drm/amdkfd: fix uninitialized variable use
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_crat.c
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *      @total_cu_count - Total CUs present in the GPU including ones
39  *                        masked off
40  */
41 static inline unsigned int get_and_inc_gpu_processor_id(
42                                 unsigned int total_cu_count)
43 {
44         int current_id = gpu_processor_id_low;
45
46         gpu_processor_id_low += total_cu_count;
47         return current_id;
48 }
49
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52         uint32_t        cache_size;
53         uint32_t        cache_level;
54         uint32_t        flags;
55         /* Indicates how many Compute Units share this cache
56          * Value = 1 indicates the cache is not shared
57          */
58         uint32_t        num_cu_shared;
59 };
60
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62         {
63                 /* TCP L1 Cache per CU */
64                 .cache_size = 16,
65                 .cache_level = 1,
66                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
67                                 CRAT_CACHE_FLAGS_DATA_CACHE |
68                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
69                 .num_cu_shared = 1,
70
71         },
72         {
73                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
74                 .cache_size = 16,
75                 .cache_level = 1,
76                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
77                                 CRAT_CACHE_FLAGS_INST_CACHE |
78                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
79                 .num_cu_shared = 2,
80         },
81         {
82                 /* Scalar L1 Data Cache (in SQC module) per bank */
83                 .cache_size = 8,
84                 .cache_level = 1,
85                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
86                                 CRAT_CACHE_FLAGS_DATA_CACHE |
87                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
88                 .num_cu_shared = 2,
89         },
90
91         /* TODO: Add L2 Cache information */
92 };
93
94
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96         {
97                 /* TCP L1 Cache per CU */
98                 .cache_size = 16,
99                 .cache_level = 1,
100                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
101                                 CRAT_CACHE_FLAGS_DATA_CACHE |
102                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
103                 .num_cu_shared = 1,
104         },
105         {
106                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
107                 .cache_size = 8,
108                 .cache_level = 1,
109                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
110                                 CRAT_CACHE_FLAGS_INST_CACHE |
111                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
112                 .num_cu_shared = 4,
113         },
114         {
115                 /* Scalar L1 Data Cache (in SQC module) per bank. */
116                 .cache_size = 4,
117                 .cache_level = 1,
118                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
119                                 CRAT_CACHE_FLAGS_DATA_CACHE |
120                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
121                 .num_cu_shared = 4,
122         },
123
124         /* TODO: Add L2 Cache information */
125 };
126
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135
136 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
137                 struct crat_subtype_computeunit *cu)
138 {
139         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
140         dev->node_props.cpu_core_id_base = cu->processor_id_low;
141         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
142                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
143
144         pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
145                         cu->processor_id_low);
146 }
147
148 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
149                 struct crat_subtype_computeunit *cu)
150 {
151         dev->node_props.simd_id_base = cu->processor_id_low;
152         dev->node_props.simd_count = cu->num_simd_cores;
153         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
154         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
155         dev->node_props.wave_front_size = cu->wave_front_size;
156         dev->node_props.array_count = cu->array_count;
157         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
158         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
159         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
160         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
161                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
162         pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
163 }
164
165 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
166  * topology device present in the device_list
167  */
168 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
169                                 struct list_head *device_list)
170 {
171         struct kfd_topology_device *dev;
172
173         pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
174                         cu->proximity_domain, cu->hsa_capability);
175         list_for_each_entry(dev, device_list, list) {
176                 if (cu->proximity_domain == dev->proximity_domain) {
177                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
178                                 kfd_populated_cu_info_cpu(dev, cu);
179
180                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
181                                 kfd_populated_cu_info_gpu(dev, cu);
182                         break;
183                 }
184         }
185
186         return 0;
187 }
188
189 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
190  * topology device present in the device_list
191  */
192 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
193                                 struct list_head *device_list)
194 {
195         struct kfd_mem_properties *props;
196         struct kfd_topology_device *dev;
197
198         pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
199                         mem->proximity_domain);
200         list_for_each_entry(dev, device_list, list) {
201                 if (mem->proximity_domain == dev->proximity_domain) {
202                         props = kfd_alloc_struct(props);
203                         if (!props)
204                                 return -ENOMEM;
205
206                         /* We're on GPU node */
207                         if (dev->node_props.cpu_cores_count == 0) {
208                                 /* APU */
209                                 if (mem->visibility_type == 0)
210                                         props->heap_type =
211                                                 HSA_MEM_HEAP_TYPE_FB_PRIVATE;
212                                 /* dGPU */
213                                 else
214                                         props->heap_type = mem->visibility_type;
215                         } else
216                                 props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
217
218                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
219                                 props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
220                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
221                                 props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
222
223                         props->size_in_bytes =
224                                 ((uint64_t)mem->length_high << 32) +
225                                                         mem->length_low;
226                         props->width = mem->width;
227
228                         dev->node_props.mem_banks_count++;
229                         list_add_tail(&props->list, &dev->mem_props);
230
231                         break;
232                 }
233         }
234
235         return 0;
236 }
237
238 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
239  * topology device present in the device_list
240  */
241 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
242                         struct list_head *device_list)
243 {
244         struct kfd_cache_properties *props;
245         struct kfd_topology_device *dev;
246         uint32_t id;
247         uint32_t total_num_of_cu;
248
249         id = cache->processor_id_low;
250
251         pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
252         list_for_each_entry(dev, device_list, list) {
253                 total_num_of_cu = (dev->node_props.array_count *
254                                         dev->node_props.cu_per_simd_array);
255
256                 /* Cache infomration in CRAT doesn't have proximity_domain
257                  * information as it is associated with a CPU core or GPU
258                  * Compute Unit. So map the cache using CPU core Id or SIMD
259                  * (GPU) ID.
260                  * TODO: This works because currently we can safely assume that
261                  *  Compute Units are parsed before caches are parsed. In
262                  *  future, remove this dependency
263                  */
264                 if ((id >= dev->node_props.cpu_core_id_base &&
265                         id <= dev->node_props.cpu_core_id_base +
266                                 dev->node_props.cpu_cores_count) ||
267                         (id >= dev->node_props.simd_id_base &&
268                         id < dev->node_props.simd_id_base +
269                                 total_num_of_cu)) {
270                         props = kfd_alloc_struct(props);
271                         if (!props)
272                                 return -ENOMEM;
273
274                         props->processor_id_low = id;
275                         props->cache_level = cache->cache_level;
276                         props->cache_size = cache->cache_size;
277                         props->cacheline_size = cache->cache_line_size;
278                         props->cachelines_per_tag = cache->lines_per_tag;
279                         props->cache_assoc = cache->associativity;
280                         props->cache_latency = cache->cache_latency;
281                         memcpy(props->sibling_map, cache->sibling_map,
282                                         sizeof(props->sibling_map));
283
284                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
285                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
286                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
287                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
288                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
289                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
290                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
291                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
292
293                         dev->cache_count++;
294                         dev->node_props.caches_count++;
295                         list_add_tail(&props->list, &dev->cache_props);
296
297                         break;
298                 }
299         }
300
301         return 0;
302 }
303
304 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
305  * topology device present in the device_list
306  */
307 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
308                                         struct list_head *device_list)
309 {
310         struct kfd_iolink_properties *props = NULL, *props2;
311         struct kfd_topology_device *dev, *cpu_dev;
312         uint32_t id_from;
313         uint32_t id_to;
314
315         id_from = iolink->proximity_domain_from;
316         id_to = iolink->proximity_domain_to;
317
318         pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
319                         id_from);
320         list_for_each_entry(dev, device_list, list) {
321                 if (id_from == dev->proximity_domain) {
322                         props = kfd_alloc_struct(props);
323                         if (!props)
324                                 return -ENOMEM;
325
326                         props->node_from = id_from;
327                         props->node_to = id_to;
328                         props->ver_maj = iolink->version_major;
329                         props->ver_min = iolink->version_minor;
330                         props->iolink_type = iolink->io_interface_type;
331
332                         if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
333                                 props->weight = 20;
334                         else
335                                 props->weight = node_distance(id_from, id_to);
336
337                         props->min_latency = iolink->minimum_latency;
338                         props->max_latency = iolink->maximum_latency;
339                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
340                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
341                         props->rec_transfer_size =
342                                         iolink->recommended_transfer_size;
343
344                         dev->io_link_count++;
345                         dev->node_props.io_links_count++;
346                         list_add_tail(&props->list, &dev->io_link_props);
347                         break;
348                 }
349         }
350
351         /* CPU topology is created before GPUs are detected, so CPU->GPU
352          * links are not built at that time. If a PCIe type is discovered, it
353          * means a GPU is detected and we are adding GPU->CPU to the topology.
354          * At this time, also add the corresponded CPU->GPU link.
355          */
356         if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
357                 cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
358                 if (!cpu_dev)
359                         return -ENODEV;
360                 /* same everything but the other direction */
361                 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
362                 props2->node_from = id_to;
363                 props2->node_to = id_from;
364                 props2->kobj = NULL;
365                 cpu_dev->io_link_count++;
366                 cpu_dev->node_props.io_links_count++;
367                 list_add_tail(&props2->list, &cpu_dev->io_link_props);
368         }
369
370         return 0;
371 }
372
373 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
374  * present in the device_list
375  *      @sub_type_hdr - subtype section of crat_image
376  *      @device_list - list of topology devices present in this crat_image
377  */
378 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
379                                 struct list_head *device_list)
380 {
381         struct crat_subtype_computeunit *cu;
382         struct crat_subtype_memory *mem;
383         struct crat_subtype_cache *cache;
384         struct crat_subtype_iolink *iolink;
385         int ret = 0;
386
387         switch (sub_type_hdr->type) {
388         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
389                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
390                 ret = kfd_parse_subtype_cu(cu, device_list);
391                 break;
392         case CRAT_SUBTYPE_MEMORY_AFFINITY:
393                 mem = (struct crat_subtype_memory *)sub_type_hdr;
394                 ret = kfd_parse_subtype_mem(mem, device_list);
395                 break;
396         case CRAT_SUBTYPE_CACHE_AFFINITY:
397                 cache = (struct crat_subtype_cache *)sub_type_hdr;
398                 ret = kfd_parse_subtype_cache(cache, device_list);
399                 break;
400         case CRAT_SUBTYPE_TLB_AFFINITY:
401                 /*
402                  * For now, nothing to do here
403                  */
404                 pr_debug("Found TLB entry in CRAT table (not processing)\n");
405                 break;
406         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
407                 /*
408                  * For now, nothing to do here
409                  */
410                 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
411                 break;
412         case CRAT_SUBTYPE_IOLINK_AFFINITY:
413                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
414                 ret = kfd_parse_subtype_iolink(iolink, device_list);
415                 break;
416         default:
417                 pr_warn("Unknown subtype %d in CRAT\n",
418                                 sub_type_hdr->type);
419         }
420
421         return ret;
422 }
423
424 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
425  * create a kfd_topology_device and add in to device_list. Also parse
426  * CRAT subtypes and attach it to appropriate kfd_topology_device
427  *      @crat_image - input image containing CRAT
428  *      @device_list - [OUT] list of kfd_topology_device generated after
429  *                     parsing crat_image
430  *      @proximity_domain - Proximity domain of the first device in the table
431  *
432  *      Return - 0 if successful else -ve value
433  */
434 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
435                          uint32_t proximity_domain)
436 {
437         struct kfd_topology_device *top_dev = NULL;
438         struct crat_subtype_generic *sub_type_hdr;
439         uint16_t node_id;
440         int ret = 0;
441         struct crat_header *crat_table = (struct crat_header *)crat_image;
442         uint16_t num_nodes;
443         uint32_t image_len;
444
445         if (!crat_image)
446                 return -EINVAL;
447
448         if (!list_empty(device_list)) {
449                 pr_warn("Error device list should be empty\n");
450                 return -EINVAL;
451         }
452
453         num_nodes = crat_table->num_domains;
454         image_len = crat_table->length;
455
456         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
457
458         for (node_id = 0; node_id < num_nodes; node_id++) {
459                 top_dev = kfd_create_topology_device(device_list);
460                 if (!top_dev)
461                         break;
462                 top_dev->proximity_domain = proximity_domain++;
463         }
464
465         if (!top_dev) {
466                 ret = -ENOMEM;
467                 goto err;
468         }
469
470         memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
471         memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
472                         CRAT_OEMTABLEID_LENGTH);
473         top_dev->oem_revision = crat_table->oem_revision;
474
475         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
476         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
477                         ((char *)crat_image) + image_len) {
478                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
479                         ret = kfd_parse_subtype(sub_type_hdr, device_list);
480                         if (ret)
481                                 break;
482                 }
483
484                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
485                                 sub_type_hdr->length);
486         }
487
488 err:
489         if (ret)
490                 kfd_release_topology_device_list(device_list);
491
492         return ret;
493 }
494
495 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
496 static int fill_in_pcache(struct crat_subtype_cache *pcache,
497                                 struct kfd_gpu_cache_info *pcache_info,
498                                 struct kfd_cu_info *cu_info,
499                                 int mem_available,
500                                 int cu_bitmask,
501                                 int cache_type, unsigned int cu_processor_id,
502                                 int cu_block)
503 {
504         unsigned int cu_sibling_map_mask;
505         int first_active_cu;
506
507         /* First check if enough memory is available */
508         if (sizeof(struct crat_subtype_cache) > mem_available)
509                 return -ENOMEM;
510
511         cu_sibling_map_mask = cu_bitmask;
512         cu_sibling_map_mask >>= cu_block;
513         cu_sibling_map_mask &=
514                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
515         first_active_cu = ffs(cu_sibling_map_mask);
516
517         /* CU could be inactive. In case of shared cache find the first active
518          * CU. and incase of non-shared cache check if the CU is inactive. If
519          * inactive active skip it
520          */
521         if (first_active_cu) {
522                 memset(pcache, 0, sizeof(struct crat_subtype_cache));
523                 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
524                 pcache->length = sizeof(struct crat_subtype_cache);
525                 pcache->flags = pcache_info[cache_type].flags;
526                 pcache->processor_id_low = cu_processor_id
527                                          + (first_active_cu - 1);
528                 pcache->cache_level = pcache_info[cache_type].cache_level;
529                 pcache->cache_size = pcache_info[cache_type].cache_size;
530
531                 /* Sibling map is w.r.t processor_id_low, so shift out
532                  * inactive CU
533                  */
534                 cu_sibling_map_mask =
535                         cu_sibling_map_mask >> (first_active_cu - 1);
536
537                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
538                 pcache->sibling_map[1] =
539                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
540                 pcache->sibling_map[2] =
541                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
542                 pcache->sibling_map[3] =
543                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
544                 return 0;
545         }
546         return 1;
547 }
548
549 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
550  * tables
551  *
552  *      @kdev - [IN] GPU device
553  *      @gpu_processor_id - [IN] GPU processor ID to which these caches
554  *                          associate
555  *      @available_size - [IN] Amount of memory available in pcache
556  *      @cu_info - [IN] Compute Unit info obtained from KGD
557  *      @pcache - [OUT] memory into which cache data is to be filled in.
558  *      @size_filled - [OUT] amount of data used up in pcache.
559  *      @num_of_entries - [OUT] number of caches added
560  */
561 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
562                         int gpu_processor_id,
563                         int available_size,
564                         struct kfd_cu_info *cu_info,
565                         struct crat_subtype_cache *pcache,
566                         int *size_filled,
567                         int *num_of_entries)
568 {
569         struct kfd_gpu_cache_info *pcache_info;
570         int num_of_cache_types = 0;
571         int i, j, k;
572         int ct = 0;
573         int mem_available = available_size;
574         unsigned int cu_processor_id;
575         int ret;
576
577         switch (kdev->device_info->asic_family) {
578         case CHIP_KAVERI:
579                 pcache_info = kaveri_cache_info;
580                 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
581                 break;
582         case CHIP_HAWAII:
583                 pcache_info = hawaii_cache_info;
584                 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
585                 break;
586         case CHIP_CARRIZO:
587                 pcache_info = carrizo_cache_info;
588                 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
589                 break;
590         case CHIP_TONGA:
591                 pcache_info = tonga_cache_info;
592                 num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
593                 break;
594         case CHIP_FIJI:
595                 pcache_info = fiji_cache_info;
596                 num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
597                 break;
598         case CHIP_POLARIS10:
599                 pcache_info = polaris10_cache_info;
600                 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
601                 break;
602         case CHIP_POLARIS11:
603                 pcache_info = polaris11_cache_info;
604                 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
605                 break;
606         default:
607                 return -EINVAL;
608         }
609
610         *size_filled = 0;
611         *num_of_entries = 0;
612
613         /* For each type of cache listed in the kfd_gpu_cache_info table,
614          * go through all available Compute Units.
615          * The [i,j,k] loop will
616          *              if kfd_gpu_cache_info.num_cu_shared = 1
617          *                      will parse through all available CU
618          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
619          *                      then it will consider only one CU from
620          *                      the shared unit
621          */
622
623         for (ct = 0; ct < num_of_cache_types; ct++) {
624                 cu_processor_id = gpu_processor_id;
625                 for (i = 0; i < cu_info->num_shader_engines; i++) {
626                         for (j = 0; j < cu_info->num_shader_arrays_per_engine;
627                                 j++) {
628                                 for (k = 0; k < cu_info->num_cu_per_sh;
629                                         k += pcache_info[ct].num_cu_shared) {
630
631                                         ret = fill_in_pcache(pcache,
632                                                 pcache_info,
633                                                 cu_info,
634                                                 mem_available,
635                                                 cu_info->cu_bitmap[i][j],
636                                                 ct,
637                                                 cu_processor_id,
638                                                 k);
639
640                                         if (ret < 0)
641                                                 break;
642
643                                         if (!ret) {
644                                                 pcache++;
645                                                 (*num_of_entries)++;
646                                                 mem_available -=
647                                                         sizeof(*pcache);
648                                                 (*size_filled) +=
649                                                         sizeof(*pcache);
650                                         }
651
652                                         /* Move to next CU block */
653                                         cu_processor_id +=
654                                                 pcache_info[ct].num_cu_shared;
655                                 }
656                         }
657                 }
658         }
659
660         pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
661
662         return 0;
663 }
664
665 /*
666  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
667  * copies CRAT from ACPI (if available).
668  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
669  *
670  *      @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
671  *                   crat_image will be NULL
672  *      @size: [OUT] size of crat_image
673  *
674  *      Return 0 if successful else return error code
675  */
676 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
677 {
678         struct acpi_table_header *crat_table;
679         acpi_status status;
680         void *pcrat_image;
681
682         if (!crat_image)
683                 return -EINVAL;
684
685         *crat_image = NULL;
686
687         /* Fetch the CRAT table from ACPI */
688         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
689         if (status == AE_NOT_FOUND) {
690                 pr_warn("CRAT table not found\n");
691                 return -ENODATA;
692         } else if (ACPI_FAILURE(status)) {
693                 const char *err = acpi_format_exception(status);
694
695                 pr_err("CRAT table error: %s\n", err);
696                 return -EINVAL;
697         }
698
699         if (ignore_crat) {
700                 pr_info("CRAT table disabled by module option\n");
701                 return -ENODATA;
702         }
703
704         pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
705         if (!pcrat_image)
706                 return -ENOMEM;
707
708         memcpy(pcrat_image, crat_table, crat_table->length);
709
710         *crat_image = pcrat_image;
711         *size = crat_table->length;
712
713         return 0;
714 }
715
716 /* Memory required to create Virtual CRAT.
717  * Since there is no easy way to predict the amount of memory required, the
718  * following amount are allocated for CPU and GPU Virtual CRAT. This is
719  * expected to cover all known conditions. But to be safe additional check
720  * is put in the code to ensure we don't overwrite.
721  */
722 #define VCRAT_SIZE_FOR_CPU      (2 * PAGE_SIZE)
723 #define VCRAT_SIZE_FOR_GPU      (3 * PAGE_SIZE)
724
725 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
726  *
727  *      @numa_node_id: CPU NUMA node id
728  *      @avail_size: Available size in the memory
729  *      @sub_type_hdr: Memory into which compute info will be filled in
730  *
731  *      Return 0 if successful else return -ve value
732  */
733 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
734                                 int proximity_domain,
735                                 struct crat_subtype_computeunit *sub_type_hdr)
736 {
737         const struct cpumask *cpumask;
738
739         *avail_size -= sizeof(struct crat_subtype_computeunit);
740         if (*avail_size < 0)
741                 return -ENOMEM;
742
743         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
744
745         /* Fill in subtype header data */
746         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
747         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
748         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
749
750         cpumask = cpumask_of_node(numa_node_id);
751
752         /* Fill in CU data */
753         sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
754         sub_type_hdr->proximity_domain = proximity_domain;
755         sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
756         if (sub_type_hdr->processor_id_low == -1)
757                 return -EINVAL;
758
759         sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
760
761         return 0;
762 }
763
764 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
765  *
766  *      @numa_node_id: CPU NUMA node id
767  *      @avail_size: Available size in the memory
768  *      @sub_type_hdr: Memory into which compute info will be filled in
769  *
770  *      Return 0 if successful else return -ve value
771  */
772 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
773                         int proximity_domain,
774                         struct crat_subtype_memory *sub_type_hdr)
775 {
776         uint64_t mem_in_bytes = 0;
777         pg_data_t *pgdat;
778         int zone_type;
779
780         *avail_size -= sizeof(struct crat_subtype_memory);
781         if (*avail_size < 0)
782                 return -ENOMEM;
783
784         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
785
786         /* Fill in subtype header data */
787         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
788         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
789         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
790
791         /* Fill in Memory Subunit data */
792
793         /* Unlike si_meminfo, si_meminfo_node is not exported. So
794          * the following lines are duplicated from si_meminfo_node
795          * function
796          */
797         pgdat = NODE_DATA(numa_node_id);
798         for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
799                 mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
800         mem_in_bytes <<= PAGE_SHIFT;
801
802         sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
803         sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
804         sub_type_hdr->proximity_domain = proximity_domain;
805
806         return 0;
807 }
808
809 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
810                                 uint32_t *num_entries,
811                                 struct crat_subtype_iolink *sub_type_hdr)
812 {
813         int nid;
814         struct cpuinfo_x86 *c = &cpu_data(0);
815         uint8_t link_type;
816
817         if (c->x86_vendor == X86_VENDOR_AMD)
818                 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
819         else
820                 link_type = CRAT_IOLINK_TYPE_QPI_1_1;
821
822         *num_entries = 0;
823
824         /* Create IO links from this node to other CPU nodes */
825         for_each_online_node(nid) {
826                 if (nid == numa_node_id) /* node itself */
827                         continue;
828
829                 *avail_size -= sizeof(struct crat_subtype_iolink);
830                 if (*avail_size < 0)
831                         return -ENOMEM;
832
833                 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
834
835                 /* Fill in subtype header data */
836                 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
837                 sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
838                 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
839
840                 /* Fill in IO link data */
841                 sub_type_hdr->proximity_domain_from = numa_node_id;
842                 sub_type_hdr->proximity_domain_to = nid;
843                 sub_type_hdr->io_interface_type = link_type;
844
845                 (*num_entries)++;
846                 sub_type_hdr++;
847         }
848
849         return 0;
850 }
851
852 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
853  *
854  *      @pcrat_image: Fill in VCRAT for CPU
855  *      @size:  [IN] allocated size of crat_image.
856  *              [OUT] actual size of data filled in crat_image
857  */
858 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
859 {
860         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
861         struct acpi_table_header *acpi_table;
862         acpi_status status;
863         struct crat_subtype_generic *sub_type_hdr;
864         int avail_size = *size;
865         int numa_node_id;
866         uint32_t entries = 0;
867         int ret = 0;
868
869         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
870                 return -EINVAL;
871
872         /* Fill in CRAT Header.
873          * Modify length and total_entries as subunits are added.
874          */
875         avail_size -= sizeof(struct crat_header);
876         if (avail_size < 0)
877                 return -ENOMEM;
878
879         memset(crat_table, 0, sizeof(struct crat_header));
880         memcpy(&crat_table->signature, CRAT_SIGNATURE,
881                         sizeof(crat_table->signature));
882         crat_table->length = sizeof(struct crat_header);
883
884         status = acpi_get_table("DSDT", 0, &acpi_table);
885         if (status != AE_OK)
886                 pr_warn("DSDT table not found for OEM information\n");
887         else {
888                 crat_table->oem_revision = acpi_table->revision;
889                 memcpy(crat_table->oem_id, acpi_table->oem_id,
890                                 CRAT_OEMID_LENGTH);
891                 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
892                                 CRAT_OEMTABLEID_LENGTH);
893         }
894         crat_table->total_entries = 0;
895         crat_table->num_domains = 0;
896
897         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
898
899         for_each_online_node(numa_node_id) {
900                 if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
901                         continue;
902
903                 /* Fill in Subtype: Compute Unit */
904                 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
905                         crat_table->num_domains,
906                         (struct crat_subtype_computeunit *)sub_type_hdr);
907                 if (ret < 0)
908                         return ret;
909                 crat_table->length += sub_type_hdr->length;
910                 crat_table->total_entries++;
911
912                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
913                         sub_type_hdr->length);
914
915                 /* Fill in Subtype: Memory */
916                 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
917                         crat_table->num_domains,
918                         (struct crat_subtype_memory *)sub_type_hdr);
919                 if (ret < 0)
920                         return ret;
921                 crat_table->length += sub_type_hdr->length;
922                 crat_table->total_entries++;
923
924                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
925                         sub_type_hdr->length);
926
927                 /* Fill in Subtype: IO Link */
928                 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
929                                 &entries,
930                                 (struct crat_subtype_iolink *)sub_type_hdr);
931                 if (ret < 0)
932                         return ret;
933                 crat_table->length += (sub_type_hdr->length * entries);
934                 crat_table->total_entries += entries;
935
936                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
937                                 sub_type_hdr->length * entries);
938
939                 crat_table->num_domains++;
940         }
941
942         /* TODO: Add cache Subtype for CPU.
943          * Currently, CPU cache information is available in function
944          * detect_cache_attributes(cpu) defined in the file
945          * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
946          * exported and to get the same information the code needs to be
947          * duplicated.
948          */
949
950         *size = crat_table->length;
951         pr_info("Virtual CRAT table created for CPU\n");
952
953         return 0;
954 }
955
956 static int kfd_fill_gpu_memory_affinity(int *avail_size,
957                 struct kfd_dev *kdev, uint8_t type, uint64_t size,
958                 struct crat_subtype_memory *sub_type_hdr,
959                 uint32_t proximity_domain,
960                 const struct kfd_local_mem_info *local_mem_info)
961 {
962         *avail_size -= sizeof(struct crat_subtype_memory);
963         if (*avail_size < 0)
964                 return -ENOMEM;
965
966         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
967         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
968         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
969         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
970
971         sub_type_hdr->proximity_domain = proximity_domain;
972
973         pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
974                         type, size);
975
976         sub_type_hdr->length_low = lower_32_bits(size);
977         sub_type_hdr->length_high = upper_32_bits(size);
978
979         sub_type_hdr->width = local_mem_info->vram_width;
980         sub_type_hdr->visibility_type = type;
981
982         return 0;
983 }
984
985 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
986  * to its NUMA node
987  *      @avail_size: Available size in the memory
988  *      @kdev - [IN] GPU device
989  *      @sub_type_hdr: Memory into which io link info will be filled in
990  *      @proximity_domain - proximity domain of the GPU node
991  *
992  *      Return 0 if successful else return -ve value
993  */
994 static int kfd_fill_gpu_direct_io_link(int *avail_size,
995                         struct kfd_dev *kdev,
996                         struct crat_subtype_iolink *sub_type_hdr,
997                         uint32_t proximity_domain)
998 {
999         *avail_size -= sizeof(struct crat_subtype_iolink);
1000         if (*avail_size < 0)
1001                 return -ENOMEM;
1002
1003         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1004
1005         /* Fill in subtype header data */
1006         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1007         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1008         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1009
1010         /* Fill in IOLINK subtype.
1011          * TODO: Fill-in other fields of iolink subtype
1012          */
1013         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1014         sub_type_hdr->proximity_domain_from = proximity_domain;
1015 #ifdef CONFIG_NUMA
1016         if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1017                 sub_type_hdr->proximity_domain_to = 0;
1018         else
1019                 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1020 #else
1021         sub_type_hdr->proximity_domain_to = 0;
1022 #endif
1023         return 0;
1024 }
1025
1026 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1027  *
1028  *      @pcrat_image: Fill in VCRAT for GPU
1029  *      @size:  [IN] allocated size of crat_image.
1030  *              [OUT] actual size of data filled in crat_image
1031  */
1032 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1033                                       size_t *size, struct kfd_dev *kdev,
1034                                       uint32_t proximity_domain)
1035 {
1036         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1037         struct crat_subtype_generic *sub_type_hdr;
1038         struct crat_subtype_computeunit *cu;
1039         struct kfd_cu_info cu_info;
1040         int avail_size = *size;
1041         uint32_t total_num_of_cu;
1042         int num_of_cache_entries = 0;
1043         int cache_mem_filled = 0;
1044         int ret = 0;
1045         struct kfd_local_mem_info local_mem_info;
1046
1047         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1048                 return -EINVAL;
1049
1050         /* Fill the CRAT Header.
1051          * Modify length and total_entries as subunits are added.
1052          */
1053         avail_size -= sizeof(struct crat_header);
1054         if (avail_size < 0)
1055                 return -ENOMEM;
1056
1057         memset(crat_table, 0, sizeof(struct crat_header));
1058
1059         memcpy(&crat_table->signature, CRAT_SIGNATURE,
1060                         sizeof(crat_table->signature));
1061         /* Change length as we add more subtypes*/
1062         crat_table->length = sizeof(struct crat_header);
1063         crat_table->num_domains = 1;
1064         crat_table->total_entries = 0;
1065
1066         /* Fill in Subtype: Compute Unit
1067          * First fill in the sub type header and then sub type data
1068          */
1069         avail_size -= sizeof(struct crat_subtype_computeunit);
1070         if (avail_size < 0)
1071                 return -ENOMEM;
1072
1073         sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1074         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1075
1076         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1077         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1078         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1079
1080         /* Fill CU subtype data */
1081         cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1082         cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1083         cu->proximity_domain = proximity_domain;
1084
1085         kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1086         cu->num_simd_per_cu = cu_info.simd_per_cu;
1087         cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1088         cu->max_waves_simd = cu_info.max_waves_per_simd;
1089
1090         cu->wave_front_size = cu_info.wave_front_size;
1091         cu->array_count = cu_info.num_shader_arrays_per_engine *
1092                 cu_info.num_shader_engines;
1093         total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1094         cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1095         cu->num_cu_per_array = cu_info.num_cu_per_sh;
1096         cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1097         cu->num_banks = cu_info.num_shader_engines;
1098         cu->lds_size_in_kb = cu_info.lds_size;
1099
1100         cu->hsa_capability = 0;
1101
1102         /* Check if this node supports IOMMU. During parsing this flag will
1103          * translate to HSA_CAP_ATS_PRESENT
1104          */
1105         if (!kfd_iommu_check_device(kdev))
1106                 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1107
1108         crat_table->length += sub_type_hdr->length;
1109         crat_table->total_entries++;
1110
1111         /* Fill in Subtype: Memory. Only on systems with large BAR (no
1112          * private FB), report memory as public. On other systems
1113          * report the total FB size (public+private) as a single
1114          * private heap.
1115          */
1116         kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1117         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1118                         sub_type_hdr->length);
1119
1120         if (local_mem_info.local_mem_size_private == 0)
1121                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1122                                 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1123                                 local_mem_info.local_mem_size_public,
1124                                 (struct crat_subtype_memory *)sub_type_hdr,
1125                                 proximity_domain,
1126                                 &local_mem_info);
1127         else
1128                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1129                                 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1130                                 local_mem_info.local_mem_size_public +
1131                                 local_mem_info.local_mem_size_private,
1132                                 (struct crat_subtype_memory *)sub_type_hdr,
1133                                 proximity_domain,
1134                                 &local_mem_info);
1135         if (ret < 0)
1136                 return ret;
1137
1138         crat_table->length += sizeof(struct crat_subtype_memory);
1139         crat_table->total_entries++;
1140
1141         /* TODO: Fill in cache information. This information is NOT readily
1142          * available in KGD
1143          */
1144         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1145                 sub_type_hdr->length);
1146         ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1147                                 avail_size,
1148                                 &cu_info,
1149                                 (struct crat_subtype_cache *)sub_type_hdr,
1150                                 &cache_mem_filled,
1151                                 &num_of_cache_entries);
1152
1153         if (ret < 0)
1154                 return ret;
1155
1156         crat_table->length += cache_mem_filled;
1157         crat_table->total_entries += num_of_cache_entries;
1158         avail_size -= cache_mem_filled;
1159
1160         /* Fill in Subtype: IO_LINKS
1161          *  Only direct links are added here which is Link from GPU to
1162          *  to its NUMA node. Indirect links are added by userspace.
1163          */
1164         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1165                 cache_mem_filled);
1166         ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
1167                 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1168
1169         if (ret < 0)
1170                 return ret;
1171
1172         crat_table->length += sub_type_hdr->length;
1173         crat_table->total_entries++;
1174
1175         *size = crat_table->length;
1176         pr_info("Virtual CRAT table created for GPU\n");
1177
1178         return ret;
1179 }
1180
1181 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1182  *              creates a Virtual CRAT (VCRAT) image
1183  *
1184  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1185  *
1186  *      @crat_image: VCRAT image created because ACPI does not have a
1187  *                   CRAT for this device
1188  *      @size: [OUT] size of virtual crat_image
1189  *      @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1190  *              COMPUTE_UNIT_GPU - Create VCRAT for GPU
1191  *              (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1192  *                      -- this option is not currently implemented.
1193  *                      The assumption is that all AMD APUs will have CRAT
1194  *      @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1195  *
1196  *      Return 0 if successful else return -ve value
1197  */
1198 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1199                                   int flags, struct kfd_dev *kdev,
1200                                   uint32_t proximity_domain)
1201 {
1202         void *pcrat_image = NULL;
1203         int ret = 0;
1204
1205         if (!crat_image)
1206                 return -EINVAL;
1207
1208         *crat_image = NULL;
1209
1210         /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1211          * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1212          * all the current conditions. A check is put not to overwrite beyond
1213          * allocated size
1214          */
1215         switch (flags) {
1216         case COMPUTE_UNIT_CPU:
1217                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1218                 if (!pcrat_image)
1219                         return -ENOMEM;
1220                 *size = VCRAT_SIZE_FOR_CPU;
1221                 ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1222                 break;
1223         case COMPUTE_UNIT_GPU:
1224                 if (!kdev)
1225                         return -EINVAL;
1226                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1227                 if (!pcrat_image)
1228                         return -ENOMEM;
1229                 *size = VCRAT_SIZE_FOR_GPU;
1230                 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1231                                                  proximity_domain);
1232                 break;
1233         case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1234                 /* TODO: */
1235                 ret = -EINVAL;
1236                 pr_err("VCRAT not implemented for APU\n");
1237                 break;
1238         default:
1239                 ret = -EINVAL;
1240         }
1241
1242         if (!ret)
1243                 *crat_image = pcrat_image;
1244         else
1245                 kfree(pcrat_image);
1246
1247         return ret;
1248 }
1249
1250
1251 /* kfd_destroy_crat_image
1252  *
1253  *      @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1254  *
1255  */
1256 void kfd_destroy_crat_image(void *crat_image)
1257 {
1258         kfree(crat_image);
1259 }