56412b0e7e1c73d79ff2a701b5da7a54affb258a
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_crat.c
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *      @total_cu_count - Total CUs present in the GPU including ones
39  *                        masked off
40  */
41 static inline unsigned int get_and_inc_gpu_processor_id(
42                                 unsigned int total_cu_count)
43 {
44         int current_id = gpu_processor_id_low;
45
46         gpu_processor_id_low += total_cu_count;
47         return current_id;
48 }
49
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52         uint32_t        cache_size;
53         uint32_t        cache_level;
54         uint32_t        flags;
55         /* Indicates how many Compute Units share this cache
56          * Value = 1 indicates the cache is not shared
57          */
58         uint32_t        num_cu_shared;
59 };
60
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62         {
63                 /* TCP L1 Cache per CU */
64                 .cache_size = 16,
65                 .cache_level = 1,
66                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
67                                 CRAT_CACHE_FLAGS_DATA_CACHE |
68                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
69                 .num_cu_shared = 1,
70
71         },
72         {
73                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
74                 .cache_size = 16,
75                 .cache_level = 1,
76                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
77                                 CRAT_CACHE_FLAGS_INST_CACHE |
78                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
79                 .num_cu_shared = 2,
80         },
81         {
82                 /* Scalar L1 Data Cache (in SQC module) per bank */
83                 .cache_size = 8,
84                 .cache_level = 1,
85                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
86                                 CRAT_CACHE_FLAGS_DATA_CACHE |
87                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
88                 .num_cu_shared = 2,
89         },
90
91         /* TODO: Add L2 Cache information */
92 };
93
94
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96         {
97                 /* TCP L1 Cache per CU */
98                 .cache_size = 16,
99                 .cache_level = 1,
100                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
101                                 CRAT_CACHE_FLAGS_DATA_CACHE |
102                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
103                 .num_cu_shared = 1,
104         },
105         {
106                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
107                 .cache_size = 8,
108                 .cache_level = 1,
109                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
110                                 CRAT_CACHE_FLAGS_INST_CACHE |
111                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
112                 .num_cu_shared = 4,
113         },
114         {
115                 /* Scalar L1 Data Cache (in SQC module) per bank. */
116                 .cache_size = 4,
117                 .cache_level = 1,
118                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
119                                 CRAT_CACHE_FLAGS_DATA_CACHE |
120                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
121                 .num_cu_shared = 4,
122         },
123
124         /* TODO: Add L2 Cache information */
125 };
126
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135 /* TODO - check & update Vega10 cache details */
136 #define vega10_cache_info carrizo_cache_info
137 #define raven_cache_info carrizo_cache_info
138
139 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
140                 struct crat_subtype_computeunit *cu)
141 {
142         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
143         dev->node_props.cpu_core_id_base = cu->processor_id_low;
144         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
145                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
146
147         pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
148                         cu->processor_id_low);
149 }
150
151 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
152                 struct crat_subtype_computeunit *cu)
153 {
154         dev->node_props.simd_id_base = cu->processor_id_low;
155         dev->node_props.simd_count = cu->num_simd_cores;
156         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
157         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
158         dev->node_props.wave_front_size = cu->wave_front_size;
159         dev->node_props.array_count = cu->array_count;
160         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
161         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
162         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
163         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
164                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
165         pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
166 }
167
168 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
169  * topology device present in the device_list
170  */
171 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
172                                 struct list_head *device_list)
173 {
174         struct kfd_topology_device *dev;
175
176         pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
177                         cu->proximity_domain, cu->hsa_capability);
178         list_for_each_entry(dev, device_list, list) {
179                 if (cu->proximity_domain == dev->proximity_domain) {
180                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
181                                 kfd_populated_cu_info_cpu(dev, cu);
182
183                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
184                                 kfd_populated_cu_info_gpu(dev, cu);
185                         break;
186                 }
187         }
188
189         return 0;
190 }
191
192 static struct kfd_mem_properties *
193 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
194                 struct kfd_topology_device *dev)
195 {
196         struct kfd_mem_properties *props;
197
198         list_for_each_entry(props, &dev->mem_props, list) {
199                 if (props->heap_type == heap_type
200                                 && props->flags == flags
201                                 && props->width == width)
202                         return props;
203         }
204
205         return NULL;
206 }
207 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
208  * topology device present in the device_list
209  */
210 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
211                                 struct list_head *device_list)
212 {
213         struct kfd_mem_properties *props;
214         struct kfd_topology_device *dev;
215         uint32_t heap_type;
216         uint64_t size_in_bytes;
217         uint32_t flags = 0;
218         uint32_t width;
219
220         pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
221                         mem->proximity_domain);
222         list_for_each_entry(dev, device_list, list) {
223                 if (mem->proximity_domain == dev->proximity_domain) {
224                         /* We're on GPU node */
225                         if (dev->node_props.cpu_cores_count == 0) {
226                                 /* APU */
227                                 if (mem->visibility_type == 0)
228                                         heap_type =
229                                                 HSA_MEM_HEAP_TYPE_FB_PRIVATE;
230                                 /* dGPU */
231                                 else
232                                         heap_type = mem->visibility_type;
233                         } else
234                                 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
235
236                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
237                                 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
238                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
239                                 flags |= HSA_MEM_FLAGS_NON_VOLATILE;
240
241                         size_in_bytes =
242                                 ((uint64_t)mem->length_high << 32) +
243                                                         mem->length_low;
244                         width = mem->width;
245
246                         /* Multiple banks of the same type are aggregated into
247                          * one. User mode doesn't care about multiple physical
248                          * memory segments. It's managed as a single virtual
249                          * heap for user mode.
250                          */
251                         props = find_subtype_mem(heap_type, flags, width, dev);
252                         if (props) {
253                                 props->size_in_bytes += size_in_bytes;
254                                 break;
255                         }
256
257                         props = kfd_alloc_struct(props);
258                         if (!props)
259                                 return -ENOMEM;
260
261                         props->heap_type = heap_type;
262                         props->flags = flags;
263                         props->size_in_bytes = size_in_bytes;
264                         props->width = width;
265
266                         dev->node_props.mem_banks_count++;
267                         list_add_tail(&props->list, &dev->mem_props);
268
269                         break;
270                 }
271         }
272
273         return 0;
274 }
275
276 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
277  * topology device present in the device_list
278  */
279 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
280                         struct list_head *device_list)
281 {
282         struct kfd_cache_properties *props;
283         struct kfd_topology_device *dev;
284         uint32_t id;
285         uint32_t total_num_of_cu;
286
287         id = cache->processor_id_low;
288
289         pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
290         list_for_each_entry(dev, device_list, list) {
291                 total_num_of_cu = (dev->node_props.array_count *
292                                         dev->node_props.cu_per_simd_array);
293
294                 /* Cache infomration in CRAT doesn't have proximity_domain
295                  * information as it is associated with a CPU core or GPU
296                  * Compute Unit. So map the cache using CPU core Id or SIMD
297                  * (GPU) ID.
298                  * TODO: This works because currently we can safely assume that
299                  *  Compute Units are parsed before caches are parsed. In
300                  *  future, remove this dependency
301                  */
302                 if ((id >= dev->node_props.cpu_core_id_base &&
303                         id <= dev->node_props.cpu_core_id_base +
304                                 dev->node_props.cpu_cores_count) ||
305                         (id >= dev->node_props.simd_id_base &&
306                         id < dev->node_props.simd_id_base +
307                                 total_num_of_cu)) {
308                         props = kfd_alloc_struct(props);
309                         if (!props)
310                                 return -ENOMEM;
311
312                         props->processor_id_low = id;
313                         props->cache_level = cache->cache_level;
314                         props->cache_size = cache->cache_size;
315                         props->cacheline_size = cache->cache_line_size;
316                         props->cachelines_per_tag = cache->lines_per_tag;
317                         props->cache_assoc = cache->associativity;
318                         props->cache_latency = cache->cache_latency;
319                         memcpy(props->sibling_map, cache->sibling_map,
320                                         sizeof(props->sibling_map));
321
322                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
323                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
324                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
325                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
326                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
327                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
328                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
329                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
330
331                         dev->cache_count++;
332                         dev->node_props.caches_count++;
333                         list_add_tail(&props->list, &dev->cache_props);
334
335                         break;
336                 }
337         }
338
339         return 0;
340 }
341
342 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
343  * topology device present in the device_list
344  */
345 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
346                                         struct list_head *device_list)
347 {
348         struct kfd_iolink_properties *props = NULL, *props2;
349         struct kfd_topology_device *dev, *to_dev;
350         uint32_t id_from;
351         uint32_t id_to;
352
353         id_from = iolink->proximity_domain_from;
354         id_to = iolink->proximity_domain_to;
355
356         pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
357                         id_from, id_to);
358         list_for_each_entry(dev, device_list, list) {
359                 if (id_from == dev->proximity_domain) {
360                         props = kfd_alloc_struct(props);
361                         if (!props)
362                                 return -ENOMEM;
363
364                         props->node_from = id_from;
365                         props->node_to = id_to;
366                         props->ver_maj = iolink->version_major;
367                         props->ver_min = iolink->version_minor;
368                         props->iolink_type = iolink->io_interface_type;
369
370                         if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
371                                 props->weight = 20;
372                         else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
373                                 props->weight = 15;
374                         else
375                                 props->weight = node_distance(id_from, id_to);
376
377                         props->min_latency = iolink->minimum_latency;
378                         props->max_latency = iolink->maximum_latency;
379                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
380                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
381                         props->rec_transfer_size =
382                                         iolink->recommended_transfer_size;
383
384                         dev->io_link_count++;
385                         dev->node_props.io_links_count++;
386                         list_add_tail(&props->list, &dev->io_link_props);
387                         break;
388                 }
389         }
390
391         /* CPU topology is created before GPUs are detected, so CPU->GPU
392          * links are not built at that time. If a PCIe type is discovered, it
393          * means a GPU is detected and we are adding GPU->CPU to the topology.
394          * At this time, also add the corresponded CPU->GPU link if GPU
395          * is large bar.
396          * For xGMI, we only added the link with one direction in the crat
397          * table, add corresponded reversed direction link now.
398          */
399         if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
400                 to_dev = kfd_topology_device_by_proximity_domain(id_to);
401                 if (!to_dev)
402                         return -ENODEV;
403                 /* same everything but the other direction */
404                 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
405                 props2->node_from = id_to;
406                 props2->node_to = id_from;
407                 props2->kobj = NULL;
408                 to_dev->io_link_count++;
409                 to_dev->node_props.io_links_count++;
410                 list_add_tail(&props2->list, &to_dev->io_link_props);
411         }
412
413         return 0;
414 }
415
416 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
417  * present in the device_list
418  *      @sub_type_hdr - subtype section of crat_image
419  *      @device_list - list of topology devices present in this crat_image
420  */
421 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
422                                 struct list_head *device_list)
423 {
424         struct crat_subtype_computeunit *cu;
425         struct crat_subtype_memory *mem;
426         struct crat_subtype_cache *cache;
427         struct crat_subtype_iolink *iolink;
428         int ret = 0;
429
430         switch (sub_type_hdr->type) {
431         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
432                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
433                 ret = kfd_parse_subtype_cu(cu, device_list);
434                 break;
435         case CRAT_SUBTYPE_MEMORY_AFFINITY:
436                 mem = (struct crat_subtype_memory *)sub_type_hdr;
437                 ret = kfd_parse_subtype_mem(mem, device_list);
438                 break;
439         case CRAT_SUBTYPE_CACHE_AFFINITY:
440                 cache = (struct crat_subtype_cache *)sub_type_hdr;
441                 ret = kfd_parse_subtype_cache(cache, device_list);
442                 break;
443         case CRAT_SUBTYPE_TLB_AFFINITY:
444                 /*
445                  * For now, nothing to do here
446                  */
447                 pr_debug("Found TLB entry in CRAT table (not processing)\n");
448                 break;
449         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
450                 /*
451                  * For now, nothing to do here
452                  */
453                 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
454                 break;
455         case CRAT_SUBTYPE_IOLINK_AFFINITY:
456                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
457                 ret = kfd_parse_subtype_iolink(iolink, device_list);
458                 break;
459         default:
460                 pr_warn("Unknown subtype %d in CRAT\n",
461                                 sub_type_hdr->type);
462         }
463
464         return ret;
465 }
466
467 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
468  * create a kfd_topology_device and add in to device_list. Also parse
469  * CRAT subtypes and attach it to appropriate kfd_topology_device
470  *      @crat_image - input image containing CRAT
471  *      @device_list - [OUT] list of kfd_topology_device generated after
472  *                     parsing crat_image
473  *      @proximity_domain - Proximity domain of the first device in the table
474  *
475  *      Return - 0 if successful else -ve value
476  */
477 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
478                          uint32_t proximity_domain)
479 {
480         struct kfd_topology_device *top_dev = NULL;
481         struct crat_subtype_generic *sub_type_hdr;
482         uint16_t node_id;
483         int ret = 0;
484         struct crat_header *crat_table = (struct crat_header *)crat_image;
485         uint16_t num_nodes;
486         uint32_t image_len;
487
488         if (!crat_image)
489                 return -EINVAL;
490
491         if (!list_empty(device_list)) {
492                 pr_warn("Error device list should be empty\n");
493                 return -EINVAL;
494         }
495
496         num_nodes = crat_table->num_domains;
497         image_len = crat_table->length;
498
499         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
500
501         for (node_id = 0; node_id < num_nodes; node_id++) {
502                 top_dev = kfd_create_topology_device(device_list);
503                 if (!top_dev)
504                         break;
505                 top_dev->proximity_domain = proximity_domain++;
506         }
507
508         if (!top_dev) {
509                 ret = -ENOMEM;
510                 goto err;
511         }
512
513         memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
514         memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
515                         CRAT_OEMTABLEID_LENGTH);
516         top_dev->oem_revision = crat_table->oem_revision;
517
518         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
519         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
520                         ((char *)crat_image) + image_len) {
521                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
522                         ret = kfd_parse_subtype(sub_type_hdr, device_list);
523                         if (ret)
524                                 break;
525                 }
526
527                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
528                                 sub_type_hdr->length);
529         }
530
531 err:
532         if (ret)
533                 kfd_release_topology_device_list(device_list);
534
535         return ret;
536 }
537
538 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
539 static int fill_in_pcache(struct crat_subtype_cache *pcache,
540                                 struct kfd_gpu_cache_info *pcache_info,
541                                 struct kfd_cu_info *cu_info,
542                                 int mem_available,
543                                 int cu_bitmask,
544                                 int cache_type, unsigned int cu_processor_id,
545                                 int cu_block)
546 {
547         unsigned int cu_sibling_map_mask;
548         int first_active_cu;
549
550         /* First check if enough memory is available */
551         if (sizeof(struct crat_subtype_cache) > mem_available)
552                 return -ENOMEM;
553
554         cu_sibling_map_mask = cu_bitmask;
555         cu_sibling_map_mask >>= cu_block;
556         cu_sibling_map_mask &=
557                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
558         first_active_cu = ffs(cu_sibling_map_mask);
559
560         /* CU could be inactive. In case of shared cache find the first active
561          * CU. and incase of non-shared cache check if the CU is inactive. If
562          * inactive active skip it
563          */
564         if (first_active_cu) {
565                 memset(pcache, 0, sizeof(struct crat_subtype_cache));
566                 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
567                 pcache->length = sizeof(struct crat_subtype_cache);
568                 pcache->flags = pcache_info[cache_type].flags;
569                 pcache->processor_id_low = cu_processor_id
570                                          + (first_active_cu - 1);
571                 pcache->cache_level = pcache_info[cache_type].cache_level;
572                 pcache->cache_size = pcache_info[cache_type].cache_size;
573
574                 /* Sibling map is w.r.t processor_id_low, so shift out
575                  * inactive CU
576                  */
577                 cu_sibling_map_mask =
578                         cu_sibling_map_mask >> (first_active_cu - 1);
579
580                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
581                 pcache->sibling_map[1] =
582                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
583                 pcache->sibling_map[2] =
584                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
585                 pcache->sibling_map[3] =
586                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
587                 return 0;
588         }
589         return 1;
590 }
591
592 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
593  * tables
594  *
595  *      @kdev - [IN] GPU device
596  *      @gpu_processor_id - [IN] GPU processor ID to which these caches
597  *                          associate
598  *      @available_size - [IN] Amount of memory available in pcache
599  *      @cu_info - [IN] Compute Unit info obtained from KGD
600  *      @pcache - [OUT] memory into which cache data is to be filled in.
601  *      @size_filled - [OUT] amount of data used up in pcache.
602  *      @num_of_entries - [OUT] number of caches added
603  */
604 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
605                         int gpu_processor_id,
606                         int available_size,
607                         struct kfd_cu_info *cu_info,
608                         struct crat_subtype_cache *pcache,
609                         int *size_filled,
610                         int *num_of_entries)
611 {
612         struct kfd_gpu_cache_info *pcache_info;
613         int num_of_cache_types = 0;
614         int i, j, k;
615         int ct = 0;
616         int mem_available = available_size;
617         unsigned int cu_processor_id;
618         int ret;
619
620         switch (kdev->device_info->asic_family) {
621         case CHIP_KAVERI:
622                 pcache_info = kaveri_cache_info;
623                 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
624                 break;
625         case CHIP_HAWAII:
626                 pcache_info = hawaii_cache_info;
627                 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
628                 break;
629         case CHIP_CARRIZO:
630                 pcache_info = carrizo_cache_info;
631                 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
632                 break;
633         case CHIP_TONGA:
634                 pcache_info = tonga_cache_info;
635                 num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
636                 break;
637         case CHIP_FIJI:
638                 pcache_info = fiji_cache_info;
639                 num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
640                 break;
641         case CHIP_POLARIS10:
642                 pcache_info = polaris10_cache_info;
643                 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
644                 break;
645         case CHIP_POLARIS11:
646                 pcache_info = polaris11_cache_info;
647                 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
648                 break;
649         case CHIP_VEGA10:
650         case CHIP_VEGA20:
651                 pcache_info = vega10_cache_info;
652                 num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
653                 break;
654         case CHIP_RAVEN:
655                 pcache_info = raven_cache_info;
656                 num_of_cache_types = ARRAY_SIZE(raven_cache_info);
657                 break;
658         default:
659                 return -EINVAL;
660         }
661
662         *size_filled = 0;
663         *num_of_entries = 0;
664
665         /* For each type of cache listed in the kfd_gpu_cache_info table,
666          * go through all available Compute Units.
667          * The [i,j,k] loop will
668          *              if kfd_gpu_cache_info.num_cu_shared = 1
669          *                      will parse through all available CU
670          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
671          *                      then it will consider only one CU from
672          *                      the shared unit
673          */
674
675         for (ct = 0; ct < num_of_cache_types; ct++) {
676                 cu_processor_id = gpu_processor_id;
677                 for (i = 0; i < cu_info->num_shader_engines; i++) {
678                         for (j = 0; j < cu_info->num_shader_arrays_per_engine;
679                                 j++) {
680                                 for (k = 0; k < cu_info->num_cu_per_sh;
681                                         k += pcache_info[ct].num_cu_shared) {
682
683                                         ret = fill_in_pcache(pcache,
684                                                 pcache_info,
685                                                 cu_info,
686                                                 mem_available,
687                                                 cu_info->cu_bitmap[i][j],
688                                                 ct,
689                                                 cu_processor_id,
690                                                 k);
691
692                                         if (ret < 0)
693                                                 break;
694
695                                         if (!ret) {
696                                                 pcache++;
697                                                 (*num_of_entries)++;
698                                                 mem_available -=
699                                                         sizeof(*pcache);
700                                                 (*size_filled) +=
701                                                         sizeof(*pcache);
702                                         }
703
704                                         /* Move to next CU block */
705                                         cu_processor_id +=
706                                                 pcache_info[ct].num_cu_shared;
707                                 }
708                         }
709                 }
710         }
711
712         pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
713
714         return 0;
715 }
716
717 /*
718  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
719  * copies CRAT from ACPI (if available).
720  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
721  *
722  *      @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
723  *                   crat_image will be NULL
724  *      @size: [OUT] size of crat_image
725  *
726  *      Return 0 if successful else return error code
727  */
728 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
729 {
730         struct acpi_table_header *crat_table;
731         acpi_status status;
732         void *pcrat_image;
733
734         if (!crat_image)
735                 return -EINVAL;
736
737         *crat_image = NULL;
738
739         /* Fetch the CRAT table from ACPI */
740         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
741         if (status == AE_NOT_FOUND) {
742                 pr_warn("CRAT table not found\n");
743                 return -ENODATA;
744         } else if (ACPI_FAILURE(status)) {
745                 const char *err = acpi_format_exception(status);
746
747                 pr_err("CRAT table error: %s\n", err);
748                 return -EINVAL;
749         }
750
751         if (ignore_crat) {
752                 pr_info("CRAT table disabled by module option\n");
753                 return -ENODATA;
754         }
755
756         pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
757         if (!pcrat_image)
758                 return -ENOMEM;
759
760         memcpy(pcrat_image, crat_table, crat_table->length);
761
762         *crat_image = pcrat_image;
763         *size = crat_table->length;
764
765         return 0;
766 }
767
768 /* Memory required to create Virtual CRAT.
769  * Since there is no easy way to predict the amount of memory required, the
770  * following amount are allocated for CPU and GPU Virtual CRAT. This is
771  * expected to cover all known conditions. But to be safe additional check
772  * is put in the code to ensure we don't overwrite.
773  */
774 #define VCRAT_SIZE_FOR_CPU      (2 * PAGE_SIZE)
775 #define VCRAT_SIZE_FOR_GPU      (3 * PAGE_SIZE)
776
777 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
778  *
779  *      @numa_node_id: CPU NUMA node id
780  *      @avail_size: Available size in the memory
781  *      @sub_type_hdr: Memory into which compute info will be filled in
782  *
783  *      Return 0 if successful else return -ve value
784  */
785 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
786                                 int proximity_domain,
787                                 struct crat_subtype_computeunit *sub_type_hdr)
788 {
789         const struct cpumask *cpumask;
790
791         *avail_size -= sizeof(struct crat_subtype_computeunit);
792         if (*avail_size < 0)
793                 return -ENOMEM;
794
795         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
796
797         /* Fill in subtype header data */
798         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
799         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
800         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
801
802         cpumask = cpumask_of_node(numa_node_id);
803
804         /* Fill in CU data */
805         sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
806         sub_type_hdr->proximity_domain = proximity_domain;
807         sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
808         if (sub_type_hdr->processor_id_low == -1)
809                 return -EINVAL;
810
811         sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
812
813         return 0;
814 }
815
816 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
817  *
818  *      @numa_node_id: CPU NUMA node id
819  *      @avail_size: Available size in the memory
820  *      @sub_type_hdr: Memory into which compute info will be filled in
821  *
822  *      Return 0 if successful else return -ve value
823  */
824 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
825                         int proximity_domain,
826                         struct crat_subtype_memory *sub_type_hdr)
827 {
828         uint64_t mem_in_bytes = 0;
829         pg_data_t *pgdat;
830         int zone_type;
831
832         *avail_size -= sizeof(struct crat_subtype_memory);
833         if (*avail_size < 0)
834                 return -ENOMEM;
835
836         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
837
838         /* Fill in subtype header data */
839         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
840         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
841         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
842
843         /* Fill in Memory Subunit data */
844
845         /* Unlike si_meminfo, si_meminfo_node is not exported. So
846          * the following lines are duplicated from si_meminfo_node
847          * function
848          */
849         pgdat = NODE_DATA(numa_node_id);
850         for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
851                 mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
852         mem_in_bytes <<= PAGE_SHIFT;
853
854         sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
855         sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
856         sub_type_hdr->proximity_domain = proximity_domain;
857
858         return 0;
859 }
860
861 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
862                                 uint32_t *num_entries,
863                                 struct crat_subtype_iolink *sub_type_hdr)
864 {
865         int nid;
866         struct cpuinfo_x86 *c = &cpu_data(0);
867         uint8_t link_type;
868
869         if (c->x86_vendor == X86_VENDOR_AMD)
870                 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
871         else
872                 link_type = CRAT_IOLINK_TYPE_QPI_1_1;
873
874         *num_entries = 0;
875
876         /* Create IO links from this node to other CPU nodes */
877         for_each_online_node(nid) {
878                 if (nid == numa_node_id) /* node itself */
879                         continue;
880
881                 *avail_size -= sizeof(struct crat_subtype_iolink);
882                 if (*avail_size < 0)
883                         return -ENOMEM;
884
885                 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
886
887                 /* Fill in subtype header data */
888                 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
889                 sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
890                 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
891
892                 /* Fill in IO link data */
893                 sub_type_hdr->proximity_domain_from = numa_node_id;
894                 sub_type_hdr->proximity_domain_to = nid;
895                 sub_type_hdr->io_interface_type = link_type;
896
897                 (*num_entries)++;
898                 sub_type_hdr++;
899         }
900
901         return 0;
902 }
903
904 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
905  *
906  *      @pcrat_image: Fill in VCRAT for CPU
907  *      @size:  [IN] allocated size of crat_image.
908  *              [OUT] actual size of data filled in crat_image
909  */
910 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
911 {
912         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
913         struct acpi_table_header *acpi_table;
914         acpi_status status;
915         struct crat_subtype_generic *sub_type_hdr;
916         int avail_size = *size;
917         int numa_node_id;
918         uint32_t entries = 0;
919         int ret = 0;
920
921         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
922                 return -EINVAL;
923
924         /* Fill in CRAT Header.
925          * Modify length and total_entries as subunits are added.
926          */
927         avail_size -= sizeof(struct crat_header);
928         if (avail_size < 0)
929                 return -ENOMEM;
930
931         memset(crat_table, 0, sizeof(struct crat_header));
932         memcpy(&crat_table->signature, CRAT_SIGNATURE,
933                         sizeof(crat_table->signature));
934         crat_table->length = sizeof(struct crat_header);
935
936         status = acpi_get_table("DSDT", 0, &acpi_table);
937         if (status != AE_OK)
938                 pr_warn("DSDT table not found for OEM information\n");
939         else {
940                 crat_table->oem_revision = acpi_table->revision;
941                 memcpy(crat_table->oem_id, acpi_table->oem_id,
942                                 CRAT_OEMID_LENGTH);
943                 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
944                                 CRAT_OEMTABLEID_LENGTH);
945         }
946         crat_table->total_entries = 0;
947         crat_table->num_domains = 0;
948
949         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
950
951         for_each_online_node(numa_node_id) {
952                 if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
953                         continue;
954
955                 /* Fill in Subtype: Compute Unit */
956                 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
957                         crat_table->num_domains,
958                         (struct crat_subtype_computeunit *)sub_type_hdr);
959                 if (ret < 0)
960                         return ret;
961                 crat_table->length += sub_type_hdr->length;
962                 crat_table->total_entries++;
963
964                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
965                         sub_type_hdr->length);
966
967                 /* Fill in Subtype: Memory */
968                 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
969                         crat_table->num_domains,
970                         (struct crat_subtype_memory *)sub_type_hdr);
971                 if (ret < 0)
972                         return ret;
973                 crat_table->length += sub_type_hdr->length;
974                 crat_table->total_entries++;
975
976                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
977                         sub_type_hdr->length);
978
979                 /* Fill in Subtype: IO Link */
980                 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
981                                 &entries,
982                                 (struct crat_subtype_iolink *)sub_type_hdr);
983                 if (ret < 0)
984                         return ret;
985                 crat_table->length += (sub_type_hdr->length * entries);
986                 crat_table->total_entries += entries;
987
988                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
989                                 sub_type_hdr->length * entries);
990
991                 crat_table->num_domains++;
992         }
993
994         /* TODO: Add cache Subtype for CPU.
995          * Currently, CPU cache information is available in function
996          * detect_cache_attributes(cpu) defined in the file
997          * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
998          * exported and to get the same information the code needs to be
999          * duplicated.
1000          */
1001
1002         *size = crat_table->length;
1003         pr_info("Virtual CRAT table created for CPU\n");
1004
1005         return 0;
1006 }
1007
1008 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1009                 struct kfd_dev *kdev, uint8_t type, uint64_t size,
1010                 struct crat_subtype_memory *sub_type_hdr,
1011                 uint32_t proximity_domain,
1012                 const struct kfd_local_mem_info *local_mem_info)
1013 {
1014         *avail_size -= sizeof(struct crat_subtype_memory);
1015         if (*avail_size < 0)
1016                 return -ENOMEM;
1017
1018         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1019         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1020         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1021         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1022
1023         sub_type_hdr->proximity_domain = proximity_domain;
1024
1025         pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1026                         type, size);
1027
1028         sub_type_hdr->length_low = lower_32_bits(size);
1029         sub_type_hdr->length_high = upper_32_bits(size);
1030
1031         sub_type_hdr->width = local_mem_info->vram_width;
1032         sub_type_hdr->visibility_type = type;
1033
1034         return 0;
1035 }
1036
1037 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1038  * to its NUMA node
1039  *      @avail_size: Available size in the memory
1040  *      @kdev - [IN] GPU device
1041  *      @sub_type_hdr: Memory into which io link info will be filled in
1042  *      @proximity_domain - proximity domain of the GPU node
1043  *
1044  *      Return 0 if successful else return -ve value
1045  */
1046 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1047                         struct kfd_dev *kdev,
1048                         struct crat_subtype_iolink *sub_type_hdr,
1049                         uint32_t proximity_domain)
1050 {
1051         *avail_size -= sizeof(struct crat_subtype_iolink);
1052         if (*avail_size < 0)
1053                 return -ENOMEM;
1054
1055         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1056
1057         /* Fill in subtype header data */
1058         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1059         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1060         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1061         if (kfd_dev_is_large_bar(kdev))
1062                 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1063
1064         /* Fill in IOLINK subtype.
1065          * TODO: Fill-in other fields of iolink subtype
1066          */
1067         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1068         sub_type_hdr->proximity_domain_from = proximity_domain;
1069 #ifdef CONFIG_NUMA
1070         if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1071                 sub_type_hdr->proximity_domain_to = 0;
1072         else
1073                 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1074 #else
1075         sub_type_hdr->proximity_domain_to = 0;
1076 #endif
1077         return 0;
1078 }
1079
1080 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1081                         struct kfd_dev *kdev,
1082                         struct crat_subtype_iolink *sub_type_hdr,
1083                         uint32_t proximity_domain_from,
1084                         uint32_t proximity_domain_to)
1085 {
1086         *avail_size -= sizeof(struct crat_subtype_iolink);
1087         if (*avail_size < 0)
1088                 return -ENOMEM;
1089
1090         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1091
1092         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1093         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1094         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1095                                CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1096
1097         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1098         sub_type_hdr->proximity_domain_from = proximity_domain_from;
1099         sub_type_hdr->proximity_domain_to = proximity_domain_to;
1100         return 0;
1101 }
1102
1103 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1104  *
1105  *      @pcrat_image: Fill in VCRAT for GPU
1106  *      @size:  [IN] allocated size of crat_image.
1107  *              [OUT] actual size of data filled in crat_image
1108  */
1109 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1110                                       size_t *size, struct kfd_dev *kdev,
1111                                       uint32_t proximity_domain)
1112 {
1113         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1114         struct crat_subtype_generic *sub_type_hdr;
1115         struct kfd_local_mem_info local_mem_info;
1116         struct kfd_topology_device *peer_dev;
1117         struct crat_subtype_computeunit *cu;
1118         struct kfd_cu_info cu_info;
1119         int avail_size = *size;
1120         uint32_t total_num_of_cu;
1121         int num_of_cache_entries = 0;
1122         int cache_mem_filled = 0;
1123         uint32_t nid = 0;
1124         int ret = 0;
1125
1126         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1127                 return -EINVAL;
1128
1129         /* Fill the CRAT Header.
1130          * Modify length and total_entries as subunits are added.
1131          */
1132         avail_size -= sizeof(struct crat_header);
1133         if (avail_size < 0)
1134                 return -ENOMEM;
1135
1136         memset(crat_table, 0, sizeof(struct crat_header));
1137
1138         memcpy(&crat_table->signature, CRAT_SIGNATURE,
1139                         sizeof(crat_table->signature));
1140         /* Change length as we add more subtypes*/
1141         crat_table->length = sizeof(struct crat_header);
1142         crat_table->num_domains = 1;
1143         crat_table->total_entries = 0;
1144
1145         /* Fill in Subtype: Compute Unit
1146          * First fill in the sub type header and then sub type data
1147          */
1148         avail_size -= sizeof(struct crat_subtype_computeunit);
1149         if (avail_size < 0)
1150                 return -ENOMEM;
1151
1152         sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1153         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1154
1155         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1156         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1157         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1158
1159         /* Fill CU subtype data */
1160         cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1161         cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1162         cu->proximity_domain = proximity_domain;
1163
1164         kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1165         cu->num_simd_per_cu = cu_info.simd_per_cu;
1166         cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1167         cu->max_waves_simd = cu_info.max_waves_per_simd;
1168
1169         cu->wave_front_size = cu_info.wave_front_size;
1170         cu->array_count = cu_info.num_shader_arrays_per_engine *
1171                 cu_info.num_shader_engines;
1172         total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1173         cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1174         cu->num_cu_per_array = cu_info.num_cu_per_sh;
1175         cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1176         cu->num_banks = cu_info.num_shader_engines;
1177         cu->lds_size_in_kb = cu_info.lds_size;
1178
1179         cu->hsa_capability = 0;
1180
1181         /* Check if this node supports IOMMU. During parsing this flag will
1182          * translate to HSA_CAP_ATS_PRESENT
1183          */
1184         if (!kfd_iommu_check_device(kdev))
1185                 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1186
1187         crat_table->length += sub_type_hdr->length;
1188         crat_table->total_entries++;
1189
1190         /* Fill in Subtype: Memory. Only on systems with large BAR (no
1191          * private FB), report memory as public. On other systems
1192          * report the total FB size (public+private) as a single
1193          * private heap.
1194          */
1195         kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1196         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1197                         sub_type_hdr->length);
1198
1199         if (debug_largebar)
1200                 local_mem_info.local_mem_size_private = 0;
1201
1202         if (local_mem_info.local_mem_size_private == 0)
1203                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1204                                 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1205                                 local_mem_info.local_mem_size_public,
1206                                 (struct crat_subtype_memory *)sub_type_hdr,
1207                                 proximity_domain,
1208                                 &local_mem_info);
1209         else
1210                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1211                                 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1212                                 local_mem_info.local_mem_size_public +
1213                                 local_mem_info.local_mem_size_private,
1214                                 (struct crat_subtype_memory *)sub_type_hdr,
1215                                 proximity_domain,
1216                                 &local_mem_info);
1217         if (ret < 0)
1218                 return ret;
1219
1220         crat_table->length += sizeof(struct crat_subtype_memory);
1221         crat_table->total_entries++;
1222
1223         /* TODO: Fill in cache information. This information is NOT readily
1224          * available in KGD
1225          */
1226         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1227                 sub_type_hdr->length);
1228         ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1229                                 avail_size,
1230                                 &cu_info,
1231                                 (struct crat_subtype_cache *)sub_type_hdr,
1232                                 &cache_mem_filled,
1233                                 &num_of_cache_entries);
1234
1235         if (ret < 0)
1236                 return ret;
1237
1238         crat_table->length += cache_mem_filled;
1239         crat_table->total_entries += num_of_cache_entries;
1240         avail_size -= cache_mem_filled;
1241
1242         /* Fill in Subtype: IO_LINKS
1243          *  Only direct links are added here which is Link from GPU to
1244          *  to its NUMA node. Indirect links are added by userspace.
1245          */
1246         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1247                 cache_mem_filled);
1248         ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1249                 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1250
1251         if (ret < 0)
1252                 return ret;
1253
1254         crat_table->length += sub_type_hdr->length;
1255         crat_table->total_entries++;
1256
1257
1258         /* Fill in Subtype: IO_LINKS
1259          * Direct links from GPU to other GPUs through xGMI.
1260          * We will loop GPUs that already be processed (with lower value
1261          * of proximity_domain), add the link for the GPUs with same
1262          * hive id (from this GPU to other GPU) . The reversed iolink
1263          * (from other GPU to this GPU) will be added
1264          * in kfd_parse_subtype_iolink.
1265          */
1266         if (kdev->hive_id) {
1267                 for (nid = 0; nid < proximity_domain; ++nid) {
1268                         peer_dev = kfd_topology_device_by_proximity_domain(nid);
1269                         if (!peer_dev->gpu)
1270                                 continue;
1271                         if (peer_dev->gpu->hive_id != kdev->hive_id)
1272                                 continue;
1273                         sub_type_hdr = (typeof(sub_type_hdr))(
1274                                 (char *)sub_type_hdr +
1275                                 sizeof(struct crat_subtype_iolink));
1276                         ret = kfd_fill_gpu_xgmi_link_to_gpu(
1277                                 &avail_size, kdev,
1278                                 (struct crat_subtype_iolink *)sub_type_hdr,
1279                                 proximity_domain, nid);
1280                         if (ret < 0)
1281                                 return ret;
1282                         crat_table->length += sub_type_hdr->length;
1283                         crat_table->total_entries++;
1284                 }
1285         }
1286         *size = crat_table->length;
1287         pr_info("Virtual CRAT table created for GPU\n");
1288
1289         return ret;
1290 }
1291
1292 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1293  *              creates a Virtual CRAT (VCRAT) image
1294  *
1295  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1296  *
1297  *      @crat_image: VCRAT image created because ACPI does not have a
1298  *                   CRAT for this device
1299  *      @size: [OUT] size of virtual crat_image
1300  *      @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1301  *              COMPUTE_UNIT_GPU - Create VCRAT for GPU
1302  *              (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1303  *                      -- this option is not currently implemented.
1304  *                      The assumption is that all AMD APUs will have CRAT
1305  *      @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1306  *
1307  *      Return 0 if successful else return -ve value
1308  */
1309 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1310                                   int flags, struct kfd_dev *kdev,
1311                                   uint32_t proximity_domain)
1312 {
1313         void *pcrat_image = NULL;
1314         int ret = 0;
1315
1316         if (!crat_image)
1317                 return -EINVAL;
1318
1319         *crat_image = NULL;
1320
1321         /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1322          * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1323          * all the current conditions. A check is put not to overwrite beyond
1324          * allocated size
1325          */
1326         switch (flags) {
1327         case COMPUTE_UNIT_CPU:
1328                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1329                 if (!pcrat_image)
1330                         return -ENOMEM;
1331                 *size = VCRAT_SIZE_FOR_CPU;
1332                 ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1333                 break;
1334         case COMPUTE_UNIT_GPU:
1335                 if (!kdev)
1336                         return -EINVAL;
1337                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1338                 if (!pcrat_image)
1339                         return -ENOMEM;
1340                 *size = VCRAT_SIZE_FOR_GPU;
1341                 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1342                                                  proximity_domain);
1343                 break;
1344         case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1345                 /* TODO: */
1346                 ret = -EINVAL;
1347                 pr_err("VCRAT not implemented for APU\n");
1348                 break;
1349         default:
1350                 ret = -EINVAL;
1351         }
1352
1353         if (!ret)
1354                 *crat_image = pcrat_image;
1355         else
1356                 kfree(pcrat_image);
1357
1358         return ret;
1359 }
1360
1361
1362 /* kfd_destroy_crat_image
1363  *
1364  *      @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1365  *
1366  */
1367 void kfd_destroy_crat_image(void *crat_image)
1368 {
1369         kfree(crat_image);
1370 }