drm/amdkfd: Add GPU reset SMI event
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "kfd_smi_events.h"
33
34 #define MQD_SIZE_ALIGNED 768
35
36 /*
37  * kfd_locked is used to lock the kfd driver during suspend or reset
38  * once locked, kfd driver will stop any further GPU execution.
39  * create process (open) will return -EAGAIN.
40  */
41 static atomic_t kfd_locked = ATOMIC_INIT(0);
42
43 #ifdef CONFIG_DRM_AMDGPU_CIK
44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
45 #endif
46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
48 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
50 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
51
52 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
53 #ifdef KFD_SUPPORT_IOMMU_V2
54 #ifdef CONFIG_DRM_AMDGPU_CIK
55         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
56 #endif
57         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
58         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
59 #endif
60 #ifdef CONFIG_DRM_AMDGPU_CIK
61         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
62 #endif
63         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
64         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
65         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
66         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
67         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
68         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
69         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
70         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
71         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
72         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
73         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
74         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
75         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
76         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
77         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
78         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
79 };
80
81 #ifdef KFD_SUPPORT_IOMMU_V2
82 static const struct kfd_device_info kaveri_device_info = {
83         .asic_family = CHIP_KAVERI,
84         .asic_name = "kaveri",
85         .max_pasid_bits = 16,
86         /* max num of queues for KV.TODO should be a dynamic value */
87         .max_no_of_hqd  = 24,
88         .doorbell_size  = 4,
89         .ih_ring_entry_size = 4 * sizeof(uint32_t),
90         .event_interrupt_class = &event_interrupt_class_cik,
91         .num_of_watch_points = 4,
92         .mqd_size_aligned = MQD_SIZE_ALIGNED,
93         .supports_cwsr = false,
94         .needs_iommu_device = true,
95         .needs_pci_atomics = false,
96         .num_sdma_engines = 2,
97         .num_xgmi_sdma_engines = 0,
98         .num_sdma_queues_per_engine = 2,
99 };
100
101 static const struct kfd_device_info carrizo_device_info = {
102         .asic_family = CHIP_CARRIZO,
103         .asic_name = "carrizo",
104         .max_pasid_bits = 16,
105         /* max num of queues for CZ.TODO should be a dynamic value */
106         .max_no_of_hqd  = 24,
107         .doorbell_size  = 4,
108         .ih_ring_entry_size = 4 * sizeof(uint32_t),
109         .event_interrupt_class = &event_interrupt_class_cik,
110         .num_of_watch_points = 4,
111         .mqd_size_aligned = MQD_SIZE_ALIGNED,
112         .supports_cwsr = true,
113         .needs_iommu_device = true,
114         .needs_pci_atomics = false,
115         .num_sdma_engines = 2,
116         .num_xgmi_sdma_engines = 0,
117         .num_sdma_queues_per_engine = 2,
118 };
119 #endif
120
121 static const struct kfd_device_info raven_device_info = {
122         .asic_family = CHIP_RAVEN,
123         .asic_name = "raven",
124         .max_pasid_bits = 16,
125         .max_no_of_hqd  = 24,
126         .doorbell_size  = 8,
127         .ih_ring_entry_size = 8 * sizeof(uint32_t),
128         .event_interrupt_class = &event_interrupt_class_v9,
129         .num_of_watch_points = 4,
130         .mqd_size_aligned = MQD_SIZE_ALIGNED,
131         .supports_cwsr = true,
132         .needs_iommu_device = true,
133         .needs_pci_atomics = true,
134         .num_sdma_engines = 1,
135         .num_xgmi_sdma_engines = 0,
136         .num_sdma_queues_per_engine = 2,
137 };
138
139 static const struct kfd_device_info hawaii_device_info = {
140         .asic_family = CHIP_HAWAII,
141         .asic_name = "hawaii",
142         .max_pasid_bits = 16,
143         /* max num of queues for KV.TODO should be a dynamic value */
144         .max_no_of_hqd  = 24,
145         .doorbell_size  = 4,
146         .ih_ring_entry_size = 4 * sizeof(uint32_t),
147         .event_interrupt_class = &event_interrupt_class_cik,
148         .num_of_watch_points = 4,
149         .mqd_size_aligned = MQD_SIZE_ALIGNED,
150         .supports_cwsr = false,
151         .needs_iommu_device = false,
152         .needs_pci_atomics = false,
153         .num_sdma_engines = 2,
154         .num_xgmi_sdma_engines = 0,
155         .num_sdma_queues_per_engine = 2,
156 };
157
158 static const struct kfd_device_info tonga_device_info = {
159         .asic_family = CHIP_TONGA,
160         .asic_name = "tonga",
161         .max_pasid_bits = 16,
162         .max_no_of_hqd  = 24,
163         .doorbell_size  = 4,
164         .ih_ring_entry_size = 4 * sizeof(uint32_t),
165         .event_interrupt_class = &event_interrupt_class_cik,
166         .num_of_watch_points = 4,
167         .mqd_size_aligned = MQD_SIZE_ALIGNED,
168         .supports_cwsr = false,
169         .needs_iommu_device = false,
170         .needs_pci_atomics = true,
171         .num_sdma_engines = 2,
172         .num_xgmi_sdma_engines = 0,
173         .num_sdma_queues_per_engine = 2,
174 };
175
176 static const struct kfd_device_info fiji_device_info = {
177         .asic_family = CHIP_FIJI,
178         .asic_name = "fiji",
179         .max_pasid_bits = 16,
180         .max_no_of_hqd  = 24,
181         .doorbell_size  = 4,
182         .ih_ring_entry_size = 4 * sizeof(uint32_t),
183         .event_interrupt_class = &event_interrupt_class_cik,
184         .num_of_watch_points = 4,
185         .mqd_size_aligned = MQD_SIZE_ALIGNED,
186         .supports_cwsr = true,
187         .needs_iommu_device = false,
188         .needs_pci_atomics = true,
189         .num_sdma_engines = 2,
190         .num_xgmi_sdma_engines = 0,
191         .num_sdma_queues_per_engine = 2,
192 };
193
194 static const struct kfd_device_info fiji_vf_device_info = {
195         .asic_family = CHIP_FIJI,
196         .asic_name = "fiji",
197         .max_pasid_bits = 16,
198         .max_no_of_hqd  = 24,
199         .doorbell_size  = 4,
200         .ih_ring_entry_size = 4 * sizeof(uint32_t),
201         .event_interrupt_class = &event_interrupt_class_cik,
202         .num_of_watch_points = 4,
203         .mqd_size_aligned = MQD_SIZE_ALIGNED,
204         .supports_cwsr = true,
205         .needs_iommu_device = false,
206         .needs_pci_atomics = false,
207         .num_sdma_engines = 2,
208         .num_xgmi_sdma_engines = 0,
209         .num_sdma_queues_per_engine = 2,
210 };
211
212
213 static const struct kfd_device_info polaris10_device_info = {
214         .asic_family = CHIP_POLARIS10,
215         .asic_name = "polaris10",
216         .max_pasid_bits = 16,
217         .max_no_of_hqd  = 24,
218         .doorbell_size  = 4,
219         .ih_ring_entry_size = 4 * sizeof(uint32_t),
220         .event_interrupt_class = &event_interrupt_class_cik,
221         .num_of_watch_points = 4,
222         .mqd_size_aligned = MQD_SIZE_ALIGNED,
223         .supports_cwsr = true,
224         .needs_iommu_device = false,
225         .needs_pci_atomics = true,
226         .num_sdma_engines = 2,
227         .num_xgmi_sdma_engines = 0,
228         .num_sdma_queues_per_engine = 2,
229 };
230
231 static const struct kfd_device_info polaris10_vf_device_info = {
232         .asic_family = CHIP_POLARIS10,
233         .asic_name = "polaris10",
234         .max_pasid_bits = 16,
235         .max_no_of_hqd  = 24,
236         .doorbell_size  = 4,
237         .ih_ring_entry_size = 4 * sizeof(uint32_t),
238         .event_interrupt_class = &event_interrupt_class_cik,
239         .num_of_watch_points = 4,
240         .mqd_size_aligned = MQD_SIZE_ALIGNED,
241         .supports_cwsr = true,
242         .needs_iommu_device = false,
243         .needs_pci_atomics = false,
244         .num_sdma_engines = 2,
245         .num_xgmi_sdma_engines = 0,
246         .num_sdma_queues_per_engine = 2,
247 };
248
249 static const struct kfd_device_info polaris11_device_info = {
250         .asic_family = CHIP_POLARIS11,
251         .asic_name = "polaris11",
252         .max_pasid_bits = 16,
253         .max_no_of_hqd  = 24,
254         .doorbell_size  = 4,
255         .ih_ring_entry_size = 4 * sizeof(uint32_t),
256         .event_interrupt_class = &event_interrupt_class_cik,
257         .num_of_watch_points = 4,
258         .mqd_size_aligned = MQD_SIZE_ALIGNED,
259         .supports_cwsr = true,
260         .needs_iommu_device = false,
261         .needs_pci_atomics = true,
262         .num_sdma_engines = 2,
263         .num_xgmi_sdma_engines = 0,
264         .num_sdma_queues_per_engine = 2,
265 };
266
267 static const struct kfd_device_info polaris12_device_info = {
268         .asic_family = CHIP_POLARIS12,
269         .asic_name = "polaris12",
270         .max_pasid_bits = 16,
271         .max_no_of_hqd  = 24,
272         .doorbell_size  = 4,
273         .ih_ring_entry_size = 4 * sizeof(uint32_t),
274         .event_interrupt_class = &event_interrupt_class_cik,
275         .num_of_watch_points = 4,
276         .mqd_size_aligned = MQD_SIZE_ALIGNED,
277         .supports_cwsr = true,
278         .needs_iommu_device = false,
279         .needs_pci_atomics = true,
280         .num_sdma_engines = 2,
281         .num_xgmi_sdma_engines = 0,
282         .num_sdma_queues_per_engine = 2,
283 };
284
285 static const struct kfd_device_info vegam_device_info = {
286         .asic_family = CHIP_VEGAM,
287         .asic_name = "vegam",
288         .max_pasid_bits = 16,
289         .max_no_of_hqd  = 24,
290         .doorbell_size  = 4,
291         .ih_ring_entry_size = 4 * sizeof(uint32_t),
292         .event_interrupt_class = &event_interrupt_class_cik,
293         .num_of_watch_points = 4,
294         .mqd_size_aligned = MQD_SIZE_ALIGNED,
295         .supports_cwsr = true,
296         .needs_iommu_device = false,
297         .needs_pci_atomics = true,
298         .num_sdma_engines = 2,
299         .num_xgmi_sdma_engines = 0,
300         .num_sdma_queues_per_engine = 2,
301 };
302
303 static const struct kfd_device_info vega10_device_info = {
304         .asic_family = CHIP_VEGA10,
305         .asic_name = "vega10",
306         .max_pasid_bits = 16,
307         .max_no_of_hqd  = 24,
308         .doorbell_size  = 8,
309         .ih_ring_entry_size = 8 * sizeof(uint32_t),
310         .event_interrupt_class = &event_interrupt_class_v9,
311         .num_of_watch_points = 4,
312         .mqd_size_aligned = MQD_SIZE_ALIGNED,
313         .supports_cwsr = true,
314         .needs_iommu_device = false,
315         .needs_pci_atomics = false,
316         .num_sdma_engines = 2,
317         .num_xgmi_sdma_engines = 0,
318         .num_sdma_queues_per_engine = 2,
319 };
320
321 static const struct kfd_device_info vega10_vf_device_info = {
322         .asic_family = CHIP_VEGA10,
323         .asic_name = "vega10",
324         .max_pasid_bits = 16,
325         .max_no_of_hqd  = 24,
326         .doorbell_size  = 8,
327         .ih_ring_entry_size = 8 * sizeof(uint32_t),
328         .event_interrupt_class = &event_interrupt_class_v9,
329         .num_of_watch_points = 4,
330         .mqd_size_aligned = MQD_SIZE_ALIGNED,
331         .supports_cwsr = true,
332         .needs_iommu_device = false,
333         .needs_pci_atomics = false,
334         .num_sdma_engines = 2,
335         .num_xgmi_sdma_engines = 0,
336         .num_sdma_queues_per_engine = 2,
337 };
338
339 static const struct kfd_device_info vega12_device_info = {
340         .asic_family = CHIP_VEGA12,
341         .asic_name = "vega12",
342         .max_pasid_bits = 16,
343         .max_no_of_hqd  = 24,
344         .doorbell_size  = 8,
345         .ih_ring_entry_size = 8 * sizeof(uint32_t),
346         .event_interrupt_class = &event_interrupt_class_v9,
347         .num_of_watch_points = 4,
348         .mqd_size_aligned = MQD_SIZE_ALIGNED,
349         .supports_cwsr = true,
350         .needs_iommu_device = false,
351         .needs_pci_atomics = false,
352         .num_sdma_engines = 2,
353         .num_xgmi_sdma_engines = 0,
354         .num_sdma_queues_per_engine = 2,
355 };
356
357 static const struct kfd_device_info vega20_device_info = {
358         .asic_family = CHIP_VEGA20,
359         .asic_name = "vega20",
360         .max_pasid_bits = 16,
361         .max_no_of_hqd  = 24,
362         .doorbell_size  = 8,
363         .ih_ring_entry_size = 8 * sizeof(uint32_t),
364         .event_interrupt_class = &event_interrupt_class_v9,
365         .num_of_watch_points = 4,
366         .mqd_size_aligned = MQD_SIZE_ALIGNED,
367         .supports_cwsr = true,
368         .needs_iommu_device = false,
369         .needs_pci_atomics = false,
370         .num_sdma_engines = 2,
371         .num_xgmi_sdma_engines = 0,
372         .num_sdma_queues_per_engine = 8,
373 };
374
375 static const struct kfd_device_info arcturus_device_info = {
376         .asic_family = CHIP_ARCTURUS,
377         .asic_name = "arcturus",
378         .max_pasid_bits = 16,
379         .max_no_of_hqd  = 24,
380         .doorbell_size  = 8,
381         .ih_ring_entry_size = 8 * sizeof(uint32_t),
382         .event_interrupt_class = &event_interrupt_class_v9,
383         .num_of_watch_points = 4,
384         .mqd_size_aligned = MQD_SIZE_ALIGNED,
385         .supports_cwsr = true,
386         .needs_iommu_device = false,
387         .needs_pci_atomics = false,
388         .num_sdma_engines = 2,
389         .num_xgmi_sdma_engines = 6,
390         .num_sdma_queues_per_engine = 8,
391 };
392
393 static const struct kfd_device_info renoir_device_info = {
394         .asic_family = CHIP_RENOIR,
395         .asic_name = "renoir",
396         .max_pasid_bits = 16,
397         .max_no_of_hqd  = 24,
398         .doorbell_size  = 8,
399         .ih_ring_entry_size = 8 * sizeof(uint32_t),
400         .event_interrupt_class = &event_interrupt_class_v9,
401         .num_of_watch_points = 4,
402         .mqd_size_aligned = MQD_SIZE_ALIGNED,
403         .supports_cwsr = true,
404         .needs_iommu_device = false,
405         .needs_pci_atomics = false,
406         .num_sdma_engines = 1,
407         .num_xgmi_sdma_engines = 0,
408         .num_sdma_queues_per_engine = 2,
409 };
410
411 static const struct kfd_device_info navi10_device_info = {
412         .asic_family = CHIP_NAVI10,
413         .asic_name = "navi10",
414         .max_pasid_bits = 16,
415         .max_no_of_hqd  = 24,
416         .doorbell_size  = 8,
417         .ih_ring_entry_size = 8 * sizeof(uint32_t),
418         .event_interrupt_class = &event_interrupt_class_v9,
419         .num_of_watch_points = 4,
420         .mqd_size_aligned = MQD_SIZE_ALIGNED,
421         .needs_iommu_device = false,
422         .supports_cwsr = true,
423         .needs_pci_atomics = false,
424         .num_sdma_engines = 2,
425         .num_xgmi_sdma_engines = 0,
426         .num_sdma_queues_per_engine = 8,
427 };
428
429 static const struct kfd_device_info navi12_device_info = {
430         .asic_family = CHIP_NAVI12,
431         .asic_name = "navi12",
432         .max_pasid_bits = 16,
433         .max_no_of_hqd  = 24,
434         .doorbell_size  = 8,
435         .ih_ring_entry_size = 8 * sizeof(uint32_t),
436         .event_interrupt_class = &event_interrupt_class_v9,
437         .num_of_watch_points = 4,
438         .mqd_size_aligned = MQD_SIZE_ALIGNED,
439         .needs_iommu_device = false,
440         .supports_cwsr = true,
441         .needs_pci_atomics = false,
442         .num_sdma_engines = 2,
443         .num_xgmi_sdma_engines = 0,
444         .num_sdma_queues_per_engine = 8,
445 };
446
447 static const struct kfd_device_info navi14_device_info = {
448         .asic_family = CHIP_NAVI14,
449         .asic_name = "navi14",
450         .max_pasid_bits = 16,
451         .max_no_of_hqd  = 24,
452         .doorbell_size  = 8,
453         .ih_ring_entry_size = 8 * sizeof(uint32_t),
454         .event_interrupt_class = &event_interrupt_class_v9,
455         .num_of_watch_points = 4,
456         .mqd_size_aligned = MQD_SIZE_ALIGNED,
457         .needs_iommu_device = false,
458         .supports_cwsr = true,
459         .needs_pci_atomics = false,
460         .num_sdma_engines = 2,
461         .num_xgmi_sdma_engines = 0,
462         .num_sdma_queues_per_engine = 8,
463 };
464
465 static const struct kfd_device_info sienna_cichlid_device_info = {
466         .asic_family = CHIP_SIENNA_CICHLID,
467         .asic_name = "sienna_cichlid",
468         .max_pasid_bits = 16,
469         .max_no_of_hqd  = 24,
470         .doorbell_size  = 8,
471         .ih_ring_entry_size = 8 * sizeof(uint32_t),
472         .event_interrupt_class = &event_interrupt_class_v9,
473         .num_of_watch_points = 4,
474         .mqd_size_aligned = MQD_SIZE_ALIGNED,
475         .needs_iommu_device = false,
476         .supports_cwsr = true,
477         .needs_pci_atomics = false,
478         .num_sdma_engines = 4,
479         .num_xgmi_sdma_engines = 0,
480         .num_sdma_queues_per_engine = 8,
481 };
482
483 static const struct kfd_device_info navy_flounder_device_info = {
484         .asic_family = CHIP_NAVY_FLOUNDER,
485         .asic_name = "navy_flounder",
486         .max_pasid_bits = 16,
487         .max_no_of_hqd  = 24,
488         .doorbell_size  = 8,
489         .ih_ring_entry_size = 8 * sizeof(uint32_t),
490         .event_interrupt_class = &event_interrupt_class_v9,
491         .num_of_watch_points = 4,
492         .mqd_size_aligned = MQD_SIZE_ALIGNED,
493         .needs_iommu_device = false,
494         .supports_cwsr = true,
495         .needs_pci_atomics = false,
496         .num_sdma_engines = 2,
497         .num_xgmi_sdma_engines = 0,
498         .num_sdma_queues_per_engine = 8,
499 };
500
501 /* For each entry, [0] is regular and [1] is virtualisation device. */
502 static const struct kfd_device_info *kfd_supported_devices[][2] = {
503 #ifdef KFD_SUPPORT_IOMMU_V2
504         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
505         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
506         [CHIP_RAVEN] = {&raven_device_info, NULL},
507 #endif
508         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
509         [CHIP_TONGA] = {&tonga_device_info, NULL},
510         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
511         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
512         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
513         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
514         [CHIP_VEGAM] = {&vegam_device_info, NULL},
515         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
516         [CHIP_VEGA12] = {&vega12_device_info, NULL},
517         [CHIP_VEGA20] = {&vega20_device_info, NULL},
518         [CHIP_RENOIR] = {&renoir_device_info, NULL},
519         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
520         [CHIP_NAVI10] = {&navi10_device_info, NULL},
521         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
522         [CHIP_NAVI14] = {&navi14_device_info, NULL},
523         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
524         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
525 };
526
527 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
528                                 unsigned int chunk_size);
529 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
530
531 static int kfd_resume(struct kfd_dev *kfd);
532
533 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
534         struct pci_dev *pdev, unsigned int asic_type, bool vf)
535 {
536         struct kfd_dev *kfd;
537         const struct kfd_device_info *device_info;
538         const struct kfd2kgd_calls *f2g;
539
540         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
541                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
542                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
543                 return NULL; /* asic_type out of range */
544         }
545
546         device_info = kfd_supported_devices[asic_type][vf];
547         f2g = kfd2kgd_funcs[asic_type];
548
549         if (!device_info || !f2g) {
550                 dev_err(kfd_device, "%s %s not supported in kfd\n",
551                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
552                 return NULL;
553         }
554
555         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
556         if (!kfd)
557                 return NULL;
558
559         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
560          * 32 and 64-bit requests are possible and must be
561          * supported.
562          */
563         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
564         if (device_info->needs_pci_atomics &&
565             !kfd->pci_atomic_requested) {
566                 dev_info(kfd_device,
567                          "skipped device %x:%x, PCI rejects atomics\n",
568                          pdev->vendor, pdev->device);
569                 kfree(kfd);
570                 return NULL;
571         }
572
573         kfd->kgd = kgd;
574         kfd->device_info = device_info;
575         kfd->pdev = pdev;
576         kfd->init_complete = false;
577         kfd->kfd2kgd = f2g;
578         atomic_set(&kfd->compute_profile, 0);
579
580         mutex_init(&kfd->doorbell_mutex);
581         memset(&kfd->doorbell_available_index, 0,
582                 sizeof(kfd->doorbell_available_index));
583
584         atomic_set(&kfd->sram_ecc_flag, 0);
585
586         return kfd;
587 }
588
589 static void kfd_cwsr_init(struct kfd_dev *kfd)
590 {
591         if (cwsr_enable && kfd->device_info->supports_cwsr) {
592                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
593                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
594                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
595                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
596                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
597                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
598                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
599                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
600                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
601                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
602                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
603                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
604                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
605                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
606                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
607                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
608                 } else {
609                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
610                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
611                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
612                 }
613
614                 kfd->cwsr_enabled = true;
615         }
616 }
617
618 static int kfd_gws_init(struct kfd_dev *kfd)
619 {
620         int ret = 0;
621
622         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
623                 return 0;
624
625         if (hws_gws_support
626                 || (kfd->device_info->asic_family == CHIP_VEGA10
627                         && kfd->mec2_fw_version >= 0x81b3)
628                 || (kfd->device_info->asic_family >= CHIP_VEGA12
629                         && kfd->device_info->asic_family <= CHIP_RAVEN
630                         && kfd->mec2_fw_version >= 0x1b3)
631                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
632                         && kfd->mec2_fw_version >= 0x30))
633                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
634                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
635
636         return ret;
637 }
638
639 static void kfd_smi_init(struct kfd_dev *dev) {
640         INIT_LIST_HEAD(&dev->smi_clients);
641         spin_lock_init(&dev->smi_lock);
642 }
643
644 bool kgd2kfd_device_init(struct kfd_dev *kfd,
645                          struct drm_device *ddev,
646                          const struct kgd2kfd_shared_resources *gpu_resources)
647 {
648         unsigned int size;
649
650         kfd->ddev = ddev;
651         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
652                         KGD_ENGINE_MEC1);
653         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
654                         KGD_ENGINE_MEC2);
655         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
656                         KGD_ENGINE_SDMA1);
657         kfd->shared_resources = *gpu_resources;
658
659         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
660         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
661         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
662                         - kfd->vm_info.first_vmid_kfd + 1;
663
664         /* Verify module parameters regarding mapped process number*/
665         if ((hws_max_conc_proc < 0)
666                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
667                 dev_err(kfd_device,
668                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
669                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
670                         kfd->vm_info.vmid_num_kfd);
671                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
672         } else
673                 kfd->max_proc_per_quantum = hws_max_conc_proc;
674
675         /* calculate max size of mqds needed for queues */
676         size = max_num_of_queues_per_device *
677                         kfd->device_info->mqd_size_aligned;
678
679         /*
680          * calculate max size of runlist packet.
681          * There can be only 2 packets at once
682          */
683         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
684                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
685                 + sizeof(struct pm4_mes_runlist)) * 2;
686
687         /* Add size of HIQ & DIQ */
688         size += KFD_KERNEL_QUEUE_SIZE * 2;
689
690         /* add another 512KB for all other allocations on gart (HPD, fences) */
691         size += 512 * 1024;
692
693         if (amdgpu_amdkfd_alloc_gtt_mem(
694                         kfd->kgd, size, &kfd->gtt_mem,
695                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
696                         false)) {
697                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
698                 goto alloc_gtt_mem_failure;
699         }
700
701         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
702
703         /* Initialize GTT sa with 512 byte chunk size */
704         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
705                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
706                 goto kfd_gtt_sa_init_error;
707         }
708
709         if (kfd_doorbell_init(kfd)) {
710                 dev_err(kfd_device,
711                         "Error initializing doorbell aperture\n");
712                 goto kfd_doorbell_error;
713         }
714
715         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
716
717         kfd->unique_id = amdgpu_amdkfd_get_unique_id(kfd->kgd);
718
719         if (kfd_interrupt_init(kfd)) {
720                 dev_err(kfd_device, "Error initializing interrupts\n");
721                 goto kfd_interrupt_error;
722         }
723
724         kfd->dqm = device_queue_manager_init(kfd);
725         if (!kfd->dqm) {
726                 dev_err(kfd_device, "Error initializing queue manager\n");
727                 goto device_queue_manager_error;
728         }
729
730         /* If supported on this device, allocate global GWS that is shared
731          * by all KFD processes
732          */
733         if (kfd_gws_init(kfd)) {
734                 dev_err(kfd_device, "Could not allocate %d gws\n",
735                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
736                 goto gws_error;
737         }
738
739         /* If CRAT is broken, won't set iommu enabled */
740         kfd_double_confirm_iommu_support(kfd);
741
742         if (kfd_iommu_device_init(kfd)) {
743                 dev_err(kfd_device, "Error initializing iommuv2\n");
744                 goto device_iommu_error;
745         }
746
747         kfd_cwsr_init(kfd);
748
749         if (kfd_resume(kfd))
750                 goto kfd_resume_error;
751
752         kfd->dbgmgr = NULL;
753
754         if (kfd_topology_add_device(kfd)) {
755                 dev_err(kfd_device, "Error adding device to topology\n");
756                 goto kfd_topology_add_device_error;
757         }
758
759         kfd_smi_init(kfd);
760
761         kfd->init_complete = true;
762         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
763                  kfd->pdev->device);
764
765         pr_debug("Starting kfd with the following scheduling policy %d\n",
766                 kfd->dqm->sched_policy);
767
768         goto out;
769
770 kfd_topology_add_device_error:
771 kfd_resume_error:
772 device_iommu_error:
773 gws_error:
774         device_queue_manager_uninit(kfd->dqm);
775 device_queue_manager_error:
776         kfd_interrupt_exit(kfd);
777 kfd_interrupt_error:
778         kfd_doorbell_fini(kfd);
779 kfd_doorbell_error:
780         kfd_gtt_sa_fini(kfd);
781 kfd_gtt_sa_init_error:
782         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
783 alloc_gtt_mem_failure:
784         if (kfd->gws)
785                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
786         dev_err(kfd_device,
787                 "device %x:%x NOT added due to errors\n",
788                 kfd->pdev->vendor, kfd->pdev->device);
789 out:
790         return kfd->init_complete;
791 }
792
793 void kgd2kfd_device_exit(struct kfd_dev *kfd)
794 {
795         if (kfd->init_complete) {
796                 kgd2kfd_suspend(kfd, false);
797                 device_queue_manager_uninit(kfd->dqm);
798                 kfd_interrupt_exit(kfd);
799                 kfd_topology_remove_device(kfd);
800                 kfd_doorbell_fini(kfd);
801                 kfd_gtt_sa_fini(kfd);
802                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
803                 if (kfd->gws)
804                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
805         }
806
807         kfree(kfd);
808 }
809
810 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
811 {
812         if (!kfd->init_complete)
813                 return 0;
814
815         kfd_smi_event_update_gpu_reset(kfd, false);
816
817         kfd->dqm->ops.pre_reset(kfd->dqm);
818
819         kgd2kfd_suspend(kfd, false);
820
821         kfd_signal_reset_event(kfd);
822         return 0;
823 }
824
825 /*
826  * Fix me. KFD won't be able to resume existing process for now.
827  * We will keep all existing process in a evicted state and
828  * wait the process to be terminated.
829  */
830
831 int kgd2kfd_post_reset(struct kfd_dev *kfd)
832 {
833         int ret;
834
835         if (!kfd->init_complete)
836                 return 0;
837
838         ret = kfd_resume(kfd);
839         if (ret)
840                 return ret;
841         atomic_dec(&kfd_locked);
842
843         atomic_set(&kfd->sram_ecc_flag, 0);
844
845         kfd_smi_event_update_gpu_reset(kfd, true);
846
847         return 0;
848 }
849
850 bool kfd_is_locked(void)
851 {
852         return  (atomic_read(&kfd_locked) > 0);
853 }
854
855 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
856 {
857         if (!kfd->init_complete)
858                 return;
859
860         /* for runtime suspend, skip locking kfd */
861         if (!run_pm) {
862                 /* For first KFD device suspend all the KFD processes */
863                 if (atomic_inc_return(&kfd_locked) == 1)
864                         kfd_suspend_all_processes();
865         }
866
867         kfd->dqm->ops.stop(kfd->dqm);
868         kfd_iommu_suspend(kfd);
869 }
870
871 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
872 {
873         int ret, count;
874
875         if (!kfd->init_complete)
876                 return 0;
877
878         ret = kfd_resume(kfd);
879         if (ret)
880                 return ret;
881
882         /* for runtime resume, skip unlocking kfd */
883         if (!run_pm) {
884                 count = atomic_dec_return(&kfd_locked);
885                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
886                 if (count == 0)
887                         ret = kfd_resume_all_processes();
888         }
889
890         return ret;
891 }
892
893 static int kfd_resume(struct kfd_dev *kfd)
894 {
895         int err = 0;
896
897         err = kfd_iommu_resume(kfd);
898         if (err) {
899                 dev_err(kfd_device,
900                         "Failed to resume IOMMU for device %x:%x\n",
901                         kfd->pdev->vendor, kfd->pdev->device);
902                 return err;
903         }
904
905         err = kfd->dqm->ops.start(kfd->dqm);
906         if (err) {
907                 dev_err(kfd_device,
908                         "Error starting queue manager for device %x:%x\n",
909                         kfd->pdev->vendor, kfd->pdev->device);
910                 goto dqm_start_error;
911         }
912
913         return err;
914
915 dqm_start_error:
916         kfd_iommu_suspend(kfd);
917         return err;
918 }
919
920 static inline void kfd_queue_work(struct workqueue_struct *wq,
921                                   struct work_struct *work)
922 {
923         int cpu, new_cpu;
924
925         cpu = new_cpu = smp_processor_id();
926         do {
927                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
928                 if (cpu_to_node(new_cpu) == numa_node_id())
929                         break;
930         } while (cpu != new_cpu);
931
932         queue_work_on(new_cpu, wq, work);
933 }
934
935 /* This is called directly from KGD at ISR. */
936 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
937 {
938         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
939         bool is_patched = false;
940         unsigned long flags;
941
942         if (!kfd->init_complete)
943                 return;
944
945         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
946                 dev_err_once(kfd_device, "Ring entry too small\n");
947                 return;
948         }
949
950         spin_lock_irqsave(&kfd->interrupt_lock, flags);
951
952         if (kfd->interrupts_active
953             && interrupt_is_wanted(kfd, ih_ring_entry,
954                                    patched_ihre, &is_patched)
955             && enqueue_ih_ring_entry(kfd,
956                                      is_patched ? patched_ihre : ih_ring_entry))
957                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
958
959         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
960 }
961
962 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
963 {
964         struct kfd_process *p;
965         int r;
966
967         /* Because we are called from arbitrary context (workqueue) as opposed
968          * to process context, kfd_process could attempt to exit while we are
969          * running so the lookup function increments the process ref count.
970          */
971         p = kfd_lookup_process_by_mm(mm);
972         if (!p)
973                 return -ESRCH;
974
975         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
976         r = kfd_process_evict_queues(p);
977
978         kfd_unref_process(p);
979         return r;
980 }
981
982 int kgd2kfd_resume_mm(struct mm_struct *mm)
983 {
984         struct kfd_process *p;
985         int r;
986
987         /* Because we are called from arbitrary context (workqueue) as opposed
988          * to process context, kfd_process could attempt to exit while we are
989          * running so the lookup function increments the process ref count.
990          */
991         p = kfd_lookup_process_by_mm(mm);
992         if (!p)
993                 return -ESRCH;
994
995         r = kfd_process_restore_queues(p);
996
997         kfd_unref_process(p);
998         return r;
999 }
1000
1001 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1002  *   prepare for safe eviction of KFD BOs that belong to the specified
1003  *   process.
1004  *
1005  * @mm: mm_struct that identifies the specified KFD process
1006  * @fence: eviction fence attached to KFD process BOs
1007  *
1008  */
1009 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1010                                                struct dma_fence *fence)
1011 {
1012         struct kfd_process *p;
1013         unsigned long active_time;
1014         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1015
1016         if (!fence)
1017                 return -EINVAL;
1018
1019         if (dma_fence_is_signaled(fence))
1020                 return 0;
1021
1022         p = kfd_lookup_process_by_mm(mm);
1023         if (!p)
1024                 return -ENODEV;
1025
1026         if (fence->seqno == p->last_eviction_seqno)
1027                 goto out;
1028
1029         p->last_eviction_seqno = fence->seqno;
1030
1031         /* Avoid KFD process starvation. Wait for at least
1032          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1033          */
1034         active_time = get_jiffies_64() - p->last_restore_timestamp;
1035         if (delay_jiffies > active_time)
1036                 delay_jiffies -= active_time;
1037         else
1038                 delay_jiffies = 0;
1039
1040         /* During process initialization eviction_work.dwork is initialized
1041          * to kfd_evict_bo_worker
1042          */
1043         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1044              p->lead_thread->pid, delay_jiffies);
1045         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1046 out:
1047         kfd_unref_process(p);
1048         return 0;
1049 }
1050
1051 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1052                                 unsigned int chunk_size)
1053 {
1054         unsigned int num_of_longs;
1055
1056         if (WARN_ON(buf_size < chunk_size))
1057                 return -EINVAL;
1058         if (WARN_ON(buf_size == 0))
1059                 return -EINVAL;
1060         if (WARN_ON(chunk_size == 0))
1061                 return -EINVAL;
1062
1063         kfd->gtt_sa_chunk_size = chunk_size;
1064         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1065
1066         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1067                 BITS_PER_LONG;
1068
1069         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1070
1071         if (!kfd->gtt_sa_bitmap)
1072                 return -ENOMEM;
1073
1074         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1075                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1076
1077         mutex_init(&kfd->gtt_sa_lock);
1078
1079         return 0;
1080
1081 }
1082
1083 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1084 {
1085         mutex_destroy(&kfd->gtt_sa_lock);
1086         kfree(kfd->gtt_sa_bitmap);
1087 }
1088
1089 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1090                                                 unsigned int bit_num,
1091                                                 unsigned int chunk_size)
1092 {
1093         return start_addr + bit_num * chunk_size;
1094 }
1095
1096 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1097                                                 unsigned int bit_num,
1098                                                 unsigned int chunk_size)
1099 {
1100         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1101 }
1102
1103 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1104                         struct kfd_mem_obj **mem_obj)
1105 {
1106         unsigned int found, start_search, cur_size;
1107
1108         if (size == 0)
1109                 return -EINVAL;
1110
1111         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1112                 return -ENOMEM;
1113
1114         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1115         if (!(*mem_obj))
1116                 return -ENOMEM;
1117
1118         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1119
1120         start_search = 0;
1121
1122         mutex_lock(&kfd->gtt_sa_lock);
1123
1124 kfd_gtt_restart_search:
1125         /* Find the first chunk that is free */
1126         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1127                                         kfd->gtt_sa_num_of_chunks,
1128                                         start_search);
1129
1130         pr_debug("Found = %d\n", found);
1131
1132         /* If there wasn't any free chunk, bail out */
1133         if (found == kfd->gtt_sa_num_of_chunks)
1134                 goto kfd_gtt_no_free_chunk;
1135
1136         /* Update fields of mem_obj */
1137         (*mem_obj)->range_start = found;
1138         (*mem_obj)->range_end = found;
1139         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1140                                         kfd->gtt_start_gpu_addr,
1141                                         found,
1142                                         kfd->gtt_sa_chunk_size);
1143         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1144                                         kfd->gtt_start_cpu_ptr,
1145                                         found,
1146                                         kfd->gtt_sa_chunk_size);
1147
1148         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1149                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1150
1151         /* If we need only one chunk, mark it as allocated and get out */
1152         if (size <= kfd->gtt_sa_chunk_size) {
1153                 pr_debug("Single bit\n");
1154                 set_bit(found, kfd->gtt_sa_bitmap);
1155                 goto kfd_gtt_out;
1156         }
1157
1158         /* Otherwise, try to see if we have enough contiguous chunks */
1159         cur_size = size - kfd->gtt_sa_chunk_size;
1160         do {
1161                 (*mem_obj)->range_end =
1162                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1163                                         kfd->gtt_sa_num_of_chunks, ++found);
1164                 /*
1165                  * If next free chunk is not contiguous than we need to
1166                  * restart our search from the last free chunk we found (which
1167                  * wasn't contiguous to the previous ones
1168                  */
1169                 if ((*mem_obj)->range_end != found) {
1170                         start_search = found;
1171                         goto kfd_gtt_restart_search;
1172                 }
1173
1174                 /*
1175                  * If we reached end of buffer, bail out with error
1176                  */
1177                 if (found == kfd->gtt_sa_num_of_chunks)
1178                         goto kfd_gtt_no_free_chunk;
1179
1180                 /* Check if we don't need another chunk */
1181                 if (cur_size <= kfd->gtt_sa_chunk_size)
1182                         cur_size = 0;
1183                 else
1184                         cur_size -= kfd->gtt_sa_chunk_size;
1185
1186         } while (cur_size > 0);
1187
1188         pr_debug("range_start = %d, range_end = %d\n",
1189                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1190
1191         /* Mark the chunks as allocated */
1192         for (found = (*mem_obj)->range_start;
1193                 found <= (*mem_obj)->range_end;
1194                 found++)
1195                 set_bit(found, kfd->gtt_sa_bitmap);
1196
1197 kfd_gtt_out:
1198         mutex_unlock(&kfd->gtt_sa_lock);
1199         return 0;
1200
1201 kfd_gtt_no_free_chunk:
1202         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1203         mutex_unlock(&kfd->gtt_sa_lock);
1204         kfree(*mem_obj);
1205         return -ENOMEM;
1206 }
1207
1208 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1209 {
1210         unsigned int bit;
1211
1212         /* Act like kfree when trying to free a NULL object */
1213         if (!mem_obj)
1214                 return 0;
1215
1216         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1217                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1218
1219         mutex_lock(&kfd->gtt_sa_lock);
1220
1221         /* Mark the chunks as free */
1222         for (bit = mem_obj->range_start;
1223                 bit <= mem_obj->range_end;
1224                 bit++)
1225                 clear_bit(bit, kfd->gtt_sa_bitmap);
1226
1227         mutex_unlock(&kfd->gtt_sa_lock);
1228
1229         kfree(mem_obj);
1230         return 0;
1231 }
1232
1233 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1234 {
1235         if (kfd)
1236                 atomic_inc(&kfd->sram_ecc_flag);
1237 }
1238
1239 void kfd_inc_compute_active(struct kfd_dev *kfd)
1240 {
1241         if (atomic_inc_return(&kfd->compute_profile) == 1)
1242                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1243 }
1244
1245 void kfd_dec_compute_active(struct kfd_dev *kfd)
1246 {
1247         int count = atomic_dec_return(&kfd->compute_profile);
1248
1249         if (count == 0)
1250                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1251         WARN_ONCE(count < 0, "Compute profile ref. count error");
1252 }
1253
1254 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1255 {
1256         if (kfd)
1257                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1258 }
1259
1260 #if defined(CONFIG_DEBUG_FS)
1261
1262 /* This function will send a package to HIQ to hang the HWS
1263  * which will trigger a GPU reset and bring the HWS back to normal state
1264  */
1265 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1266 {
1267         int r = 0;
1268
1269         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1270                 pr_err("HWS is not enabled");
1271                 return -EINVAL;
1272         }
1273
1274         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1275         if (!r)
1276                 r = dqm_debugfs_execute_queues(dev->dqm);
1277
1278         return r;
1279 }
1280
1281 #endif