queues_list is %s\n",
845                         list_empty(&qpd->queues_list) ? "empty" : "not empty");
846
847         retval = 0;
848         dqm_lock(dqm);
849
850         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
851                 if (qpd == cur->qpd) {
852                         list_del(&cur->list);
853                         kfree(cur);
854                         dqm->processes_count--;
855                         goto out;
856                 }
857         }
858         /* qpd not found in dqm list */
859         retval = 1;
860 out:
861         dqm_unlock(dqm);
862
863         /* Outside the DQM lock because under the DQM lock we can't do
864          * reclaim or take other locks that others hold while reclaiming.
865          */
866         if (!retval)
867                 kfd_dec_compute_active(dqm->dev);
868
869         return retval;
870 }
871
872 static int
873 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
874                         unsigned int vmid)
875 {
876         return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
877                                                 dqm->dev->kgd, pasid, vmid);
878 }
879
880 static void init_interrupts(struct device_queue_manager *dqm)
881 {
882         unsigned int i;
883
884         for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
885                 if (is_pipe_enabled(dqm, 0, i))
886                         dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
887 }
888
889 static int initialize_nocpsch(struct device_queue_manager *dqm)
890 {
891         int pipe, queue;
892
893         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
894
895         dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
896                                         sizeof(unsigned int), GFP_KERNEL);
897         if (!dqm->allocated_queues)
898                 return -ENOMEM;
899
900         mutex_init(&dqm->lock_hidden);
901         INIT_LIST_HEAD(&dqm->queues);
902         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
903         dqm->sdma_queue_count = 0;
904         dqm->xgmi_sdma_queue_count = 0;
905
906         for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
907                 int pipe_offset = pipe * get_queues_per_pipe(dqm);
908
909                 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
910                         if (test_bit(pipe_offset + queue,
911                                      dqm->dev->shared_resources.queue_bitmap))
912                                 dqm->allocated_queues[pipe] |= 1 << queue;
913         }
914
915         memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
916
917         dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
918         dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
919
920         return 0;
921 }
922
923 static void uninitialize(struct device_queue_manager *dqm)
924 {
925         int i;
926
927         WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
928
929         kfree(dqm->allocated_queues);
930         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
931                 kfree(dqm->mqd_mgrs[i]);
932         mutex_destroy(&dqm->lock_hidden);
933 }
934
935 static int start_nocpsch(struct device_queue_manager *dqm)
936 {
937         pr_info("SW scheduler is used");
938         init_interrupts(dqm);
939         
940         if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
941                 return pm_init(&dqm->packets, dqm);
942         dqm->sched_running = true;
943
944         return 0;
945 }
946
947 static int stop_nocpsch(struct device_queue_manager *dqm)
948 {
949         if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
950                 pm_uninit(&dqm->packets, false);
951         dqm->sched_running = false;
952
953         return 0;
954 }
955
956 static void pre_reset(struct device_queue_manager *dqm)
957 {
958         dqm_lock(dqm);
959         dqm->is_resetting = true;
960         dqm_unlock(dqm);
961 }
962
963 static int allocate_sdma_queue(struct device_queue_manager *dqm,
964                                 struct queue *q)
965 {
966         int bit;
967
968         if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
969                 if (dqm->sdma_bitmap == 0)
970                         return -ENOMEM;
971                 bit = __ffs64(dqm->sdma_bitmap);
972                 dqm->sdma_bitmap &= ~(1ULL << bit);
973                 q->sdma_id = bit;
974                 q->properties.sdma_engine_id = q->sdma_id %
975                                 get_num_sdma_engines(dqm);
976                 q->properties.sdma_queue_id = q->sdma_id /
977                                 get_num_sdma_engines(dqm);
978         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
979                 if (dqm->xgmi_sdma_bitmap == 0)
980                         return -ENOMEM;
981                 bit = __ffs64(dqm->xgmi_sdma_bitmap);
982                 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
983                 q->sdma_id = bit;
984                 /* sdma_engine_id is sdma id including
985                  * both PCIe-optimized SDMAs and XGMI-
986                  * optimized SDMAs. The calculation below
987                  * assumes the first N engines are always
988                  * PCIe-optimized ones
989                  */
990                 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
991                                 q->sdma_id % get_num_xgmi_sdma_engines(dqm);
992                 q->properties.sdma_queue_id = q->sdma_id /
993                                 get_num_xgmi_sdma_engines(dqm);
994         }
995
996         pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
997         pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
998
999         return 0;
1000 }
1001
1002 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1003                                 struct queue *q)
1004 {
1005         if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1006                 if (q->sdma_id >= get_num_sdma_queues(dqm))
1007                         return;
1008                 dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1009         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1010                 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1011                         return;
1012                 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1013         }
1014 }
1015
1016 /*
1017  * Device Queue Manager implementation for cp scheduler
1018  */
1019
1020 static int set_sched_resources(struct device_queue_manager *dqm)
1021 {
1022         int i, mec;
1023         struct scheduling_resources res;
1024
1025         res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1026
1027         res.queue_mask = 0;
1028         for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1029                 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1030                         / dqm->dev->shared_resources.num_pipe_per_mec;
1031
1032                 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1033                         continue;
1034
1035                 /* only acquire queues from the first MEC */
1036                 if (mec > 0)
1037                         continue;
1038
1039                 /* This situation may be hit in the future if a new HW
1040                  * generation exposes more than 64 queues. If so, the
1041                  * definition of res.queue_mask needs updating
1042                  */
1043                 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1044                         pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1045                         break;
1046                 }
1047
1048                 res.queue_mask |= (1ull << i);
1049         }
1050         res.gws_mask = ~0ull;
1051         res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1052
1053         pr_debug("Scheduling resources:\n"
1054                         "vmid mask: 0x%8X\n"
1055                         "queue mask: 0x%8llX\n",
1056                         res.vmid_mask, res.queue_mask);
1057
1058         return pm_send_set_resources(&dqm->packets, &res);
1059 }
1060
1061 static int initialize_cpsch(struct device_queue_manager *dqm)
1062 {
1063         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1064
1065         mutex_init(&dqm->lock_hidden);
1066         INIT_LIST_HEAD(&dqm->queues);
1067         dqm->queue_count = dqm->processes_count = 0;
1068         dqm->sdma_queue_count = 0;
1069         dqm->xgmi_sdma_queue_count = 0;
1070         dqm->active_runlist = false;
1071         dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1072         dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1073
1074         INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1075
1076         return 0;
1077 }
1078
1079 static int start_cpsch(struct device_queue_manager *dqm)
1080 {
1081         int retval;
1082
1083         retval = 0;
1084
1085         retval = pm_init(&dqm->packets, dqm);
1086         if (retval)
1087                 goto fail_packet_manager_init;
1088
1089         retval = set_sched_resources(dqm);
1090         if (retval)
1091                 goto fail_set_sched_resources;
1092
1093         pr_debug("Allocating fence memory\n");
1094
1095         /* allocate fence memory on the gart */
1096         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1097                                         &dqm->fence_mem);
1098
1099         if (retval)
1100                 goto fail_allocate_vidmem;
1101
1102         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1103         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1104
1105         init_interrupts(dqm);
1106
1107         dqm_lock(dqm);
1108         /* clear hang status when driver try to start the hw scheduler */
1109         dqm->is_hws_hang = false;
1110         dqm->is_resetting = false;
1111         dqm->sched_running = true;
1112         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1113         dqm_unlock(dqm);
1114
1115         return 0;
1116 fail_allocate_vidmem:
1117 fail_set_sched_resources:
1118         pm_uninit(&dqm->packets, false);
1119 fail_packet_manager_init:
1120         return retval;
1121 }
1122
1123 static int stop_cpsch(struct device_queue_manager *dqm)
1124 {
1125         bool hanging;
1126
1127         dqm_lock(dqm);
1128         if (!dqm->is_hws_hang)
1129                 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1130         hanging = dqm->is_hws_hang || dqm->is_resetting;
1131         dqm->sched_running = false;
1132         dqm_unlock(dqm);
1133
1134         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1135         pm_uninit(&dqm->packets, hanging);
1136
1137         return 0;
1138 }
1139
1140 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1141                                         struct kernel_queue *kq,
1142                                         struct qcm_process_device *qpd)
1143 {
1144         dqm_lock(dqm);
1145         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1146                 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1147                                 dqm->total_queue_count);
1148                 dqm_unlock(dqm);
1149                 return -EPERM;
1150         }
1151
1152         /*
1153          * Unconditionally increment this counter, regardless of the queue's
1154          * type or whether the queue is active.
1155          */
1156         dqm->total_queue_count++;
1157         pr_debug("Total of %d queues are accountable so far\n",
1158                         dqm->total_queue_count);
1159
1160         list_add(&kq->list, &qpd->priv_queue_list);
1161         dqm->queue_count++;
1162         qpd->is_debug = true;
1163         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1164         dqm_unlock(dqm);
1165
1166         return 0;
1167 }
1168
1169 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1170                                         struct kernel_queue *kq,
1171                                         struct qcm_process_device *qpd)
1172 {
1173         dqm_lock(dqm);
1174         list_del(&kq->list);
1175         dqm->queue_count--;
1176         qpd->is_debug = false;
1177         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1178         /*
1179          * Unconditionally decrement this counter, regardless of the queue's
1180          * type.
1181          */
1182         dqm->total_queue_count--;
1183         pr_debug("Total of %d queues are accountable so far\n",
1184                         dqm->total_queue_count);
1185         dqm_unlock(dqm);
1186 }
1187
1188 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1189                         struct qcm_process_device *qpd)
1190 {
1191         int retval;
1192         struct mqd_manager *mqd_mgr;
1193
1194         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1195                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1196                                 dqm->total_queue_count);
1197                 retval = -EPERM;
1198                 goto out;
1199         }
1200
1201         if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1202                 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1203                 dqm_lock(dqm);
1204                 retval = allocate_sdma_queue(dqm, q);
1205                 dqm_unlock(dqm);
1206                 if (retval)
1207                         goto out;
1208         }
1209
1210         retval = allocate_doorbell(qpd, q);
1211         if (retval)
1212                 goto out_deallocate_sdma_queue;
1213
1214         mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1215                         q->properties.type)];
1216
1217         if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1218                 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1219                 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1220         q->properties.tba_addr = qpd->tba_addr;
1221         q->properties.tma_addr = qpd->tma_addr;
1222         q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1223         if (!q->mqd_mem_obj) {
1224                 retval = -ENOMEM;
1225                 goto out_deallocate_doorbell;
1226         }
1227
1228         dqm_lock(dqm);
1229         /*
1230          * Eviction state logic: mark all queues as evicted, even ones
1231          * not currently active. Restoring inactive queues later only
1232          * updates the is_evicted flag but is a no-op otherwise.
1233          */
1234         q->properties.is_evicted = !!qpd->evicted;
1235         mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1236                                 &q->gart_mqd_addr, &q->properties);
1237
1238         list_add(&q->list, &qpd->queues_list);
1239         qpd->queue_count++;
1240
1241         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1242                 dqm->sdma_queue_count++;
1243         else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1244                 dqm->xgmi_sdma_queue_count++;
1245
1246         if (q->properties.is_active) {
1247                 dqm->queue_count++;
1248                 retval = execute_queues_cpsch(dqm,
1249                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1250         }
1251
1252         /*
1253          * Unconditionally increment this counter, regardless of the queue's
1254          * type or whether the queue is active.
1255          */
1256         dqm->total_queue_count++;
1257
1258         pr_debug("Total of %d queues are accountable so far\n",
1259                         dqm->total_queue_count);
1260
1261         dqm_unlock(dqm);
1262         return retval;
1263
1264 out_deallocate_doorbell:
1265         deallocate_doorbell(qpd, q);
1266 out_deallocate_sdma_queue:
1267         if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1268                 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1269                 dqm_lock(dqm);
1270                 deallocate_sdma_queue(dqm, q);
1271                 dqm_unlock(dqm);
1272         }
1273 out:
1274         return retval;
1275 }
1276
1277 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1278                                 unsigned int fence_value,
1279                                 unsigned int timeout_ms)
1280 {
1281         unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1282
1283         while (*fence_addr != fence_value) {
1284                 if (time_after(jiffies, end_jiffies)) {
1285                         pr_err("qcm fence wait loop timeout expired\n");
1286                         /* In HWS case, this is used to halt the driver thread
1287                          * in order not to mess up CP states before doing
1288                          * scandumps for FW debugging.
1289                          */
1290                         while (halt_if_hws_hang)
1291                                 schedule();
1292
1293                         return -ETIME;
1294                 }
1295                 schedule();
1296         }
1297
1298         return 0;
1299 }
1300
1301 static int unmap_sdma_queues(struct device_queue_manager *dqm)
1302 {
1303         int i, retval = 0;
1304
1305         for (i = 0; i < dqm->dev->device_info->num_sdma_engines +
1306                 dqm->dev->device_info->num_xgmi_sdma_engines; i++) {
1307                 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1308                         KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i);
1309                 if (retval)
1310                         return retval;
1311         }
1312         return retval;
1313 }
1314
1315 /* dqm->lock mutex has to be locked before calling this function */
1316 static int map_queues_cpsch(struct device_queue_manager *dqm)
1317 {
1318         int retval;
1319
1320         if (!dqm->sched_running)
1321                 return 0;
1322         if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1323                 return 0;
1324         if (dqm->active_runlist)
1325                 return 0;
1326
1327         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1328         pr_debug("%s sent runlist\n", __func__);
1329         if (retval) {
1330                 pr_err("failed to execute runlist\n");
1331                 return retval;
1332         }
1333         dqm->active_runlist = true;
1334
1335         return retval;
1336 }
1337
1338 /* dqm->lock mutex has to be locked before calling this function */
1339 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1340                                 enum kfd_unmap_queues_filter filter,
1341                                 uint32_t filter_param)
1342 {
1343         int retval = 0;
1344
1345         if (!dqm->sched_running)
1346                 return 0;
1347         if (dqm->is_hws_hang)
1348                 return -EIO;
1349         if (!dqm->active_runlist)
1350                 return retval;
1351
1352         pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n",
1353                 dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count);
1354
1355         if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count)
1356                 unmap_sdma_queues(dqm);
1357
1358         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1359                         filter, filter_param, false, 0);
1360         if (retval)
1361                 return retval;
1362
1363         *dqm->fence_addr = KFD_FENCE_INIT;
1364         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1365                                 KFD_FENCE_COMPLETED);
1366         /* should be timed out */
1367         retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1368                                 queue_preemption_timeout_ms);
1369         if (retval) {
1370                 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1371                 dqm->is_hws_hang = true;
1372                 /* It's possible we're detecting a HWS hang in the
1373                  * middle of a GPU reset. No need to schedule another
1374                  * reset in this case.
1375                  */
1376                 if (!dqm->is_resetting)
1377                         schedule_work(&dqm->hw_exception_work);
1378                 return retval;
1379         }
1380
1381         pm_release_ib(&dqm->packets);
1382         dqm->active_runlist = false;
1383
1384         return retval;
1385 }
1386
1387 /* dqm->lock mutex has to be locked before calling this function */
1388 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1389                                 enum kfd_unmap_queues_filter filter,
1390                                 uint32_t filter_param)
1391 {
1392         int retval;
1393
1394         if (dqm->is_hws_hang)
1395                 return -EIO;
1396         retval = unmap_queues_cpsch(dqm, filter, filter_param);
1397         if (retval)
1398                 return retval;
1399
1400         return map_queues_cpsch(dqm);
1401 }
1402
1403 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1404                                 struct qcm_process_device *qpd,
1405                                 struct queue *q)
1406 {
1407         int retval;
1408         struct mqd_manager *mqd_mgr;
1409
1410         retval = 0;
1411
1412         /* remove queue from list to prevent rescheduling after preemption */
1413         dqm_lock(dqm);
1414
1415         if (qpd->is_debug) {
1416                 /*
1417                  * error, currently we do not allow to destroy a queue
1418                  * of a currently debugged process
1419                  */
1420                 retval = -EBUSY;
1421                 goto failed_try_destroy_debugged_queue;
1422
1423         }
1424
1425         mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1426                         q->properties.type)];
1427
1428         deallocate_doorbell(qpd, q);
1429
1430         if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1431                 dqm->sdma_queue_count--;
1432                 deallocate_sdma_queue(dqm, q);
1433         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1434                 dqm->xgmi_sdma_queue_count--;
1435                 deallocate_sdma_queue(dqm, q);
1436         }
1437
1438         list_del(&q->list);
1439         qpd->queue_count--;
1440         if (q->properties.is_active) {
1441                 dqm->queue_count--;
1442                 retval = execute_queues_cpsch(dqm,
1443                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1444                 if (retval == -ETIME)
1445                         qpd->reset_wavefronts = true;
1446         }
1447
1448         /*
1449          * Unconditionally decrement this counter, regardless of the queue's
1450          * type
1451          */
1452         dqm->total_queue_count--;
1453         pr_debug("Total of %d queues are accountable so far\n",
1454                         dqm->total_queue_count);
1455
1456         dqm_unlock(dqm);
1457
1458         /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1459         mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1460
1461         return retval;
1462
1463 failed_try_destroy_debugged_queue:
1464
1465         dqm_unlock(dqm);
1466         return retval;
1467 }
1468
1469 /*
1470  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1471  * stay in user mode.
1472  */
1473 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1474 /* APE1 limit is inclusive and 64K aligned. */
1475 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1476
1477 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1478                                    struct qcm_process_device *qpd,
1479                                    enum cache_policy default_policy,
1480                                    enum cache_policy alternate_policy,
1481                                    void __user *alternate_aperture_base,
1482                                    uint64_t alternate_aperture_size)
1483 {
1484         bool retval = true;
1485
1486         if (!dqm->asic_ops.set_cache_memory_policy)
1487                 return retval;
1488
1489         dqm_lock(dqm);
1490
1491         if (alternate_aperture_size == 0) {
1492                 /* base > limit disables APE1 */
1493                 qpd->sh_mem_ape1_base = 1;
1494                 qpd->sh_mem_ape1_limit = 0;
1495         } else {
1496                 /*
1497                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1498                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1499                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1500                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1501                  * Verify that the base and size parameters can be
1502                  * represented in this format and convert them.
1503                  * Additionally restrict APE1 to user-mode addresses.
1504                  */
1505
1506                 uint64_t base = (uintptr_t)alternate_aperture_base;
1507                 uint64_t limit = base + alternate_aperture_size - 1;
1508
1509                 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1510                    (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1511                         retval = false;
1512                         goto out;
1513                 }
1514
1515                 qpd->sh_mem_ape1_base = base >> 16;
1516                 qpd->sh_mem_ape1_limit = limit >> 16;
1517         }
1518
1519         retval = dqm->asic_ops.set_cache_memory_policy(
1520                         dqm,
1521                         qpd,
1522                         default_policy,
1523                         alternate_policy,
1524                         alternate_aperture_base,
1525                         alternate_aperture_size);
1526
1527         if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1528                 program_sh_mem_settings(dqm, qpd);
1529
1530         pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1531                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1532                 qpd->sh_mem_ape1_limit);
1533
1534 out:
1535         dqm_unlock(dqm);
1536         return retval;
1537 }
1538
1539 static int set_trap_handler(struct device_queue_manager *dqm,
1540                                 struct qcm_process_device *qpd,
1541                                 uint64_t tba_addr,
1542                                 uint64_t tma_addr)
1543 {
1544         uint64_t *tma;
1545
1546         if (dqm->dev->cwsr_enabled) {
1547                 /* Jump from CWSR trap handler to user trap */
1548                 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1549                 tma[0] = tba_addr;
1550                 tma[1] = tma_addr;
1551         } else {
1552                 qpd->tba_addr = tba_addr;
1553                 qpd->tma_addr = tma_addr;
1554         }
1555
1556         return 0;
1557 }
1558
1559 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1560                 struct qcm_process_device *qpd)
1561 {
1562         struct queue *q, *next;
1563         struct device_process_node *cur, *next_dpn;
1564         int retval = 0;
1565         bool found = false;
1566
1567         dqm_lock(dqm);
1568
1569         /* Clear all user mode queues */
1570         list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1571                 int ret;
1572
1573                 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1574                 if (ret)
1575                         retval = ret;
1576         }
1577
1578         /* Unregister process */
1579         list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1580                 if (qpd == cur->qpd) {
1581                         list_del(&cur->list);
1582                         kfree(cur);
1583                         dqm->processes_count--;
1584                         found = true;
1585                         break;
1586                 }
1587         }
1588
1589         dqm_unlock(dqm);
1590
1591         /* Outside the DQM lock because under the DQM lock we can't do
1592          * reclaim or take other locks that others hold while reclaiming.
1593          */
1594         if (found)
1595                 kfd_dec_compute_active(dqm->dev);
1596
1597         return retval;
1598 }
1599
1600 static int get_wave_state(struct device_queue_manager *dqm,
1601                           struct queue *q,
1602                           void __user *ctl_stack,
1603                           u32 *ctl_stack_used_size,
1604                           u32 *save_area_used_size)
1605 {
1606         struct mqd_manager *mqd_mgr;
1607         int r;
1608
1609         dqm_lock(dqm);
1610
1611         if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1612             q->properties.is_active || !q->device->cwsr_enabled) {
1613                 r = -EINVAL;
1614                 goto dqm_unlock;
1615         }
1616
1617         mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1618
1619         if (!mqd_mgr->get_wave_state) {
1620                 r = -EINVAL;
1621                 goto dqm_unlock;
1622         }
1623
1624         r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1625                         ctl_stack_used_size, save_area_used_size);
1626
1627 dqm_unlock:
1628         dqm_unlock(dqm);
1629         return r;
1630 }
1631
1632 static int process_termination_cpsch(struct device_queue_manager *dqm,
1633                 struct qcm_process_device *qpd)
1634 {
1635         int retval;
1636         struct queue *q, *next;
1637         struct kernel_queue *kq, *kq_next;
1638         struct mqd_manager *mqd_mgr;
1639         struct device_process_node *cur, *next_dpn;
1640         enum kfd_unmap_queues_filter filter =
1641                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1642         bool found = false;
1643
1644         retval = 0;
1645
1646         dqm_lock(dqm);
1647
1648         /* Clean all kernel queues */
1649         list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1650                 list_del(&kq->list);
1651                 dqm->queue_count--;
1652                 qpd->is_debug = false;
1653                 dqm->total_queue_count--;
1654                 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1655         }
1656
1657         /* Clear all user mode queues */
1658         list_for_each_entry(q, &qpd->queues_list, list) {
1659                 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1660                         dqm->sdma_queue_count--;
1661                         deallocate_sdma_queue(dqm, q);
1662                 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1663                         dqm->xgmi_sdma_queue_count--;
1664                         deallocate_sdma_queue(dqm, q);
1665                 }
1666
1667                 if (q->properties.is_active)
1668                         dqm->queue_count--;
1669
1670                 dqm->total_queue_count--;
1671         }
1672
1673         /* Unregister process */
1674         list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1675                 if (qpd == cur->qpd) {
1676                         list_del(&cur->list);
1677                         kfree(cur);
1678                         dqm->processes_count--;
1679                         found = true;
1680                         break;
1681                 }
1682         }
1683
1684         retval = execute_queues_cpsch(dqm, filter, 0);
1685         if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1686                 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1687                 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1688                 qpd->reset_wavefronts = false;
1689         }
1690
1691         dqm_unlock(dqm);
1692
1693         /* Outside the DQM lock because under the DQM lock we can't do
1694          * reclaim or take other locks that others hold while reclaiming.
1695          */
1696         if (found)
1697                 kfd_dec_compute_active(dqm->dev);
1698
1699         /* Lastly, free mqd resources.
1700          * Do free_mqd() after dqm_unlock to avoid circular locking.
1701          */
1702         list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1703                 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1704                                 q->properties.type)];
1705                 list_del(&q->list);
1706                 qpd->queue_count--;
1707                 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1708         }
1709
1710         return retval;
1711 }
1712
1713 static int init_mqd_managers(struct device_queue_manager *dqm)
1714 {
1715         int i, j;
1716         struct mqd_manager *mqd_mgr;
1717
1718         for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1719                 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1720                 if (!mqd_mgr) {
1721                         pr_err("mqd manager [%d] initialization failed\n", i);
1722                         goto out_free;
1723                 }
1724                 dqm->mqd_mgrs[i] = mqd_mgr;
1725         }
1726
1727         return 0;
1728
1729 out_free:
1730         for (j = 0; j < i; j++) {
1731                 kfree(dqm->mqd_mgrs[j]);
1732                 dqm->mqd_mgrs[j] = NULL;
1733         }
1734
1735         return -ENOMEM;
1736 }
1737
1738 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
1739 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1740 {
1741         int retval;
1742         struct kfd_dev *dev = dqm->dev;
1743         struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1744         uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1745                 (dev->device_info->num_sdma_engines +
1746                 dev->device_info->num_xgmi_sdma_engines) *
1747                 dev->device_info->num_sdma_queues_per_engine +
1748                 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1749
1750         retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1751                 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1752                 (void *)&(mem_obj->cpu_ptr), true);
1753
1754         return retval;
1755 }
1756
1757 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1758 {
1759         struct device_queue_manager *dqm;
1760
1761         pr_debug("Loading device queue manager\n");
1762
1763         dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1764         if (!dqm)
1765                 return NULL;
1766
1767         switch (dev->device_info->asic_family) {
1768         /* HWS is not available on Hawaii. */
1769         case CHIP_HAWAII:
1770         /* HWS depends on CWSR for timely dequeue. CWSR is not
1771          * available on Tonga.
1772          *
1773          * FIXME: This argument also applies to Kaveri.
1774          */
1775         case CHIP_TONGA:
1776                 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1777                 break;
1778         default:
1779                 dqm->sched_policy = sched_policy;
1780                 break;
1781         }
1782
1783         dqm->dev = dev;
1784         switch (dqm->sched_policy) {
1785         case KFD_SCHED_POLICY_HWS:
1786         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1787                 /* initialize dqm for cp scheduling */
1788                 dqm->ops.create_queue = create_queue_cpsch;
1789                 dqm->ops.initialize = initialize_cpsch;
1790                 dqm->ops.start = start_cpsch;
1791                 dqm->ops.stop = stop_cpsch;
1792                 dqm->ops.pre_reset = pre_reset;
1793                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1794                 dqm->ops.update_queue = update_queue;
1795                 dqm->ops.register_process = register_process;
1796                 dqm->ops.unregister_process = unregister_process;
1797                 dqm->ops.uninitialize = uninitialize;
1798                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1799                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1800                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1801                 dqm->ops.set_trap_handler = set_trap_handler;
1802                 dqm->ops.process_termination = process_termination_cpsch;
1803                 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1804                 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1805                 dqm->ops.get_wave_state = get_wave_state;
1806                 break;
1807         case KFD_SCHED_POLICY_NO_HWS:
1808                 /* initialize dqm for no cp scheduling */
1809                 dqm->ops.start = start_nocpsch;
1810                 dqm->ops.stop = stop_nocpsch;
1811                 dqm->ops.pre_reset = pre_reset;
1812                 dqm->ops.create_queue = create_queue_nocpsch;
1813                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1814                 dqm->ops.update_queue = update_queue;
1815                 dqm->ops.register_process = register_process;
1816                 dqm->ops.unregister_process = unregister_process;
1817                 dqm->ops.initialize = initialize_nocpsch;
1818                 dqm->ops.uninitialize = uninitialize;
1819                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1820                 dqm->ops.set_trap_handler = set_trap_handler;
1821                 dqm->ops.process_termination = process_termination_nocpsch;
1822                 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1823                 dqm->ops.restore_process_queues =
1824                         restore_process_queues_nocpsch;
1825                 dqm->ops.get_wave_state = get_wave_state;
1826                 break;
1827         default:
1828                 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1829                 goto out_free;
1830         }
1831
1832         switch (dev->device_info->asic_family) {
1833         case CHIP_CARRIZO:
1834                 device_queue_manager_init_vi(&dqm->asic_ops);
1835                 break;
1836
1837         case CHIP_KAVERI:
1838                 device_queue_manager_init_cik(&dqm->asic_ops);
1839                 break;
1840
1841         case CHIP_HAWAII:
1842                 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1843                 break;
1844
1845         case CHIP_TONGA:
1846         case CHIP_FIJI:
1847         case CHIP_POLARIS10:
1848         case CHIP_POLARIS11:
1849         case CHIP_POLARIS12:
1850         case CHIP_VEGAM:
1851                 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1852                 break;
1853
1854         case CHIP_VEGA10:
1855         case CHIP_VEGA12:
1856         case CHIP_VEGA20:
1857         case CHIP_RAVEN:
1858         case CHIP_RENOIR:
1859         case CHIP_ARCTURUS:
1860                 device_queue_manager_init_v9(&dqm->asic_ops);
1861                 break;
1862         case CHIP_NAVI10:
1863         case CHIP_NAVI12:
1864         case CHIP_NAVI14:
1865                 device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1866                 break;
1867         default:
1868                 WARN(1, "Unexpected ASIC family %u",
1869                      dev->device_info->asic_family);
1870                 goto out_free;
1871         }
1872
1873         if (init_mqd_managers(dqm))
1874                 goto out_free;
1875
1876         if (allocate_hiq_sdma_mqd(dqm)) {
1877                 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1878                 goto out_free;
1879         }
1880
1881         if (!dqm->ops.initialize(dqm))
1882                 return dqm;
1883
1884 out_free:
1885         kfree(dqm);
1886         return NULL;
1887 }
1888
1889 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1890                                     struct kfd_mem_obj *mqd)
1891 {
1892         WARN(!mqd, "No hiq sdma mqd trunk to free");
1893
1894         amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1895 }
1896
1897 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1898 {
1899         dqm->ops.uninitialize(dqm);
1900         deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1901         kfree(dqm);
1902 }
1903
1904 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1905                          unsigned int pasid)
1906 {
1907         struct kfd_process_device *pdd;
1908         struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1909         int ret = 0;
1910
1911         if (!p)
1912                 return -EINVAL;
1913         pdd = kfd_get_process_device_data(dqm->dev, p);
1914         if (pdd)
1915                 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1916         kfd_unref_process(p);
1917
1918         return ret;
1919 }
1920
1921 static void kfd_process_hw_exception(struct work_struct *work)
1922 {
1923         struct device_queue_manager *dqm = container_of(work,
1924                         struct device_queue_manager, hw_exception_work);
1925         amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
1926 }
1927
1928 #if defined(CONFIG_DEBUG_FS)
1929
1930 static void seq_reg_dump(struct seq_file *m,
1931                          uint32_t (*dump)[2], uint32_t n_regs)
1932 {
1933         uint32_t i, count;
1934
1935         for (i = 0, count = 0; i < n_regs; i++) {
1936                 if (count == 0 ||
1937                     dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1938                         seq_printf(m, "%s    %08x: %08x",
1939                                    i ? "\n" : "",
1940                                    dump[i][0], dump[i][1]);
1941                         count = 7;
1942                 } else {
1943                         seq_printf(m, " %08x", dump[i][1]);
1944                         count--;
1945                 }
1946         }
1947
1948         seq_puts(m, "\n");
1949 }
1950
1951 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1952 {
1953         struct device_queue_manager *dqm = data;
1954         uint32_t (*dump)[2], n_regs;
1955         int pipe, queue;
1956         int r = 0;
1957
1958         if (!dqm->sched_running) {
1959                 seq_printf(m, " Device is stopped\n");
1960
1961                 return 0;
1962         }
1963
1964         r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1965                                         KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
1966                                         &dump, &n_regs);
1967         if (!r) {
1968                 seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1969                            KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1970                            KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1971                            KFD_CIK_HIQ_QUEUE);
1972                 seq_reg_dump(m, dump, n_regs);
1973
1974                 kfree(dump);
1975         }
1976
1977         for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1978                 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1979
1980                 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1981                         if (!test_bit(pipe_offset + queue,
1982                                       dqm->dev->shared_resources.queue_bitmap))
1983                                 continue;
1984
1985                         r = dqm->dev->kfd2kgd->hqd_dump(
1986                                 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1987                         if (r)
1988                                 break;
1989
1990                         seq_printf(m, "  CP Pipe %d, Queue %d\n",
1991                                   pipe, queue);
1992                         seq_reg_dump(m, dump, n_regs);
1993
1994                         kfree(dump);
1995                 }
1996         }
1997
1998         for (pipe = 0; pipe < get_num_sdma_engines(dqm) +
1999                         get_num_xgmi_sdma_engines(dqm); pipe++) {
2000                 for (queue = 0;
2001                      queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2002                      queue++) {
2003                         r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2004                                 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2005                         if (r)
2006                                 break;
2007
2008                         seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2009                                   pipe, queue);
2010                         seq_reg_dump(m, dump, n_regs);
2011
2012                         kfree(dump);
2013                 }
2014         }
2015
2016         return r;
2017 }
2018
2019 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
2020 {
2021         int r = 0;
2022
2023         dqm_lock(dqm);
2024         dqm->active_runlist = true;
2025         r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2026         dqm_unlock(dqm);
2027
2028         return r;
2029 }
2030
2031 #endif