Merge tag 'exfat-for-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linki...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "kfd_smi_events.h"
33
34 #define MQD_SIZE_ALIGNED 768
35
36 /*
37  * kfd_locked is used to lock the kfd driver during suspend or reset
38  * once locked, kfd driver will stop any further GPU execution.
39  * create process (open) will return -EAGAIN.
40  */
41 static atomic_t kfd_locked = ATOMIC_INIT(0);
42
43 #ifdef CONFIG_DRM_AMDGPU_CIK
44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
45 #endif
46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
48 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
49 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
50 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
51 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
52
53 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
54 #ifdef KFD_SUPPORT_IOMMU_V2
55 #ifdef CONFIG_DRM_AMDGPU_CIK
56         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
57 #endif
58         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
59         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
60 #endif
61 #ifdef CONFIG_DRM_AMDGPU_CIK
62         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
63 #endif
64         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
65         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
66         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
67         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
68         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
69         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
70         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
71         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
72         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
73         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
74         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
75         [CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
76         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
77         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
78         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
79         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
80         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
81         [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
82         [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
83 };
84
85 #ifdef KFD_SUPPORT_IOMMU_V2
86 static const struct kfd_device_info kaveri_device_info = {
87         .asic_family = CHIP_KAVERI,
88         .asic_name = "kaveri",
89         .max_pasid_bits = 16,
90         /* max num of queues for KV.TODO should be a dynamic value */
91         .max_no_of_hqd  = 24,
92         .doorbell_size  = 4,
93         .ih_ring_entry_size = 4 * sizeof(uint32_t),
94         .event_interrupt_class = &event_interrupt_class_cik,
95         .num_of_watch_points = 4,
96         .mqd_size_aligned = MQD_SIZE_ALIGNED,
97         .supports_cwsr = false,
98         .needs_iommu_device = true,
99         .needs_pci_atomics = false,
100         .num_sdma_engines = 2,
101         .num_xgmi_sdma_engines = 0,
102         .num_sdma_queues_per_engine = 2,
103 };
104
105 static const struct kfd_device_info carrizo_device_info = {
106         .asic_family = CHIP_CARRIZO,
107         .asic_name = "carrizo",
108         .max_pasid_bits = 16,
109         /* max num of queues for CZ.TODO should be a dynamic value */
110         .max_no_of_hqd  = 24,
111         .doorbell_size  = 4,
112         .ih_ring_entry_size = 4 * sizeof(uint32_t),
113         .event_interrupt_class = &event_interrupt_class_cik,
114         .num_of_watch_points = 4,
115         .mqd_size_aligned = MQD_SIZE_ALIGNED,
116         .supports_cwsr = true,
117         .needs_iommu_device = true,
118         .needs_pci_atomics = false,
119         .num_sdma_engines = 2,
120         .num_xgmi_sdma_engines = 0,
121         .num_sdma_queues_per_engine = 2,
122 };
123 #endif
124
125 static const struct kfd_device_info raven_device_info = {
126         .asic_family = CHIP_RAVEN,
127         .asic_name = "raven",
128         .max_pasid_bits = 16,
129         .max_no_of_hqd  = 24,
130         .doorbell_size  = 8,
131         .ih_ring_entry_size = 8 * sizeof(uint32_t),
132         .event_interrupt_class = &event_interrupt_class_v9,
133         .num_of_watch_points = 4,
134         .mqd_size_aligned = MQD_SIZE_ALIGNED,
135         .supports_cwsr = true,
136         .needs_iommu_device = true,
137         .needs_pci_atomics = true,
138         .num_sdma_engines = 1,
139         .num_xgmi_sdma_engines = 0,
140         .num_sdma_queues_per_engine = 2,
141 };
142
143 static const struct kfd_device_info hawaii_device_info = {
144         .asic_family = CHIP_HAWAII,
145         .asic_name = "hawaii",
146         .max_pasid_bits = 16,
147         /* max num of queues for KV.TODO should be a dynamic value */
148         .max_no_of_hqd  = 24,
149         .doorbell_size  = 4,
150         .ih_ring_entry_size = 4 * sizeof(uint32_t),
151         .event_interrupt_class = &event_interrupt_class_cik,
152         .num_of_watch_points = 4,
153         .mqd_size_aligned = MQD_SIZE_ALIGNED,
154         .supports_cwsr = false,
155         .needs_iommu_device = false,
156         .needs_pci_atomics = false,
157         .num_sdma_engines = 2,
158         .num_xgmi_sdma_engines = 0,
159         .num_sdma_queues_per_engine = 2,
160 };
161
162 static const struct kfd_device_info tonga_device_info = {
163         .asic_family = CHIP_TONGA,
164         .asic_name = "tonga",
165         .max_pasid_bits = 16,
166         .max_no_of_hqd  = 24,
167         .doorbell_size  = 4,
168         .ih_ring_entry_size = 4 * sizeof(uint32_t),
169         .event_interrupt_class = &event_interrupt_class_cik,
170         .num_of_watch_points = 4,
171         .mqd_size_aligned = MQD_SIZE_ALIGNED,
172         .supports_cwsr = false,
173         .needs_iommu_device = false,
174         .needs_pci_atomics = true,
175         .num_sdma_engines = 2,
176         .num_xgmi_sdma_engines = 0,
177         .num_sdma_queues_per_engine = 2,
178 };
179
180 static const struct kfd_device_info fiji_device_info = {
181         .asic_family = CHIP_FIJI,
182         .asic_name = "fiji",
183         .max_pasid_bits = 16,
184         .max_no_of_hqd  = 24,
185         .doorbell_size  = 4,
186         .ih_ring_entry_size = 4 * sizeof(uint32_t),
187         .event_interrupt_class = &event_interrupt_class_cik,
188         .num_of_watch_points = 4,
189         .mqd_size_aligned = MQD_SIZE_ALIGNED,
190         .supports_cwsr = true,
191         .needs_iommu_device = false,
192         .needs_pci_atomics = true,
193         .num_sdma_engines = 2,
194         .num_xgmi_sdma_engines = 0,
195         .num_sdma_queues_per_engine = 2,
196 };
197
198 static const struct kfd_device_info fiji_vf_device_info = {
199         .asic_family = CHIP_FIJI,
200         .asic_name = "fiji",
201         .max_pasid_bits = 16,
202         .max_no_of_hqd  = 24,
203         .doorbell_size  = 4,
204         .ih_ring_entry_size = 4 * sizeof(uint32_t),
205         .event_interrupt_class = &event_interrupt_class_cik,
206         .num_of_watch_points = 4,
207         .mqd_size_aligned = MQD_SIZE_ALIGNED,
208         .supports_cwsr = true,
209         .needs_iommu_device = false,
210         .needs_pci_atomics = false,
211         .num_sdma_engines = 2,
212         .num_xgmi_sdma_engines = 0,
213         .num_sdma_queues_per_engine = 2,
214 };
215
216
217 static const struct kfd_device_info polaris10_device_info = {
218         .asic_family = CHIP_POLARIS10,
219         .asic_name = "polaris10",
220         .max_pasid_bits = 16,
221         .max_no_of_hqd  = 24,
222         .doorbell_size  = 4,
223         .ih_ring_entry_size = 4 * sizeof(uint32_t),
224         .event_interrupt_class = &event_interrupt_class_cik,
225         .num_of_watch_points = 4,
226         .mqd_size_aligned = MQD_SIZE_ALIGNED,
227         .supports_cwsr = true,
228         .needs_iommu_device = false,
229         .needs_pci_atomics = true,
230         .num_sdma_engines = 2,
231         .num_xgmi_sdma_engines = 0,
232         .num_sdma_queues_per_engine = 2,
233 };
234
235 static const struct kfd_device_info polaris10_vf_device_info = {
236         .asic_family = CHIP_POLARIS10,
237         .asic_name = "polaris10",
238         .max_pasid_bits = 16,
239         .max_no_of_hqd  = 24,
240         .doorbell_size  = 4,
241         .ih_ring_entry_size = 4 * sizeof(uint32_t),
242         .event_interrupt_class = &event_interrupt_class_cik,
243         .num_of_watch_points = 4,
244         .mqd_size_aligned = MQD_SIZE_ALIGNED,
245         .supports_cwsr = true,
246         .needs_iommu_device = false,
247         .needs_pci_atomics = false,
248         .num_sdma_engines = 2,
249         .num_xgmi_sdma_engines = 0,
250         .num_sdma_queues_per_engine = 2,
251 };
252
253 static const struct kfd_device_info polaris11_device_info = {
254         .asic_family = CHIP_POLARIS11,
255         .asic_name = "polaris11",
256         .max_pasid_bits = 16,
257         .max_no_of_hqd  = 24,
258         .doorbell_size  = 4,
259         .ih_ring_entry_size = 4 * sizeof(uint32_t),
260         .event_interrupt_class = &event_interrupt_class_cik,
261         .num_of_watch_points = 4,
262         .mqd_size_aligned = MQD_SIZE_ALIGNED,
263         .supports_cwsr = true,
264         .needs_iommu_device = false,
265         .needs_pci_atomics = true,
266         .num_sdma_engines = 2,
267         .num_xgmi_sdma_engines = 0,
268         .num_sdma_queues_per_engine = 2,
269 };
270
271 static const struct kfd_device_info polaris12_device_info = {
272         .asic_family = CHIP_POLARIS12,
273         .asic_name = "polaris12",
274         .max_pasid_bits = 16,
275         .max_no_of_hqd  = 24,
276         .doorbell_size  = 4,
277         .ih_ring_entry_size = 4 * sizeof(uint32_t),
278         .event_interrupt_class = &event_interrupt_class_cik,
279         .num_of_watch_points = 4,
280         .mqd_size_aligned = MQD_SIZE_ALIGNED,
281         .supports_cwsr = true,
282         .needs_iommu_device = false,
283         .needs_pci_atomics = true,
284         .num_sdma_engines = 2,
285         .num_xgmi_sdma_engines = 0,
286         .num_sdma_queues_per_engine = 2,
287 };
288
289 static const struct kfd_device_info vegam_device_info = {
290         .asic_family = CHIP_VEGAM,
291         .asic_name = "vegam",
292         .max_pasid_bits = 16,
293         .max_no_of_hqd  = 24,
294         .doorbell_size  = 4,
295         .ih_ring_entry_size = 4 * sizeof(uint32_t),
296         .event_interrupt_class = &event_interrupt_class_cik,
297         .num_of_watch_points = 4,
298         .mqd_size_aligned = MQD_SIZE_ALIGNED,
299         .supports_cwsr = true,
300         .needs_iommu_device = false,
301         .needs_pci_atomics = true,
302         .num_sdma_engines = 2,
303         .num_xgmi_sdma_engines = 0,
304         .num_sdma_queues_per_engine = 2,
305 };
306
307 static const struct kfd_device_info vega10_device_info = {
308         .asic_family = CHIP_VEGA10,
309         .asic_name = "vega10",
310         .max_pasid_bits = 16,
311         .max_no_of_hqd  = 24,
312         .doorbell_size  = 8,
313         .ih_ring_entry_size = 8 * sizeof(uint32_t),
314         .event_interrupt_class = &event_interrupt_class_v9,
315         .num_of_watch_points = 4,
316         .mqd_size_aligned = MQD_SIZE_ALIGNED,
317         .supports_cwsr = true,
318         .needs_iommu_device = false,
319         .needs_pci_atomics = false,
320         .num_sdma_engines = 2,
321         .num_xgmi_sdma_engines = 0,
322         .num_sdma_queues_per_engine = 2,
323 };
324
325 static const struct kfd_device_info vega10_vf_device_info = {
326         .asic_family = CHIP_VEGA10,
327         .asic_name = "vega10",
328         .max_pasid_bits = 16,
329         .max_no_of_hqd  = 24,
330         .doorbell_size  = 8,
331         .ih_ring_entry_size = 8 * sizeof(uint32_t),
332         .event_interrupt_class = &event_interrupt_class_v9,
333         .num_of_watch_points = 4,
334         .mqd_size_aligned = MQD_SIZE_ALIGNED,
335         .supports_cwsr = true,
336         .needs_iommu_device = false,
337         .needs_pci_atomics = false,
338         .num_sdma_engines = 2,
339         .num_xgmi_sdma_engines = 0,
340         .num_sdma_queues_per_engine = 2,
341 };
342
343 static const struct kfd_device_info vega12_device_info = {
344         .asic_family = CHIP_VEGA12,
345         .asic_name = "vega12",
346         .max_pasid_bits = 16,
347         .max_no_of_hqd  = 24,
348         .doorbell_size  = 8,
349         .ih_ring_entry_size = 8 * sizeof(uint32_t),
350         .event_interrupt_class = &event_interrupt_class_v9,
351         .num_of_watch_points = 4,
352         .mqd_size_aligned = MQD_SIZE_ALIGNED,
353         .supports_cwsr = true,
354         .needs_iommu_device = false,
355         .needs_pci_atomics = false,
356         .num_sdma_engines = 2,
357         .num_xgmi_sdma_engines = 0,
358         .num_sdma_queues_per_engine = 2,
359 };
360
361 static const struct kfd_device_info vega20_device_info = {
362         .asic_family = CHIP_VEGA20,
363         .asic_name = "vega20",
364         .max_pasid_bits = 16,
365         .max_no_of_hqd  = 24,
366         .doorbell_size  = 8,
367         .ih_ring_entry_size = 8 * sizeof(uint32_t),
368         .event_interrupt_class = &event_interrupt_class_v9,
369         .num_of_watch_points = 4,
370         .mqd_size_aligned = MQD_SIZE_ALIGNED,
371         .supports_cwsr = true,
372         .needs_iommu_device = false,
373         .needs_pci_atomics = false,
374         .num_sdma_engines = 2,
375         .num_xgmi_sdma_engines = 0,
376         .num_sdma_queues_per_engine = 8,
377 };
378
379 static const struct kfd_device_info arcturus_device_info = {
380         .asic_family = CHIP_ARCTURUS,
381         .asic_name = "arcturus",
382         .max_pasid_bits = 16,
383         .max_no_of_hqd  = 24,
384         .doorbell_size  = 8,
385         .ih_ring_entry_size = 8 * sizeof(uint32_t),
386         .event_interrupt_class = &event_interrupt_class_v9,
387         .num_of_watch_points = 4,
388         .mqd_size_aligned = MQD_SIZE_ALIGNED,
389         .supports_cwsr = true,
390         .needs_iommu_device = false,
391         .needs_pci_atomics = false,
392         .num_sdma_engines = 2,
393         .num_xgmi_sdma_engines = 6,
394         .num_sdma_queues_per_engine = 8,
395 };
396
397 static const struct kfd_device_info aldebaran_device_info = {
398         .asic_family = CHIP_ALDEBARAN,
399         .asic_name = "aldebaran",
400         .max_pasid_bits = 16,
401         .max_no_of_hqd  = 24,
402         .doorbell_size  = 8,
403         .ih_ring_entry_size = 8 * sizeof(uint32_t),
404         .event_interrupt_class = &event_interrupt_class_v9,
405         .num_of_watch_points = 4,
406         .mqd_size_aligned = MQD_SIZE_ALIGNED,
407         .supports_cwsr = true,
408         .needs_iommu_device = false,
409         .needs_pci_atomics = false,
410         .num_sdma_engines = 2,
411         .num_xgmi_sdma_engines = 3,
412         .num_sdma_queues_per_engine = 8,
413 };
414
415 static const struct kfd_device_info renoir_device_info = {
416         .asic_family = CHIP_RENOIR,
417         .asic_name = "renoir",
418         .max_pasid_bits = 16,
419         .max_no_of_hqd  = 24,
420         .doorbell_size  = 8,
421         .ih_ring_entry_size = 8 * sizeof(uint32_t),
422         .event_interrupt_class = &event_interrupt_class_v9,
423         .num_of_watch_points = 4,
424         .mqd_size_aligned = MQD_SIZE_ALIGNED,
425         .supports_cwsr = true,
426         .needs_iommu_device = false,
427         .needs_pci_atomics = false,
428         .num_sdma_engines = 1,
429         .num_xgmi_sdma_engines = 0,
430         .num_sdma_queues_per_engine = 2,
431 };
432
433 static const struct kfd_device_info navi10_device_info = {
434         .asic_family = CHIP_NAVI10,
435         .asic_name = "navi10",
436         .max_pasid_bits = 16,
437         .max_no_of_hqd  = 24,
438         .doorbell_size  = 8,
439         .ih_ring_entry_size = 8 * sizeof(uint32_t),
440         .event_interrupt_class = &event_interrupt_class_v9,
441         .num_of_watch_points = 4,
442         .mqd_size_aligned = MQD_SIZE_ALIGNED,
443         .needs_iommu_device = false,
444         .supports_cwsr = true,
445         .needs_pci_atomics = true,
446         .num_sdma_engines = 2,
447         .num_xgmi_sdma_engines = 0,
448         .num_sdma_queues_per_engine = 8,
449 };
450
451 static const struct kfd_device_info navi12_device_info = {
452         .asic_family = CHIP_NAVI12,
453         .asic_name = "navi12",
454         .max_pasid_bits = 16,
455         .max_no_of_hqd  = 24,
456         .doorbell_size  = 8,
457         .ih_ring_entry_size = 8 * sizeof(uint32_t),
458         .event_interrupt_class = &event_interrupt_class_v9,
459         .num_of_watch_points = 4,
460         .mqd_size_aligned = MQD_SIZE_ALIGNED,
461         .needs_iommu_device = false,
462         .supports_cwsr = true,
463         .needs_pci_atomics = true,
464         .num_sdma_engines = 2,
465         .num_xgmi_sdma_engines = 0,
466         .num_sdma_queues_per_engine = 8,
467 };
468
469 static const struct kfd_device_info navi14_device_info = {
470         .asic_family = CHIP_NAVI14,
471         .asic_name = "navi14",
472         .max_pasid_bits = 16,
473         .max_no_of_hqd  = 24,
474         .doorbell_size  = 8,
475         .ih_ring_entry_size = 8 * sizeof(uint32_t),
476         .event_interrupt_class = &event_interrupt_class_v9,
477         .num_of_watch_points = 4,
478         .mqd_size_aligned = MQD_SIZE_ALIGNED,
479         .needs_iommu_device = false,
480         .supports_cwsr = true,
481         .needs_pci_atomics = true,
482         .num_sdma_engines = 2,
483         .num_xgmi_sdma_engines = 0,
484         .num_sdma_queues_per_engine = 8,
485 };
486
487 static const struct kfd_device_info sienna_cichlid_device_info = {
488         .asic_family = CHIP_SIENNA_CICHLID,
489         .asic_name = "sienna_cichlid",
490         .max_pasid_bits = 16,
491         .max_no_of_hqd  = 24,
492         .doorbell_size  = 8,
493         .ih_ring_entry_size = 8 * sizeof(uint32_t),
494         .event_interrupt_class = &event_interrupt_class_v9,
495         .num_of_watch_points = 4,
496         .mqd_size_aligned = MQD_SIZE_ALIGNED,
497         .needs_iommu_device = false,
498         .supports_cwsr = true,
499         .needs_pci_atomics = true,
500         .num_sdma_engines = 4,
501         .num_xgmi_sdma_engines = 0,
502         .num_sdma_queues_per_engine = 8,
503 };
504
505 static const struct kfd_device_info navy_flounder_device_info = {
506         .asic_family = CHIP_NAVY_FLOUNDER,
507         .asic_name = "navy_flounder",
508         .max_pasid_bits = 16,
509         .max_no_of_hqd  = 24,
510         .doorbell_size  = 8,
511         .ih_ring_entry_size = 8 * sizeof(uint32_t),
512         .event_interrupt_class = &event_interrupt_class_v9,
513         .num_of_watch_points = 4,
514         .mqd_size_aligned = MQD_SIZE_ALIGNED,
515         .needs_iommu_device = false,
516         .supports_cwsr = true,
517         .needs_pci_atomics = true,
518         .num_sdma_engines = 2,
519         .num_xgmi_sdma_engines = 0,
520         .num_sdma_queues_per_engine = 8,
521 };
522
523 static const struct kfd_device_info vangogh_device_info = {
524         .asic_family = CHIP_VANGOGH,
525         .asic_name = "vangogh",
526         .max_pasid_bits = 16,
527         .max_no_of_hqd  = 24,
528         .doorbell_size  = 8,
529         .ih_ring_entry_size = 8 * sizeof(uint32_t),
530         .event_interrupt_class = &event_interrupt_class_v9,
531         .num_of_watch_points = 4,
532         .mqd_size_aligned = MQD_SIZE_ALIGNED,
533         .needs_iommu_device = false,
534         .supports_cwsr = true,
535         .needs_pci_atomics = false,
536         .num_sdma_engines = 1,
537         .num_xgmi_sdma_engines = 0,
538         .num_sdma_queues_per_engine = 2,
539 };
540
541 static const struct kfd_device_info dimgrey_cavefish_device_info = {
542         .asic_family = CHIP_DIMGREY_CAVEFISH,
543         .asic_name = "dimgrey_cavefish",
544         .max_pasid_bits = 16,
545         .max_no_of_hqd  = 24,
546         .doorbell_size  = 8,
547         .ih_ring_entry_size = 8 * sizeof(uint32_t),
548         .event_interrupt_class = &event_interrupt_class_v9,
549         .num_of_watch_points = 4,
550         .mqd_size_aligned = MQD_SIZE_ALIGNED,
551         .needs_iommu_device = false,
552         .supports_cwsr = true,
553         .needs_pci_atomics = true,
554         .num_sdma_engines = 2,
555         .num_xgmi_sdma_engines = 0,
556         .num_sdma_queues_per_engine = 8,
557 };
558
559
560 /* For each entry, [0] is regular and [1] is virtualisation device. */
561 static const struct kfd_device_info *kfd_supported_devices[][2] = {
562 #ifdef KFD_SUPPORT_IOMMU_V2
563         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
564         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
565 #endif
566         [CHIP_RAVEN] = {&raven_device_info, NULL},
567         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
568         [CHIP_TONGA] = {&tonga_device_info, NULL},
569         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
570         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
571         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
572         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
573         [CHIP_VEGAM] = {&vegam_device_info, NULL},
574         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
575         [CHIP_VEGA12] = {&vega12_device_info, NULL},
576         [CHIP_VEGA20] = {&vega20_device_info, NULL},
577         [CHIP_RENOIR] = {&renoir_device_info, NULL},
578         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
579         [CHIP_ALDEBARAN] = {&aldebaran_device_info, NULL},
580         [CHIP_NAVI10] = {&navi10_device_info, NULL},
581         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
582         [CHIP_NAVI14] = {&navi14_device_info, NULL},
583         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
584         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
585         [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
586         [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
587 };
588
589 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
590                                 unsigned int chunk_size);
591 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
592
593 static int kfd_resume(struct kfd_dev *kfd);
594
595 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
596         struct pci_dev *pdev, unsigned int asic_type, bool vf)
597 {
598         struct kfd_dev *kfd;
599         const struct kfd_device_info *device_info;
600         const struct kfd2kgd_calls *f2g;
601
602         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
603                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
604                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
605                 return NULL; /* asic_type out of range */
606         }
607
608         device_info = kfd_supported_devices[asic_type][vf];
609         f2g = kfd2kgd_funcs[asic_type];
610
611         if (!device_info || !f2g) {
612                 dev_err(kfd_device, "%s %s not supported in kfd\n",
613                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
614                 return NULL;
615         }
616
617         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
618         if (!kfd)
619                 return NULL;
620
621         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
622          * 32 and 64-bit requests are possible and must be
623          * supported.
624          */
625         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
626         if (device_info->needs_pci_atomics &&
627             !kfd->pci_atomic_requested) {
628                 dev_info(kfd_device,
629                          "skipped device %x:%x, PCI rejects atomics\n",
630                          pdev->vendor, pdev->device);
631                 kfree(kfd);
632                 return NULL;
633         }
634
635         kfd->kgd = kgd;
636         kfd->device_info = device_info;
637         kfd->pdev = pdev;
638         kfd->init_complete = false;
639         kfd->kfd2kgd = f2g;
640         atomic_set(&kfd->compute_profile, 0);
641
642         mutex_init(&kfd->doorbell_mutex);
643         memset(&kfd->doorbell_available_index, 0,
644                 sizeof(kfd->doorbell_available_index));
645
646         atomic_set(&kfd->sram_ecc_flag, 0);
647
648         ida_init(&kfd->doorbell_ida);
649
650         return kfd;
651 }
652
653 static void kfd_cwsr_init(struct kfd_dev *kfd)
654 {
655         if (cwsr_enable && kfd->device_info->supports_cwsr) {
656                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
657                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
658                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
659                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
660                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
661                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
662                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
663                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
664                 } else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
665                         BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
666                         kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
667                         kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
668                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
669                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
670                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
671                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
672                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
673                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
674                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
675                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
676                 } else {
677                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
678                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
679                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
680                 }
681
682                 kfd->cwsr_enabled = true;
683         }
684 }
685
686 static int kfd_gws_init(struct kfd_dev *kfd)
687 {
688         int ret = 0;
689
690         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
691                 return 0;
692
693         if (hws_gws_support
694                 || (kfd->device_info->asic_family == CHIP_VEGA10
695                         && kfd->mec2_fw_version >= 0x81b3)
696                 || (kfd->device_info->asic_family >= CHIP_VEGA12
697                         && kfd->device_info->asic_family <= CHIP_RAVEN
698                         && kfd->mec2_fw_version >= 0x1b3)
699                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
700                         && kfd->mec2_fw_version >= 0x30))
701                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
702                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
703
704         return ret;
705 }
706
707 static void kfd_smi_init(struct kfd_dev *dev) {
708         INIT_LIST_HEAD(&dev->smi_clients);
709         spin_lock_init(&dev->smi_lock);
710 }
711
712 bool kgd2kfd_device_init(struct kfd_dev *kfd,
713                          struct drm_device *ddev,
714                          const struct kgd2kfd_shared_resources *gpu_resources)
715 {
716         unsigned int size;
717
718         kfd->ddev = ddev;
719         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
720                         KGD_ENGINE_MEC1);
721         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
722                         KGD_ENGINE_MEC2);
723         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
724                         KGD_ENGINE_SDMA1);
725         kfd->shared_resources = *gpu_resources;
726
727         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
728         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
729         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
730                         - kfd->vm_info.first_vmid_kfd + 1;
731
732         /* Verify module parameters regarding mapped process number*/
733         if ((hws_max_conc_proc < 0)
734                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
735                 dev_err(kfd_device,
736                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
737                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
738                         kfd->vm_info.vmid_num_kfd);
739                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
740         } else
741                 kfd->max_proc_per_quantum = hws_max_conc_proc;
742
743         /* calculate max size of mqds needed for queues */
744         size = max_num_of_queues_per_device *
745                         kfd->device_info->mqd_size_aligned;
746
747         /*
748          * calculate max size of runlist packet.
749          * There can be only 2 packets at once
750          */
751         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
752                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
753                 + sizeof(struct pm4_mes_runlist)) * 2;
754
755         /* Add size of HIQ & DIQ */
756         size += KFD_KERNEL_QUEUE_SIZE * 2;
757
758         /* add another 512KB for all other allocations on gart (HPD, fences) */
759         size += 512 * 1024;
760
761         if (amdgpu_amdkfd_alloc_gtt_mem(
762                         kfd->kgd, size, &kfd->gtt_mem,
763                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
764                         false)) {
765                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
766                 goto alloc_gtt_mem_failure;
767         }
768
769         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
770
771         /* Initialize GTT sa with 512 byte chunk size */
772         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
773                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
774                 goto kfd_gtt_sa_init_error;
775         }
776
777         if (kfd_doorbell_init(kfd)) {
778                 dev_err(kfd_device,
779                         "Error initializing doorbell aperture\n");
780                 goto kfd_doorbell_error;
781         }
782
783         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
784
785         kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
786
787         if (kfd_interrupt_init(kfd)) {
788                 dev_err(kfd_device, "Error initializing interrupts\n");
789                 goto kfd_interrupt_error;
790         }
791
792         kfd->dqm = device_queue_manager_init(kfd);
793         if (!kfd->dqm) {
794                 dev_err(kfd_device, "Error initializing queue manager\n");
795                 goto device_queue_manager_error;
796         }
797
798         /* If supported on this device, allocate global GWS that is shared
799          * by all KFD processes
800          */
801         if (kfd_gws_init(kfd)) {
802                 dev_err(kfd_device, "Could not allocate %d gws\n",
803                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
804                 goto gws_error;
805         }
806
807         /* If CRAT is broken, won't set iommu enabled */
808         kfd_double_confirm_iommu_support(kfd);
809
810         if (kfd_iommu_device_init(kfd)) {
811                 dev_err(kfd_device, "Error initializing iommuv2\n");
812                 goto device_iommu_error;
813         }
814
815         kfd_cwsr_init(kfd);
816
817         if (kfd_resume(kfd))
818                 goto kfd_resume_error;
819
820         kfd->dbgmgr = NULL;
821
822         if (kfd_topology_add_device(kfd)) {
823                 dev_err(kfd_device, "Error adding device to topology\n");
824                 goto kfd_topology_add_device_error;
825         }
826
827         kfd_smi_init(kfd);
828
829         kfd->init_complete = true;
830         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
831                  kfd->pdev->device);
832
833         pr_debug("Starting kfd with the following scheduling policy %d\n",
834                 kfd->dqm->sched_policy);
835
836         goto out;
837
838 kfd_topology_add_device_error:
839 kfd_resume_error:
840 device_iommu_error:
841 gws_error:
842         device_queue_manager_uninit(kfd->dqm);
843 device_queue_manager_error:
844         kfd_interrupt_exit(kfd);
845 kfd_interrupt_error:
846         kfd_doorbell_fini(kfd);
847 kfd_doorbell_error:
848         kfd_gtt_sa_fini(kfd);
849 kfd_gtt_sa_init_error:
850         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
851 alloc_gtt_mem_failure:
852         if (kfd->gws)
853                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
854         dev_err(kfd_device,
855                 "device %x:%x NOT added due to errors\n",
856                 kfd->pdev->vendor, kfd->pdev->device);
857 out:
858         return kfd->init_complete;
859 }
860
861 void kgd2kfd_device_exit(struct kfd_dev *kfd)
862 {
863         if (kfd->init_complete) {
864                 kgd2kfd_suspend(kfd, false);
865                 device_queue_manager_uninit(kfd->dqm);
866                 kfd_interrupt_exit(kfd);
867                 kfd_topology_remove_device(kfd);
868                 kfd_doorbell_fini(kfd);
869                 ida_destroy(&kfd->doorbell_ida);
870                 kfd_gtt_sa_fini(kfd);
871                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
872                 if (kfd->gws)
873                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
874         }
875
876         kfree(kfd);
877 }
878
879 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
880 {
881         if (!kfd->init_complete)
882                 return 0;
883
884         kfd_smi_event_update_gpu_reset(kfd, false);
885
886         kfd->dqm->ops.pre_reset(kfd->dqm);
887
888         kgd2kfd_suspend(kfd, false);
889
890         kfd_signal_reset_event(kfd);
891         return 0;
892 }
893
894 /*
895  * Fix me. KFD won't be able to resume existing process for now.
896  * We will keep all existing process in a evicted state and
897  * wait the process to be terminated.
898  */
899
900 int kgd2kfd_post_reset(struct kfd_dev *kfd)
901 {
902         int ret;
903
904         if (!kfd->init_complete)
905                 return 0;
906
907         ret = kfd_resume(kfd);
908         if (ret)
909                 return ret;
910         atomic_dec(&kfd_locked);
911
912         atomic_set(&kfd->sram_ecc_flag, 0);
913
914         kfd_smi_event_update_gpu_reset(kfd, true);
915
916         return 0;
917 }
918
919 bool kfd_is_locked(void)
920 {
921         return  (atomic_read(&kfd_locked) > 0);
922 }
923
924 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
925 {
926         if (!kfd->init_complete)
927                 return;
928
929         /* for runtime suspend, skip locking kfd */
930         if (!run_pm) {
931                 /* For first KFD device suspend all the KFD processes */
932                 if (atomic_inc_return(&kfd_locked) == 1)
933                         kfd_suspend_all_processes();
934         }
935
936         kfd->dqm->ops.stop(kfd->dqm);
937         kfd_iommu_suspend(kfd);
938 }
939
940 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
941 {
942         int ret, count;
943
944         if (!kfd->init_complete)
945                 return 0;
946
947         ret = kfd_resume(kfd);
948         if (ret)
949                 return ret;
950
951         /* for runtime resume, skip unlocking kfd */
952         if (!run_pm) {
953                 count = atomic_dec_return(&kfd_locked);
954                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
955                 if (count == 0)
956                         ret = kfd_resume_all_processes();
957         }
958
959         return ret;
960 }
961
962 static int kfd_resume(struct kfd_dev *kfd)
963 {
964         int err = 0;
965
966         err = kfd_iommu_resume(kfd);
967         if (err) {
968                 dev_err(kfd_device,
969                         "Failed to resume IOMMU for device %x:%x\n",
970                         kfd->pdev->vendor, kfd->pdev->device);
971                 return err;
972         }
973
974         err = kfd->dqm->ops.start(kfd->dqm);
975         if (err) {
976                 dev_err(kfd_device,
977                         "Error starting queue manager for device %x:%x\n",
978                         kfd->pdev->vendor, kfd->pdev->device);
979                 goto dqm_start_error;
980         }
981
982         return err;
983
984 dqm_start_error:
985         kfd_iommu_suspend(kfd);
986         return err;
987 }
988
989 static inline void kfd_queue_work(struct workqueue_struct *wq,
990                                   struct work_struct *work)
991 {
992         int cpu, new_cpu;
993
994         cpu = new_cpu = smp_processor_id();
995         do {
996                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
997                 if (cpu_to_node(new_cpu) == numa_node_id())
998                         break;
999         } while (cpu != new_cpu);
1000
1001         queue_work_on(new_cpu, wq, work);
1002 }
1003
1004 /* This is called directly from KGD at ISR. */
1005 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1006 {
1007         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1008         bool is_patched = false;
1009         unsigned long flags;
1010
1011         if (!kfd->init_complete)
1012                 return;
1013
1014         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1015                 dev_err_once(kfd_device, "Ring entry too small\n");
1016                 return;
1017         }
1018
1019         spin_lock_irqsave(&kfd->interrupt_lock, flags);
1020
1021         if (kfd->interrupts_active
1022             && interrupt_is_wanted(kfd, ih_ring_entry,
1023                                    patched_ihre, &is_patched)
1024             && enqueue_ih_ring_entry(kfd,
1025                                      is_patched ? patched_ihre : ih_ring_entry))
1026                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1027
1028         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1029 }
1030
1031 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1032 {
1033         struct kfd_process *p;
1034         int r;
1035
1036         /* Because we are called from arbitrary context (workqueue) as opposed
1037          * to process context, kfd_process could attempt to exit while we are
1038          * running so the lookup function increments the process ref count.
1039          */
1040         p = kfd_lookup_process_by_mm(mm);
1041         if (!p)
1042                 return -ESRCH;
1043
1044         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1045         r = kfd_process_evict_queues(p);
1046
1047         kfd_unref_process(p);
1048         return r;
1049 }
1050
1051 int kgd2kfd_resume_mm(struct mm_struct *mm)
1052 {
1053         struct kfd_process *p;
1054         int r;
1055
1056         /* Because we are called from arbitrary context (workqueue) as opposed
1057          * to process context, kfd_process could attempt to exit while we are
1058          * running so the lookup function increments the process ref count.
1059          */
1060         p = kfd_lookup_process_by_mm(mm);
1061         if (!p)
1062                 return -ESRCH;
1063
1064         r = kfd_process_restore_queues(p);
1065
1066         kfd_unref_process(p);
1067         return r;
1068 }
1069
1070 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1071  *   prepare for safe eviction of KFD BOs that belong to the specified
1072  *   process.
1073  *
1074  * @mm: mm_struct that identifies the specified KFD process
1075  * @fence: eviction fence attached to KFD process BOs
1076  *
1077  */
1078 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1079                                                struct dma_fence *fence)
1080 {
1081         struct kfd_process *p;
1082         unsigned long active_time;
1083         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1084
1085         if (!fence)
1086                 return -EINVAL;
1087
1088         if (dma_fence_is_signaled(fence))
1089                 return 0;
1090
1091         p = kfd_lookup_process_by_mm(mm);
1092         if (!p)
1093                 return -ENODEV;
1094
1095         if (fence->seqno == p->last_eviction_seqno)
1096                 goto out;
1097
1098         p->last_eviction_seqno = fence->seqno;
1099
1100         /* Avoid KFD process starvation. Wait for at least
1101          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1102          */
1103         active_time = get_jiffies_64() - p->last_restore_timestamp;
1104         if (delay_jiffies > active_time)
1105                 delay_jiffies -= active_time;
1106         else
1107                 delay_jiffies = 0;
1108
1109         /* During process initialization eviction_work.dwork is initialized
1110          * to kfd_evict_bo_worker
1111          */
1112         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1113              p->lead_thread->pid, delay_jiffies);
1114         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1115 out:
1116         kfd_unref_process(p);
1117         return 0;
1118 }
1119
1120 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1121                                 unsigned int chunk_size)
1122 {
1123         unsigned int num_of_longs;
1124
1125         if (WARN_ON(buf_size < chunk_size))
1126                 return -EINVAL;
1127         if (WARN_ON(buf_size == 0))
1128                 return -EINVAL;
1129         if (WARN_ON(chunk_size == 0))
1130                 return -EINVAL;
1131
1132         kfd->gtt_sa_chunk_size = chunk_size;
1133         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1134
1135         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1136                 BITS_PER_LONG;
1137
1138         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1139
1140         if (!kfd->gtt_sa_bitmap)
1141                 return -ENOMEM;
1142
1143         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1144                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1145
1146         mutex_init(&kfd->gtt_sa_lock);
1147
1148         return 0;
1149
1150 }
1151
1152 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1153 {
1154         mutex_destroy(&kfd->gtt_sa_lock);
1155         kfree(kfd->gtt_sa_bitmap);
1156 }
1157
1158 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1159                                                 unsigned int bit_num,
1160                                                 unsigned int chunk_size)
1161 {
1162         return start_addr + bit_num * chunk_size;
1163 }
1164
1165 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1166                                                 unsigned int bit_num,
1167                                                 unsigned int chunk_size)
1168 {
1169         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1170 }
1171
1172 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1173                         struct kfd_mem_obj **mem_obj)
1174 {
1175         unsigned int found, start_search, cur_size;
1176
1177         if (size == 0)
1178                 return -EINVAL;
1179
1180         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1181                 return -ENOMEM;
1182
1183         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1184         if (!(*mem_obj))
1185                 return -ENOMEM;
1186
1187         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1188
1189         start_search = 0;
1190
1191         mutex_lock(&kfd->gtt_sa_lock);
1192
1193 kfd_gtt_restart_search:
1194         /* Find the first chunk that is free */
1195         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1196                                         kfd->gtt_sa_num_of_chunks,
1197                                         start_search);
1198
1199         pr_debug("Found = %d\n", found);
1200
1201         /* If there wasn't any free chunk, bail out */
1202         if (found == kfd->gtt_sa_num_of_chunks)
1203                 goto kfd_gtt_no_free_chunk;
1204
1205         /* Update fields of mem_obj */
1206         (*mem_obj)->range_start = found;
1207         (*mem_obj)->range_end = found;
1208         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1209                                         kfd->gtt_start_gpu_addr,
1210                                         found,
1211                                         kfd->gtt_sa_chunk_size);
1212         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1213                                         kfd->gtt_start_cpu_ptr,
1214                                         found,
1215                                         kfd->gtt_sa_chunk_size);
1216
1217         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1218                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1219
1220         /* If we need only one chunk, mark it as allocated and get out */
1221         if (size <= kfd->gtt_sa_chunk_size) {
1222                 pr_debug("Single bit\n");
1223                 set_bit(found, kfd->gtt_sa_bitmap);
1224                 goto kfd_gtt_out;
1225         }
1226
1227         /* Otherwise, try to see if we have enough contiguous chunks */
1228         cur_size = size - kfd->gtt_sa_chunk_size;
1229         do {
1230                 (*mem_obj)->range_end =
1231                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1232                                         kfd->gtt_sa_num_of_chunks, ++found);
1233                 /*
1234                  * If next free chunk is not contiguous than we need to
1235                  * restart our search from the last free chunk we found (which
1236                  * wasn't contiguous to the previous ones
1237                  */
1238                 if ((*mem_obj)->range_end != found) {
1239                         start_search = found;
1240                         goto kfd_gtt_restart_search;
1241                 }
1242
1243                 /*
1244                  * If we reached end of buffer, bail out with error
1245                  */
1246                 if (found == kfd->gtt_sa_num_of_chunks)
1247                         goto kfd_gtt_no_free_chunk;
1248
1249                 /* Check if we don't need another chunk */
1250                 if (cur_size <= kfd->gtt_sa_chunk_size)
1251                         cur_size = 0;
1252                 else
1253                         cur_size -= kfd->gtt_sa_chunk_size;
1254
1255         } while (cur_size > 0);
1256
1257         pr_debug("range_start = %d, range_end = %d\n",
1258                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1259
1260         /* Mark the chunks as allocated */
1261         for (found = (*mem_obj)->range_start;
1262                 found <= (*mem_obj)->range_end;
1263                 found++)
1264                 set_bit(found, kfd->gtt_sa_bitmap);
1265
1266 kfd_gtt_out:
1267         mutex_unlock(&kfd->gtt_sa_lock);
1268         return 0;
1269
1270 kfd_gtt_no_free_chunk:
1271         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1272         mutex_unlock(&kfd->gtt_sa_lock);
1273         kfree(*mem_obj);
1274         return -ENOMEM;
1275 }
1276
1277 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1278 {
1279         unsigned int bit;
1280
1281         /* Act like kfree when trying to free a NULL object */
1282         if (!mem_obj)
1283                 return 0;
1284
1285         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1286                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1287
1288         mutex_lock(&kfd->gtt_sa_lock);
1289
1290         /* Mark the chunks as free */
1291         for (bit = mem_obj->range_start;
1292                 bit <= mem_obj->range_end;
1293                 bit++)
1294                 clear_bit(bit, kfd->gtt_sa_bitmap);
1295
1296         mutex_unlock(&kfd->gtt_sa_lock);
1297
1298         kfree(mem_obj);
1299         return 0;
1300 }
1301
1302 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1303 {
1304         if (kfd)
1305                 atomic_inc(&kfd->sram_ecc_flag);
1306 }
1307
1308 void kfd_inc_compute_active(struct kfd_dev *kfd)
1309 {
1310         if (atomic_inc_return(&kfd->compute_profile) == 1)
1311                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1312 }
1313
1314 void kfd_dec_compute_active(struct kfd_dev *kfd)
1315 {
1316         int count = atomic_dec_return(&kfd->compute_profile);
1317
1318         if (count == 0)
1319                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1320         WARN_ONCE(count < 0, "Compute profile ref. count error");
1321 }
1322
1323 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1324 {
1325         if (kfd && kfd->init_complete)
1326                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1327 }
1328
1329 #if defined(CONFIG_DEBUG_FS)
1330
1331 /* This function will send a package to HIQ to hang the HWS
1332  * which will trigger a GPU reset and bring the HWS back to normal state
1333  */
1334 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1335 {
1336         int r = 0;
1337
1338         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1339                 pr_err("HWS is not enabled");
1340                 return -EINVAL;
1341         }
1342
1343         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1344         if (!r)
1345                 r = dqm_debugfs_execute_queues(dev->dqm);
1346
1347         return r;
1348 }
1349
1350 #endif