Merge tag 's390-5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44         .asic_family = CHIP_KAVERI,
45         .max_pasid_bits = 16,
46         /* max num of queues for KV.TODO should be a dynamic value */
47         .max_no_of_hqd  = 24,
48         .doorbell_size  = 4,
49         .ih_ring_entry_size = 4 * sizeof(uint32_t),
50         .event_interrupt_class = &event_interrupt_class_cik,
51         .num_of_watch_points = 4,
52         .mqd_size_aligned = MQD_SIZE_ALIGNED,
53         .supports_cwsr = false,
54         .needs_iommu_device = true,
55         .needs_pci_atomics = false,
56         .num_sdma_engines = 2,
57         .num_sdma_queues_per_engine = 2,
58 };
59
60 static const struct kfd_device_info carrizo_device_info = {
61         .asic_family = CHIP_CARRIZO,
62         .max_pasid_bits = 16,
63         /* max num of queues for CZ.TODO should be a dynamic value */
64         .max_no_of_hqd  = 24,
65         .doorbell_size  = 4,
66         .ih_ring_entry_size = 4 * sizeof(uint32_t),
67         .event_interrupt_class = &event_interrupt_class_cik,
68         .num_of_watch_points = 4,
69         .mqd_size_aligned = MQD_SIZE_ALIGNED,
70         .supports_cwsr = true,
71         .needs_iommu_device = true,
72         .needs_pci_atomics = false,
73         .num_sdma_engines = 2,
74         .num_sdma_queues_per_engine = 2,
75 };
76
77 static const struct kfd_device_info raven_device_info = {
78         .asic_family = CHIP_RAVEN,
79         .max_pasid_bits = 16,
80         .max_no_of_hqd  = 24,
81         .doorbell_size  = 8,
82         .ih_ring_entry_size = 8 * sizeof(uint32_t),
83         .event_interrupt_class = &event_interrupt_class_v9,
84         .num_of_watch_points = 4,
85         .mqd_size_aligned = MQD_SIZE_ALIGNED,
86         .supports_cwsr = true,
87         .needs_iommu_device = true,
88         .needs_pci_atomics = true,
89         .num_sdma_engines = 1,
90         .num_sdma_queues_per_engine = 2,
91 };
92 #endif
93
94 static const struct kfd_device_info hawaii_device_info = {
95         .asic_family = CHIP_HAWAII,
96         .max_pasid_bits = 16,
97         /* max num of queues for KV.TODO should be a dynamic value */
98         .max_no_of_hqd  = 24,
99         .doorbell_size  = 4,
100         .ih_ring_entry_size = 4 * sizeof(uint32_t),
101         .event_interrupt_class = &event_interrupt_class_cik,
102         .num_of_watch_points = 4,
103         .mqd_size_aligned = MQD_SIZE_ALIGNED,
104         .supports_cwsr = false,
105         .needs_iommu_device = false,
106         .needs_pci_atomics = false,
107         .num_sdma_engines = 2,
108         .num_sdma_queues_per_engine = 2,
109 };
110
111 static const struct kfd_device_info tonga_device_info = {
112         .asic_family = CHIP_TONGA,
113         .max_pasid_bits = 16,
114         .max_no_of_hqd  = 24,
115         .doorbell_size  = 4,
116         .ih_ring_entry_size = 4 * sizeof(uint32_t),
117         .event_interrupt_class = &event_interrupt_class_cik,
118         .num_of_watch_points = 4,
119         .mqd_size_aligned = MQD_SIZE_ALIGNED,
120         .supports_cwsr = false,
121         .needs_iommu_device = false,
122         .needs_pci_atomics = true,
123         .num_sdma_engines = 2,
124         .num_sdma_queues_per_engine = 2,
125 };
126
127 static const struct kfd_device_info fiji_device_info = {
128         .asic_family = CHIP_FIJI,
129         .max_pasid_bits = 16,
130         .max_no_of_hqd  = 24,
131         .doorbell_size  = 4,
132         .ih_ring_entry_size = 4 * sizeof(uint32_t),
133         .event_interrupt_class = &event_interrupt_class_cik,
134         .num_of_watch_points = 4,
135         .mqd_size_aligned = MQD_SIZE_ALIGNED,
136         .supports_cwsr = true,
137         .needs_iommu_device = false,
138         .needs_pci_atomics = true,
139         .num_sdma_engines = 2,
140         .num_sdma_queues_per_engine = 2,
141 };
142
143 static const struct kfd_device_info fiji_vf_device_info = {
144         .asic_family = CHIP_FIJI,
145         .max_pasid_bits = 16,
146         .max_no_of_hqd  = 24,
147         .doorbell_size  = 4,
148         .ih_ring_entry_size = 4 * sizeof(uint32_t),
149         .event_interrupt_class = &event_interrupt_class_cik,
150         .num_of_watch_points = 4,
151         .mqd_size_aligned = MQD_SIZE_ALIGNED,
152         .supports_cwsr = true,
153         .needs_iommu_device = false,
154         .needs_pci_atomics = false,
155         .num_sdma_engines = 2,
156         .num_sdma_queues_per_engine = 2,
157 };
158
159
160 static const struct kfd_device_info polaris10_device_info = {
161         .asic_family = CHIP_POLARIS10,
162         .max_pasid_bits = 16,
163         .max_no_of_hqd  = 24,
164         .doorbell_size  = 4,
165         .ih_ring_entry_size = 4 * sizeof(uint32_t),
166         .event_interrupt_class = &event_interrupt_class_cik,
167         .num_of_watch_points = 4,
168         .mqd_size_aligned = MQD_SIZE_ALIGNED,
169         .supports_cwsr = true,
170         .needs_iommu_device = false,
171         .needs_pci_atomics = true,
172         .num_sdma_engines = 2,
173         .num_sdma_queues_per_engine = 2,
174 };
175
176 static const struct kfd_device_info polaris10_vf_device_info = {
177         .asic_family = CHIP_POLARIS10,
178         .max_pasid_bits = 16,
179         .max_no_of_hqd  = 24,
180         .doorbell_size  = 4,
181         .ih_ring_entry_size = 4 * sizeof(uint32_t),
182         .event_interrupt_class = &event_interrupt_class_cik,
183         .num_of_watch_points = 4,
184         .mqd_size_aligned = MQD_SIZE_ALIGNED,
185         .supports_cwsr = true,
186         .needs_iommu_device = false,
187         .needs_pci_atomics = false,
188         .num_sdma_engines = 2,
189         .num_sdma_queues_per_engine = 2,
190 };
191
192 static const struct kfd_device_info polaris11_device_info = {
193         .asic_family = CHIP_POLARIS11,
194         .max_pasid_bits = 16,
195         .max_no_of_hqd  = 24,
196         .doorbell_size  = 4,
197         .ih_ring_entry_size = 4 * sizeof(uint32_t),
198         .event_interrupt_class = &event_interrupt_class_cik,
199         .num_of_watch_points = 4,
200         .mqd_size_aligned = MQD_SIZE_ALIGNED,
201         .supports_cwsr = true,
202         .needs_iommu_device = false,
203         .needs_pci_atomics = true,
204         .num_sdma_engines = 2,
205         .num_sdma_queues_per_engine = 2,
206 };
207
208 static const struct kfd_device_info polaris12_device_info = {
209         .asic_family = CHIP_POLARIS12,
210         .max_pasid_bits = 16,
211         .max_no_of_hqd  = 24,
212         .doorbell_size  = 4,
213         .ih_ring_entry_size = 4 * sizeof(uint32_t),
214         .event_interrupt_class = &event_interrupt_class_cik,
215         .num_of_watch_points = 4,
216         .mqd_size_aligned = MQD_SIZE_ALIGNED,
217         .supports_cwsr = true,
218         .needs_iommu_device = false,
219         .needs_pci_atomics = true,
220         .num_sdma_engines = 2,
221         .num_sdma_queues_per_engine = 2,
222 };
223
224 static const struct kfd_device_info vega10_device_info = {
225         .asic_family = CHIP_VEGA10,
226         .max_pasid_bits = 16,
227         .max_no_of_hqd  = 24,
228         .doorbell_size  = 8,
229         .ih_ring_entry_size = 8 * sizeof(uint32_t),
230         .event_interrupt_class = &event_interrupt_class_v9,
231         .num_of_watch_points = 4,
232         .mqd_size_aligned = MQD_SIZE_ALIGNED,
233         .supports_cwsr = true,
234         .needs_iommu_device = false,
235         .needs_pci_atomics = false,
236         .num_sdma_engines = 2,
237         .num_sdma_queues_per_engine = 2,
238 };
239
240 static const struct kfd_device_info vega10_vf_device_info = {
241         .asic_family = CHIP_VEGA10,
242         .max_pasid_bits = 16,
243         .max_no_of_hqd  = 24,
244         .doorbell_size  = 8,
245         .ih_ring_entry_size = 8 * sizeof(uint32_t),
246         .event_interrupt_class = &event_interrupt_class_v9,
247         .num_of_watch_points = 4,
248         .mqd_size_aligned = MQD_SIZE_ALIGNED,
249         .supports_cwsr = true,
250         .needs_iommu_device = false,
251         .needs_pci_atomics = false,
252         .num_sdma_engines = 2,
253         .num_sdma_queues_per_engine = 2,
254 };
255
256 static const struct kfd_device_info vega12_device_info = {
257         .asic_family = CHIP_VEGA12,
258         .max_pasid_bits = 16,
259         .max_no_of_hqd  = 24,
260         .doorbell_size  = 8,
261         .ih_ring_entry_size = 8 * sizeof(uint32_t),
262         .event_interrupt_class = &event_interrupt_class_v9,
263         .num_of_watch_points = 4,
264         .mqd_size_aligned = MQD_SIZE_ALIGNED,
265         .supports_cwsr = true,
266         .needs_iommu_device = false,
267         .needs_pci_atomics = false,
268         .num_sdma_engines = 2,
269         .num_sdma_queues_per_engine = 2,
270 };
271
272 static const struct kfd_device_info vega20_device_info = {
273         .asic_family = CHIP_VEGA20,
274         .max_pasid_bits = 16,
275         .max_no_of_hqd  = 24,
276         .doorbell_size  = 8,
277         .ih_ring_entry_size = 8 * sizeof(uint32_t),
278         .event_interrupt_class = &event_interrupt_class_v9,
279         .num_of_watch_points = 4,
280         .mqd_size_aligned = MQD_SIZE_ALIGNED,
281         .supports_cwsr = true,
282         .needs_iommu_device = false,
283         .needs_pci_atomics = false,
284         .num_sdma_engines = 2,
285         .num_sdma_queues_per_engine = 8,
286 };
287
288 struct kfd_deviceid {
289         unsigned short did;
290         const struct kfd_device_info *device_info;
291 };
292
293 static const struct kfd_deviceid supported_devices[] = {
294 #ifdef KFD_SUPPORT_IOMMU_V2
295         { 0x1304, &kaveri_device_info },        /* Kaveri */
296         { 0x1305, &kaveri_device_info },        /* Kaveri */
297         { 0x1306, &kaveri_device_info },        /* Kaveri */
298         { 0x1307, &kaveri_device_info },        /* Kaveri */
299         { 0x1309, &kaveri_device_info },        /* Kaveri */
300         { 0x130A, &kaveri_device_info },        /* Kaveri */
301         { 0x130B, &kaveri_device_info },        /* Kaveri */
302         { 0x130C, &kaveri_device_info },        /* Kaveri */
303         { 0x130D, &kaveri_device_info },        /* Kaveri */
304         { 0x130E, &kaveri_device_info },        /* Kaveri */
305         { 0x130F, &kaveri_device_info },        /* Kaveri */
306         { 0x1310, &kaveri_device_info },        /* Kaveri */
307         { 0x1311, &kaveri_device_info },        /* Kaveri */
308         { 0x1312, &kaveri_device_info },        /* Kaveri */
309         { 0x1313, &kaveri_device_info },        /* Kaveri */
310         { 0x1315, &kaveri_device_info },        /* Kaveri */
311         { 0x1316, &kaveri_device_info },        /* Kaveri */
312         { 0x1317, &kaveri_device_info },        /* Kaveri */
313         { 0x1318, &kaveri_device_info },        /* Kaveri */
314         { 0x131B, &kaveri_device_info },        /* Kaveri */
315         { 0x131C, &kaveri_device_info },        /* Kaveri */
316         { 0x131D, &kaveri_device_info },        /* Kaveri */
317         { 0x9870, &carrizo_device_info },       /* Carrizo */
318         { 0x9874, &carrizo_device_info },       /* Carrizo */
319         { 0x9875, &carrizo_device_info },       /* Carrizo */
320         { 0x9876, &carrizo_device_info },       /* Carrizo */
321         { 0x9877, &carrizo_device_info },       /* Carrizo */
322         { 0x15DD, &raven_device_info },         /* Raven */
323         { 0x15D8, &raven_device_info },         /* Raven */
324 #endif
325         { 0x67A0, &hawaii_device_info },        /* Hawaii */
326         { 0x67A1, &hawaii_device_info },        /* Hawaii */
327         { 0x67A2, &hawaii_device_info },        /* Hawaii */
328         { 0x67A8, &hawaii_device_info },        /* Hawaii */
329         { 0x67A9, &hawaii_device_info },        /* Hawaii */
330         { 0x67AA, &hawaii_device_info },        /* Hawaii */
331         { 0x67B0, &hawaii_device_info },        /* Hawaii */
332         { 0x67B1, &hawaii_device_info },        /* Hawaii */
333         { 0x67B8, &hawaii_device_info },        /* Hawaii */
334         { 0x67B9, &hawaii_device_info },        /* Hawaii */
335         { 0x67BA, &hawaii_device_info },        /* Hawaii */
336         { 0x67BE, &hawaii_device_info },        /* Hawaii */
337         { 0x6920, &tonga_device_info },         /* Tonga */
338         { 0x6921, &tonga_device_info },         /* Tonga */
339         { 0x6928, &tonga_device_info },         /* Tonga */
340         { 0x6929, &tonga_device_info },         /* Tonga */
341         { 0x692B, &tonga_device_info },         /* Tonga */
342         { 0x6938, &tonga_device_info },         /* Tonga */
343         { 0x6939, &tonga_device_info },         /* Tonga */
344         { 0x7300, &fiji_device_info },          /* Fiji */
345         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
346         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
347         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
348         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
349         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
350         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
351         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
352         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
353         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
354         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
355         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
356         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
357         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
358         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
359         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
360         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
361         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
362         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
363         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
364         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
365         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
366         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
367         { 0x6980, &polaris12_device_info },     /* Polaris12 */
368         { 0x6981, &polaris12_device_info },     /* Polaris12 */
369         { 0x6985, &polaris12_device_info },     /* Polaris12 */
370         { 0x6986, &polaris12_device_info },     /* Polaris12 */
371         { 0x6987, &polaris12_device_info },     /* Polaris12 */
372         { 0x6995, &polaris12_device_info },     /* Polaris12 */
373         { 0x6997, &polaris12_device_info },     /* Polaris12 */
374         { 0x699F, &polaris12_device_info },     /* Polaris12 */
375         { 0x6860, &vega10_device_info },        /* Vega10 */
376         { 0x6861, &vega10_device_info },        /* Vega10 */
377         { 0x6862, &vega10_device_info },        /* Vega10 */
378         { 0x6863, &vega10_device_info },        /* Vega10 */
379         { 0x6864, &vega10_device_info },        /* Vega10 */
380         { 0x6867, &vega10_device_info },        /* Vega10 */
381         { 0x6868, &vega10_device_info },        /* Vega10 */
382         { 0x6869, &vega10_device_info },        /* Vega10 */
383         { 0x686A, &vega10_device_info },        /* Vega10 */
384         { 0x686B, &vega10_device_info },        /* Vega10 */
385         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
386         { 0x686D, &vega10_device_info },        /* Vega10 */
387         { 0x686E, &vega10_device_info },        /* Vega10 */
388         { 0x686F, &vega10_device_info },        /* Vega10 */
389         { 0x687F, &vega10_device_info },        /* Vega10 */
390         { 0x69A0, &vega12_device_info },        /* Vega12 */
391         { 0x69A1, &vega12_device_info },        /* Vega12 */
392         { 0x69A2, &vega12_device_info },        /* Vega12 */
393         { 0x69A3, &vega12_device_info },        /* Vega12 */
394         { 0x69AF, &vega12_device_info },        /* Vega12 */
395         { 0x66a0, &vega20_device_info },        /* Vega20 */
396         { 0x66a1, &vega20_device_info },        /* Vega20 */
397         { 0x66a2, &vega20_device_info },        /* Vega20 */
398         { 0x66a3, &vega20_device_info },        /* Vega20 */
399         { 0x66a4, &vega20_device_info },        /* Vega20 */
400         { 0x66a7, &vega20_device_info },        /* Vega20 */
401         { 0x66af, &vega20_device_info }         /* Vega20 */
402 };
403
404 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
405                                 unsigned int chunk_size);
406 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
407
408 static int kfd_resume(struct kfd_dev *kfd);
409
410 static const struct kfd_device_info *lookup_device_info(unsigned short did)
411 {
412         size_t i;
413
414         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
415                 if (supported_devices[i].did == did) {
416                         WARN_ON(!supported_devices[i].device_info);
417                         return supported_devices[i].device_info;
418                 }
419         }
420
421         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
422                  did);
423
424         return NULL;
425 }
426
427 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
428         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
429 {
430         struct kfd_dev *kfd;
431         int ret;
432         const struct kfd_device_info *device_info =
433                                         lookup_device_info(pdev->device);
434
435         if (!device_info) {
436                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
437                 return NULL;
438         }
439
440         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
441         if (!kfd)
442                 return NULL;
443
444         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
445          * 32 and 64-bit requests are possible and must be
446          * supported.
447          */
448         ret = pci_enable_atomic_ops_to_root(pdev,
449                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
450                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
451         if (device_info->needs_pci_atomics && ret < 0) {
452                 dev_info(kfd_device,
453                          "skipped device %x:%x, PCI rejects atomics\n",
454                          pdev->vendor, pdev->device);
455                 kfree(kfd);
456                 return NULL;
457         } else if (!ret)
458                 kfd->pci_atomic_requested = true;
459
460         kfd->kgd = kgd;
461         kfd->device_info = device_info;
462         kfd->pdev = pdev;
463         kfd->init_complete = false;
464         kfd->kfd2kgd = f2g;
465
466         mutex_init(&kfd->doorbell_mutex);
467         memset(&kfd->doorbell_available_index, 0,
468                 sizeof(kfd->doorbell_available_index));
469
470         return kfd;
471 }
472
473 static void kfd_cwsr_init(struct kfd_dev *kfd)
474 {
475         if (cwsr_enable && kfd->device_info->supports_cwsr) {
476                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
477                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
478                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
479                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
480                 } else {
481                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
482                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
483                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
484                 }
485
486                 kfd->cwsr_enabled = true;
487         }
488 }
489
490 bool kgd2kfd_device_init(struct kfd_dev *kfd,
491                          const struct kgd2kfd_shared_resources *gpu_resources)
492 {
493         unsigned int size;
494
495         kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
496                         KGD_ENGINE_MEC1);
497         kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
498                         KGD_ENGINE_SDMA1);
499         kfd->shared_resources = *gpu_resources;
500
501         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
502         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
503         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
504                         - kfd->vm_info.first_vmid_kfd + 1;
505
506         /* Verify module parameters regarding mapped process number*/
507         if ((hws_max_conc_proc < 0)
508                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
509                 dev_err(kfd_device,
510                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
511                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
512                         kfd->vm_info.vmid_num_kfd);
513                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
514         } else
515                 kfd->max_proc_per_quantum = hws_max_conc_proc;
516
517         /* calculate max size of mqds needed for queues */
518         size = max_num_of_queues_per_device *
519                         kfd->device_info->mqd_size_aligned;
520
521         /*
522          * calculate max size of runlist packet.
523          * There can be only 2 packets at once
524          */
525         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
526                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
527                 + sizeof(struct pm4_mes_runlist)) * 2;
528
529         /* Add size of HIQ & DIQ */
530         size += KFD_KERNEL_QUEUE_SIZE * 2;
531
532         /* add another 512KB for all other allocations on gart (HPD, fences) */
533         size += 512 * 1024;
534
535         if (amdgpu_amdkfd_alloc_gtt_mem(
536                         kfd->kgd, size, &kfd->gtt_mem,
537                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
538                         false)) {
539                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
540                 goto out;
541         }
542
543         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
544
545         /* Initialize GTT sa with 512 byte chunk size */
546         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
547                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
548                 goto kfd_gtt_sa_init_error;
549         }
550
551         if (kfd_doorbell_init(kfd)) {
552                 dev_err(kfd_device,
553                         "Error initializing doorbell aperture\n");
554                 goto kfd_doorbell_error;
555         }
556
557         if (kfd->kfd2kgd->get_hive_id)
558                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
559
560         if (kfd_topology_add_device(kfd)) {
561                 dev_err(kfd_device, "Error adding device to topology\n");
562                 goto kfd_topology_add_device_error;
563         }
564
565         if (kfd_interrupt_init(kfd)) {
566                 dev_err(kfd_device, "Error initializing interrupts\n");
567                 goto kfd_interrupt_error;
568         }
569
570         kfd->dqm = device_queue_manager_init(kfd);
571         if (!kfd->dqm) {
572                 dev_err(kfd_device, "Error initializing queue manager\n");
573                 goto device_queue_manager_error;
574         }
575
576         if (kfd_iommu_device_init(kfd)) {
577                 dev_err(kfd_device, "Error initializing iommuv2\n");
578                 goto device_iommu_error;
579         }
580
581         kfd_cwsr_init(kfd);
582
583         if (kfd_resume(kfd))
584                 goto kfd_resume_error;
585
586         kfd->dbgmgr = NULL;
587
588         kfd->init_complete = true;
589         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
590                  kfd->pdev->device);
591
592         pr_debug("Starting kfd with the following scheduling policy %d\n",
593                 kfd->dqm->sched_policy);
594
595         goto out;
596
597 kfd_resume_error:
598 device_iommu_error:
599         device_queue_manager_uninit(kfd->dqm);
600 device_queue_manager_error:
601         kfd_interrupt_exit(kfd);
602 kfd_interrupt_error:
603         kfd_topology_remove_device(kfd);
604 kfd_topology_add_device_error:
605         kfd_doorbell_fini(kfd);
606 kfd_doorbell_error:
607         kfd_gtt_sa_fini(kfd);
608 kfd_gtt_sa_init_error:
609         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
610         dev_err(kfd_device,
611                 "device %x:%x NOT added due to errors\n",
612                 kfd->pdev->vendor, kfd->pdev->device);
613 out:
614         return kfd->init_complete;
615 }
616
617 void kgd2kfd_device_exit(struct kfd_dev *kfd)
618 {
619         if (kfd->init_complete) {
620                 kgd2kfd_suspend(kfd);
621                 device_queue_manager_uninit(kfd->dqm);
622                 kfd_interrupt_exit(kfd);
623                 kfd_topology_remove_device(kfd);
624                 kfd_doorbell_fini(kfd);
625                 kfd_gtt_sa_fini(kfd);
626                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
627         }
628
629         kfree(kfd);
630 }
631
632 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
633 {
634         if (!kfd->init_complete)
635                 return 0;
636         kgd2kfd_suspend(kfd);
637
638         /* hold dqm->lock to prevent further execution*/
639         dqm_lock(kfd->dqm);
640
641         kfd_signal_reset_event(kfd);
642         return 0;
643 }
644
645 /*
646  * Fix me. KFD won't be able to resume existing process for now.
647  * We will keep all existing process in a evicted state and
648  * wait the process to be terminated.
649  */
650
651 int kgd2kfd_post_reset(struct kfd_dev *kfd)
652 {
653         int ret, count;
654
655         if (!kfd->init_complete)
656                 return 0;
657
658         dqm_unlock(kfd->dqm);
659
660         ret = kfd_resume(kfd);
661         if (ret)
662                 return ret;
663         count = atomic_dec_return(&kfd_locked);
664         WARN_ONCE(count != 0, "KFD reset ref. error");
665         return 0;
666 }
667
668 bool kfd_is_locked(void)
669 {
670         return  (atomic_read(&kfd_locked) > 0);
671 }
672
673 void kgd2kfd_suspend(struct kfd_dev *kfd)
674 {
675         if (!kfd->init_complete)
676                 return;
677
678         /* For first KFD device suspend all the KFD processes */
679         if (atomic_inc_return(&kfd_locked) == 1)
680                 kfd_suspend_all_processes();
681
682         kfd->dqm->ops.stop(kfd->dqm);
683
684         kfd_iommu_suspend(kfd);
685 }
686
687 int kgd2kfd_resume(struct kfd_dev *kfd)
688 {
689         int ret, count;
690
691         if (!kfd->init_complete)
692                 return 0;
693
694         ret = kfd_resume(kfd);
695         if (ret)
696                 return ret;
697
698         count = atomic_dec_return(&kfd_locked);
699         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
700         if (count == 0)
701                 ret = kfd_resume_all_processes();
702
703         return ret;
704 }
705
706 static int kfd_resume(struct kfd_dev *kfd)
707 {
708         int err = 0;
709
710         err = kfd_iommu_resume(kfd);
711         if (err) {
712                 dev_err(kfd_device,
713                         "Failed to resume IOMMU for device %x:%x\n",
714                         kfd->pdev->vendor, kfd->pdev->device);
715                 return err;
716         }
717
718         err = kfd->dqm->ops.start(kfd->dqm);
719         if (err) {
720                 dev_err(kfd_device,
721                         "Error starting queue manager for device %x:%x\n",
722                         kfd->pdev->vendor, kfd->pdev->device);
723                 goto dqm_start_error;
724         }
725
726         return err;
727
728 dqm_start_error:
729         kfd_iommu_suspend(kfd);
730         return err;
731 }
732
733 /* This is called directly from KGD at ISR. */
734 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
735 {
736         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
737         bool is_patched = false;
738         unsigned long flags;
739
740         if (!kfd->init_complete)
741                 return;
742
743         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
744                 dev_err_once(kfd_device, "Ring entry too small\n");
745                 return;
746         }
747
748         spin_lock_irqsave(&kfd->interrupt_lock, flags);
749
750         if (kfd->interrupts_active
751             && interrupt_is_wanted(kfd, ih_ring_entry,
752                                    patched_ihre, &is_patched)
753             && enqueue_ih_ring_entry(kfd,
754                                      is_patched ? patched_ihre : ih_ring_entry))
755                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
756
757         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
758 }
759
760 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
761 {
762         struct kfd_process *p;
763         int r;
764
765         /* Because we are called from arbitrary context (workqueue) as opposed
766          * to process context, kfd_process could attempt to exit while we are
767          * running so the lookup function increments the process ref count.
768          */
769         p = kfd_lookup_process_by_mm(mm);
770         if (!p)
771                 return -ESRCH;
772
773         r = kfd_process_evict_queues(p);
774
775         kfd_unref_process(p);
776         return r;
777 }
778
779 int kgd2kfd_resume_mm(struct mm_struct *mm)
780 {
781         struct kfd_process *p;
782         int r;
783
784         /* Because we are called from arbitrary context (workqueue) as opposed
785          * to process context, kfd_process could attempt to exit while we are
786          * running so the lookup function increments the process ref count.
787          */
788         p = kfd_lookup_process_by_mm(mm);
789         if (!p)
790                 return -ESRCH;
791
792         r = kfd_process_restore_queues(p);
793
794         kfd_unref_process(p);
795         return r;
796 }
797
798 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
799  *   prepare for safe eviction of KFD BOs that belong to the specified
800  *   process.
801  *
802  * @mm: mm_struct that identifies the specified KFD process
803  * @fence: eviction fence attached to KFD process BOs
804  *
805  */
806 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
807                                                struct dma_fence *fence)
808 {
809         struct kfd_process *p;
810         unsigned long active_time;
811         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
812
813         if (!fence)
814                 return -EINVAL;
815
816         if (dma_fence_is_signaled(fence))
817                 return 0;
818
819         p = kfd_lookup_process_by_mm(mm);
820         if (!p)
821                 return -ENODEV;
822
823         if (fence->seqno == p->last_eviction_seqno)
824                 goto out;
825
826         p->last_eviction_seqno = fence->seqno;
827
828         /* Avoid KFD process starvation. Wait for at least
829          * PROCESS_ACTIVE_TIME_MS before evicting the process again
830          */
831         active_time = get_jiffies_64() - p->last_restore_timestamp;
832         if (delay_jiffies > active_time)
833                 delay_jiffies -= active_time;
834         else
835                 delay_jiffies = 0;
836
837         /* During process initialization eviction_work.dwork is initialized
838          * to kfd_evict_bo_worker
839          */
840         schedule_delayed_work(&p->eviction_work, delay_jiffies);
841 out:
842         kfd_unref_process(p);
843         return 0;
844 }
845
846 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
847                                 unsigned int chunk_size)
848 {
849         unsigned int num_of_longs;
850
851         if (WARN_ON(buf_size < chunk_size))
852                 return -EINVAL;
853         if (WARN_ON(buf_size == 0))
854                 return -EINVAL;
855         if (WARN_ON(chunk_size == 0))
856                 return -EINVAL;
857
858         kfd->gtt_sa_chunk_size = chunk_size;
859         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
860
861         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
862                 BITS_PER_LONG;
863
864         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
865
866         if (!kfd->gtt_sa_bitmap)
867                 return -ENOMEM;
868
869         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
870                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
871
872         mutex_init(&kfd->gtt_sa_lock);
873
874         return 0;
875
876 }
877
878 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
879 {
880         mutex_destroy(&kfd->gtt_sa_lock);
881         kfree(kfd->gtt_sa_bitmap);
882 }
883
884 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
885                                                 unsigned int bit_num,
886                                                 unsigned int chunk_size)
887 {
888         return start_addr + bit_num * chunk_size;
889 }
890
891 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
892                                                 unsigned int bit_num,
893                                                 unsigned int chunk_size)
894 {
895         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
896 }
897
898 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
899                         struct kfd_mem_obj **mem_obj)
900 {
901         unsigned int found, start_search, cur_size;
902
903         if (size == 0)
904                 return -EINVAL;
905
906         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
907                 return -ENOMEM;
908
909         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
910         if (!(*mem_obj))
911                 return -ENOMEM;
912
913         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
914
915         start_search = 0;
916
917         mutex_lock(&kfd->gtt_sa_lock);
918
919 kfd_gtt_restart_search:
920         /* Find the first chunk that is free */
921         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
922                                         kfd->gtt_sa_num_of_chunks,
923                                         start_search);
924
925         pr_debug("Found = %d\n", found);
926
927         /* If there wasn't any free chunk, bail out */
928         if (found == kfd->gtt_sa_num_of_chunks)
929                 goto kfd_gtt_no_free_chunk;
930
931         /* Update fields of mem_obj */
932         (*mem_obj)->range_start = found;
933         (*mem_obj)->range_end = found;
934         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
935                                         kfd->gtt_start_gpu_addr,
936                                         found,
937                                         kfd->gtt_sa_chunk_size);
938         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
939                                         kfd->gtt_start_cpu_ptr,
940                                         found,
941                                         kfd->gtt_sa_chunk_size);
942
943         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
944                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
945
946         /* If we need only one chunk, mark it as allocated and get out */
947         if (size <= kfd->gtt_sa_chunk_size) {
948                 pr_debug("Single bit\n");
949                 set_bit(found, kfd->gtt_sa_bitmap);
950                 goto kfd_gtt_out;
951         }
952
953         /* Otherwise, try to see if we have enough contiguous chunks */
954         cur_size = size - kfd->gtt_sa_chunk_size;
955         do {
956                 (*mem_obj)->range_end =
957                         find_next_zero_bit(kfd->gtt_sa_bitmap,
958                                         kfd->gtt_sa_num_of_chunks, ++found);
959                 /*
960                  * If next free chunk is not contiguous than we need to
961                  * restart our search from the last free chunk we found (which
962                  * wasn't contiguous to the previous ones
963                  */
964                 if ((*mem_obj)->range_end != found) {
965                         start_search = found;
966                         goto kfd_gtt_restart_search;
967                 }
968
969                 /*
970                  * If we reached end of buffer, bail out with error
971                  */
972                 if (found == kfd->gtt_sa_num_of_chunks)
973                         goto kfd_gtt_no_free_chunk;
974
975                 /* Check if we don't need another chunk */
976                 if (cur_size <= kfd->gtt_sa_chunk_size)
977                         cur_size = 0;
978                 else
979                         cur_size -= kfd->gtt_sa_chunk_size;
980
981         } while (cur_size > 0);
982
983         pr_debug("range_start = %d, range_end = %d\n",
984                 (*mem_obj)->range_start, (*mem_obj)->range_end);
985
986         /* Mark the chunks as allocated */
987         for (found = (*mem_obj)->range_start;
988                 found <= (*mem_obj)->range_end;
989                 found++)
990                 set_bit(found, kfd->gtt_sa_bitmap);
991
992 kfd_gtt_out:
993         mutex_unlock(&kfd->gtt_sa_lock);
994         return 0;
995
996 kfd_gtt_no_free_chunk:
997         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
998         mutex_unlock(&kfd->gtt_sa_lock);
999         kfree(mem_obj);
1000         return -ENOMEM;
1001 }
1002
1003 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1004 {
1005         unsigned int bit;
1006
1007         /* Act like kfree when trying to free a NULL object */
1008         if (!mem_obj)
1009                 return 0;
1010
1011         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1012                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1013
1014         mutex_lock(&kfd->gtt_sa_lock);
1015
1016         /* Mark the chunks as free */
1017         for (bit = mem_obj->range_start;
1018                 bit <= mem_obj->range_end;
1019                 bit++)
1020                 clear_bit(bit, kfd->gtt_sa_bitmap);
1021
1022         mutex_unlock(&kfd->gtt_sa_lock);
1023
1024         kfree(mem_obj);
1025         return 0;
1026 }
1027
1028 #if defined(CONFIG_DEBUG_FS)
1029
1030 /* This function will send a package to HIQ to hang the HWS
1031  * which will trigger a GPU reset and bring the HWS back to normal state
1032  */
1033 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1034 {
1035         int r = 0;
1036
1037         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1038                 pr_err("HWS is not enabled");
1039                 return -EINVAL;
1040         }
1041
1042         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1043         if (!r)
1044                 r = dqm_debugfs_execute_queues(dev->dqm);
1045
1046         return r;
1047 }
1048
1049 #endif