Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_chardev.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 #include "kfd_debug.h"
48
49 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
50 static int kfd_open(struct inode *, struct file *);
51 static int kfd_release(struct inode *, struct file *);
52 static int kfd_mmap(struct file *, struct vm_area_struct *);
53
54 static const char kfd_dev_name[] = "kfd";
55
56 static const struct file_operations kfd_fops = {
57         .owner = THIS_MODULE,
58         .unlocked_ioctl = kfd_ioctl,
59         .compat_ioctl = compat_ptr_ioctl,
60         .open = kfd_open,
61         .release = kfd_release,
62         .mmap = kfd_mmap,
63 };
64
65 static int kfd_char_dev_major = -1;
66 struct device *kfd_device;
67 static const struct class kfd_class = {
68         .name = kfd_dev_name,
69 };
70
71 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
72 {
73         struct kfd_process_device *pdd;
74
75         mutex_lock(&p->mutex);
76         pdd = kfd_process_device_data_by_id(p, gpu_id);
77
78         if (pdd)
79                 return pdd;
80
81         mutex_unlock(&p->mutex);
82         return NULL;
83 }
84
85 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
86 {
87         mutex_unlock(&pdd->process->mutex);
88 }
89
90 int kfd_chardev_init(void)
91 {
92         int err = 0;
93
94         kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
95         err = kfd_char_dev_major;
96         if (err < 0)
97                 goto err_register_chrdev;
98
99         err = class_register(&kfd_class);
100         if (err)
101                 goto err_class_create;
102
103         kfd_device = device_create(&kfd_class, NULL,
104                                    MKDEV(kfd_char_dev_major, 0),
105                                    NULL, kfd_dev_name);
106         err = PTR_ERR(kfd_device);
107         if (IS_ERR(kfd_device))
108                 goto err_device_create;
109
110         return 0;
111
112 err_device_create:
113         class_unregister(&kfd_class);
114 err_class_create:
115         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
116 err_register_chrdev:
117         return err;
118 }
119
120 void kfd_chardev_exit(void)
121 {
122         device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
123         class_unregister(&kfd_class);
124         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
125         kfd_device = NULL;
126 }
127
128
129 static int kfd_open(struct inode *inode, struct file *filep)
130 {
131         struct kfd_process *process;
132         bool is_32bit_user_mode;
133
134         if (iminor(inode) != 0)
135                 return -ENODEV;
136
137         is_32bit_user_mode = in_compat_syscall();
138
139         if (is_32bit_user_mode) {
140                 dev_warn(kfd_device,
141                         "Process %d (32-bit) failed to open /dev/kfd\n"
142                         "32-bit processes are not supported by amdkfd\n",
143                         current->pid);
144                 return -EPERM;
145         }
146
147         process = kfd_create_process(current);
148         if (IS_ERR(process))
149                 return PTR_ERR(process);
150
151         if (kfd_process_init_cwsr_apu(process, filep)) {
152                 kfd_unref_process(process);
153                 return -EFAULT;
154         }
155
156         /* filep now owns the reference returned by kfd_create_process */
157         filep->private_data = process;
158
159         dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
160                 process->pasid, process->is_32bit_user_mode);
161
162         return 0;
163 }
164
165 static int kfd_release(struct inode *inode, struct file *filep)
166 {
167         struct kfd_process *process = filep->private_data;
168
169         if (process)
170                 kfd_unref_process(process);
171
172         return 0;
173 }
174
175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
176                                         void *data)
177 {
178         struct kfd_ioctl_get_version_args *args = data;
179
180         args->major_version = KFD_IOCTL_MAJOR_VERSION;
181         args->minor_version = KFD_IOCTL_MINOR_VERSION;
182
183         return 0;
184 }
185
186 static int set_queue_properties_from_user(struct queue_properties *q_properties,
187                                 struct kfd_ioctl_create_queue_args *args)
188 {
189         /*
190          * Repurpose queue percentage to accommodate new features:
191          * bit 0-7: queue percentage
192          * bit 8-15: pm4_target_xcc
193          */
194         if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
195                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
196                 return -EINVAL;
197         }
198
199         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
200                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
201                 return -EINVAL;
202         }
203
204         if ((args->ring_base_address) &&
205                 (!access_ok((const void __user *) args->ring_base_address,
206                         sizeof(uint64_t)))) {
207                 pr_err("Can't access ring base address\n");
208                 return -EFAULT;
209         }
210
211         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
212                 pr_err("Ring size must be a power of 2 or 0\n");
213                 return -EINVAL;
214         }
215
216         if (!access_ok((const void __user *) args->read_pointer_address,
217                         sizeof(uint32_t))) {
218                 pr_err("Can't access read pointer\n");
219                 return -EFAULT;
220         }
221
222         if (!access_ok((const void __user *) args->write_pointer_address,
223                         sizeof(uint32_t))) {
224                 pr_err("Can't access write pointer\n");
225                 return -EFAULT;
226         }
227
228         if (args->eop_buffer_address &&
229                 !access_ok((const void __user *) args->eop_buffer_address,
230                         sizeof(uint32_t))) {
231                 pr_debug("Can't access eop buffer");
232                 return -EFAULT;
233         }
234
235         if (args->ctx_save_restore_address &&
236                 !access_ok((const void __user *) args->ctx_save_restore_address,
237                         sizeof(uint32_t))) {
238                 pr_debug("Can't access ctx save restore buffer");
239                 return -EFAULT;
240         }
241
242         q_properties->is_interop = false;
243         q_properties->is_gws = false;
244         q_properties->queue_percent = args->queue_percentage & 0xFF;
245         /* bit 8-15 are repurposed to be PM4 target XCC */
246         q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
247         q_properties->priority = args->queue_priority;
248         q_properties->queue_address = args->ring_base_address;
249         q_properties->queue_size = args->ring_size;
250         q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
251         q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
252         q_properties->eop_ring_buffer_address = args->eop_buffer_address;
253         q_properties->eop_ring_buffer_size = args->eop_buffer_size;
254         q_properties->ctx_save_restore_area_address =
255                         args->ctx_save_restore_address;
256         q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
257         q_properties->ctl_stack_size = args->ctl_stack_size;
258         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
259                 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
260                 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
261         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
262                 q_properties->type = KFD_QUEUE_TYPE_SDMA;
263         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
264                 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
265         else
266                 return -ENOTSUPP;
267
268         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
269                 q_properties->format = KFD_QUEUE_FORMAT_AQL;
270         else
271                 q_properties->format = KFD_QUEUE_FORMAT_PM4;
272
273         pr_debug("Queue Percentage: %d, %d\n",
274                         q_properties->queue_percent, args->queue_percentage);
275
276         pr_debug("Queue Priority: %d, %d\n",
277                         q_properties->priority, args->queue_priority);
278
279         pr_debug("Queue Address: 0x%llX, 0x%llX\n",
280                         q_properties->queue_address, args->ring_base_address);
281
282         pr_debug("Queue Size: 0x%llX, %u\n",
283                         q_properties->queue_size, args->ring_size);
284
285         pr_debug("Queue r/w Pointers: %px, %px\n",
286                         q_properties->read_ptr,
287                         q_properties->write_ptr);
288
289         pr_debug("Queue Format: %d\n", q_properties->format);
290
291         pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
292
293         pr_debug("Queue CTX save area: 0x%llX\n",
294                         q_properties->ctx_save_restore_area_address);
295
296         return 0;
297 }
298
299 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
300                                         void *data)
301 {
302         struct kfd_ioctl_create_queue_args *args = data;
303         struct kfd_node *dev;
304         int err = 0;
305         unsigned int queue_id;
306         struct kfd_process_device *pdd;
307         struct queue_properties q_properties;
308         uint32_t doorbell_offset_in_process = 0;
309         struct amdgpu_bo *wptr_bo = NULL;
310
311         memset(&q_properties, 0, sizeof(struct queue_properties));
312
313         pr_debug("Creating queue ioctl\n");
314
315         err = set_queue_properties_from_user(&q_properties, args);
316         if (err)
317                 return err;
318
319         pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
320
321         mutex_lock(&p->mutex);
322
323         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
324         if (!pdd) {
325                 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
326                 err = -EINVAL;
327                 goto err_pdd;
328         }
329         dev = pdd->dev;
330
331         pdd = kfd_bind_process_to_device(dev, p);
332         if (IS_ERR(pdd)) {
333                 err = -ESRCH;
334                 goto err_bind_process;
335         }
336
337         if (!pdd->qpd.proc_doorbells) {
338                 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
339                 if (err) {
340                         pr_debug("failed to allocate process doorbells\n");
341                         goto err_bind_process;
342                 }
343         }
344
345         /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
346          * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
347          */
348         if (dev->kfd->shared_resources.enable_mes &&
349                         ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
350                         >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
351                 struct amdgpu_bo_va_mapping *wptr_mapping;
352                 struct amdgpu_vm *wptr_vm;
353
354                 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
355                 err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
356                 if (err)
357                         goto err_wptr_map_gart;
358
359                 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
360                                 wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
361                 amdgpu_bo_unreserve(wptr_vm->root.bo);
362                 if (!wptr_mapping) {
363                         pr_err("Failed to lookup wptr bo\n");
364                         err = -EINVAL;
365                         goto err_wptr_map_gart;
366                 }
367
368                 wptr_bo = wptr_mapping->bo_va->base.bo;
369                 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
370                         pr_err("Requested GART mapping for wptr bo larger than one page\n");
371                         err = -EINVAL;
372                         goto err_wptr_map_gart;
373                 }
374
375                 err = amdgpu_amdkfd_map_gtt_bo_to_gart(wptr_bo);
376                 if (err) {
377                         pr_err("Failed to map wptr bo to GART\n");
378                         goto err_wptr_map_gart;
379                 }
380         }
381
382         pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
383                         p->pasid,
384                         dev->id);
385
386         err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
387                         NULL, NULL, NULL, &doorbell_offset_in_process);
388         if (err != 0)
389                 goto err_create_queue;
390
391         args->queue_id = queue_id;
392
393
394         /* Return gpu_id as doorbell offset for mmap usage */
395         args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
396         args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
397         if (KFD_IS_SOC15(dev))
398                 /* On SOC15 ASICs, include the doorbell offset within the
399                  * process doorbell frame, which is 2 pages.
400                  */
401                 args->doorbell_offset |= doorbell_offset_in_process;
402
403         mutex_unlock(&p->mutex);
404
405         pr_debug("Queue id %d was created successfully\n", args->queue_id);
406
407         pr_debug("Ring buffer address == 0x%016llX\n",
408                         args->ring_base_address);
409
410         pr_debug("Read ptr address    == 0x%016llX\n",
411                         args->read_pointer_address);
412
413         pr_debug("Write ptr address   == 0x%016llX\n",
414                         args->write_pointer_address);
415
416         kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
417         return 0;
418
419 err_create_queue:
420         if (wptr_bo)
421                 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
422 err_wptr_map_gart:
423 err_bind_process:
424 err_pdd:
425         mutex_unlock(&p->mutex);
426         return err;
427 }
428
429 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
430                                         void *data)
431 {
432         int retval;
433         struct kfd_ioctl_destroy_queue_args *args = data;
434
435         pr_debug("Destroying queue id %d for pasid 0x%x\n",
436                                 args->queue_id,
437                                 p->pasid);
438
439         mutex_lock(&p->mutex);
440
441         retval = pqm_destroy_queue(&p->pqm, args->queue_id);
442
443         mutex_unlock(&p->mutex);
444         return retval;
445 }
446
447 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
448                                         void *data)
449 {
450         int retval;
451         struct kfd_ioctl_update_queue_args *args = data;
452         struct queue_properties properties;
453
454         /*
455          * Repurpose queue percentage to accommodate new features:
456          * bit 0-7: queue percentage
457          * bit 8-15: pm4_target_xcc
458          */
459         if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
460                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
461                 return -EINVAL;
462         }
463
464         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
465                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
466                 return -EINVAL;
467         }
468
469         if ((args->ring_base_address) &&
470                 (!access_ok((const void __user *) args->ring_base_address,
471                         sizeof(uint64_t)))) {
472                 pr_err("Can't access ring base address\n");
473                 return -EFAULT;
474         }
475
476         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
477                 pr_err("Ring size must be a power of 2 or 0\n");
478                 return -EINVAL;
479         }
480
481         properties.queue_address = args->ring_base_address;
482         properties.queue_size = args->ring_size;
483         properties.queue_percent = args->queue_percentage & 0xFF;
484         /* bit 8-15 are repurposed to be PM4 target XCC */
485         properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
486         properties.priority = args->queue_priority;
487
488         pr_debug("Updating queue id %d for pasid 0x%x\n",
489                         args->queue_id, p->pasid);
490
491         mutex_lock(&p->mutex);
492
493         retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
494
495         mutex_unlock(&p->mutex);
496
497         return retval;
498 }
499
500 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
501                                         void *data)
502 {
503         int retval;
504         const int max_num_cus = 1024;
505         struct kfd_ioctl_set_cu_mask_args *args = data;
506         struct mqd_update_info minfo = {0};
507         uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
508         size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
509
510         if ((args->num_cu_mask % 32) != 0) {
511                 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
512                                 args->num_cu_mask);
513                 return -EINVAL;
514         }
515
516         minfo.cu_mask.count = args->num_cu_mask;
517         if (minfo.cu_mask.count == 0) {
518                 pr_debug("CU mask cannot be 0");
519                 return -EINVAL;
520         }
521
522         /* To prevent an unreasonably large CU mask size, set an arbitrary
523          * limit of max_num_cus bits.  We can then just drop any CU mask bits
524          * past max_num_cus bits and just use the first max_num_cus bits.
525          */
526         if (minfo.cu_mask.count > max_num_cus) {
527                 pr_debug("CU mask cannot be greater than 1024 bits");
528                 minfo.cu_mask.count = max_num_cus;
529                 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
530         }
531
532         minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
533         if (!minfo.cu_mask.ptr)
534                 return -ENOMEM;
535
536         retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
537         if (retval) {
538                 pr_debug("Could not copy CU mask from userspace");
539                 retval = -EFAULT;
540                 goto out;
541         }
542
543         mutex_lock(&p->mutex);
544
545         retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
546
547         mutex_unlock(&p->mutex);
548
549 out:
550         kfree(minfo.cu_mask.ptr);
551         return retval;
552 }
553
554 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
555                                           struct kfd_process *p, void *data)
556 {
557         struct kfd_ioctl_get_queue_wave_state_args *args = data;
558         int r;
559
560         mutex_lock(&p->mutex);
561
562         r = pqm_get_wave_state(&p->pqm, args->queue_id,
563                                (void __user *)args->ctl_stack_address,
564                                &args->ctl_stack_used_size,
565                                &args->save_area_used_size);
566
567         mutex_unlock(&p->mutex);
568
569         return r;
570 }
571
572 static int kfd_ioctl_set_memory_policy(struct file *filep,
573                                         struct kfd_process *p, void *data)
574 {
575         struct kfd_ioctl_set_memory_policy_args *args = data;
576         int err = 0;
577         struct kfd_process_device *pdd;
578         enum cache_policy default_policy, alternate_policy;
579
580         if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
581             && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
582                 return -EINVAL;
583         }
584
585         if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
586             && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
587                 return -EINVAL;
588         }
589
590         mutex_lock(&p->mutex);
591         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
592         if (!pdd) {
593                 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
594                 err = -EINVAL;
595                 goto err_pdd;
596         }
597
598         pdd = kfd_bind_process_to_device(pdd->dev, p);
599         if (IS_ERR(pdd)) {
600                 err = -ESRCH;
601                 goto out;
602         }
603
604         default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
605                          ? cache_policy_coherent : cache_policy_noncoherent;
606
607         alternate_policy =
608                 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
609                    ? cache_policy_coherent : cache_policy_noncoherent;
610
611         if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
612                                 &pdd->qpd,
613                                 default_policy,
614                                 alternate_policy,
615                                 (void __user *)args->alternate_aperture_base,
616                                 args->alternate_aperture_size))
617                 err = -EINVAL;
618
619 out:
620 err_pdd:
621         mutex_unlock(&p->mutex);
622
623         return err;
624 }
625
626 static int kfd_ioctl_set_trap_handler(struct file *filep,
627                                         struct kfd_process *p, void *data)
628 {
629         struct kfd_ioctl_set_trap_handler_args *args = data;
630         int err = 0;
631         struct kfd_process_device *pdd;
632
633         mutex_lock(&p->mutex);
634
635         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
636         if (!pdd) {
637                 err = -EINVAL;
638                 goto err_pdd;
639         }
640
641         pdd = kfd_bind_process_to_device(pdd->dev, p);
642         if (IS_ERR(pdd)) {
643                 err = -ESRCH;
644                 goto out;
645         }
646
647         kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
648
649 out:
650 err_pdd:
651         mutex_unlock(&p->mutex);
652
653         return err;
654 }
655
656 static int kfd_ioctl_dbg_register(struct file *filep,
657                                 struct kfd_process *p, void *data)
658 {
659         return -EPERM;
660 }
661
662 static int kfd_ioctl_dbg_unregister(struct file *filep,
663                                 struct kfd_process *p, void *data)
664 {
665         return -EPERM;
666 }
667
668 static int kfd_ioctl_dbg_address_watch(struct file *filep,
669                                         struct kfd_process *p, void *data)
670 {
671         return -EPERM;
672 }
673
674 /* Parse and generate fixed size data structure for wave control */
675 static int kfd_ioctl_dbg_wave_control(struct file *filep,
676                                         struct kfd_process *p, void *data)
677 {
678         return -EPERM;
679 }
680
681 static int kfd_ioctl_get_clock_counters(struct file *filep,
682                                 struct kfd_process *p, void *data)
683 {
684         struct kfd_ioctl_get_clock_counters_args *args = data;
685         struct kfd_process_device *pdd;
686
687         mutex_lock(&p->mutex);
688         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
689         mutex_unlock(&p->mutex);
690         if (pdd)
691                 /* Reading GPU clock counter from KGD */
692                 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
693         else
694                 /* Node without GPU resource */
695                 args->gpu_clock_counter = 0;
696
697         /* No access to rdtsc. Using raw monotonic time */
698         args->cpu_clock_counter = ktime_get_raw_ns();
699         args->system_clock_counter = ktime_get_boottime_ns();
700
701         /* Since the counter is in nano-seconds we use 1GHz frequency */
702         args->system_clock_freq = 1000000000;
703
704         return 0;
705 }
706
707
708 static int kfd_ioctl_get_process_apertures(struct file *filp,
709                                 struct kfd_process *p, void *data)
710 {
711         struct kfd_ioctl_get_process_apertures_args *args = data;
712         struct kfd_process_device_apertures *pAperture;
713         int i;
714
715         dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
716
717         args->num_of_nodes = 0;
718
719         mutex_lock(&p->mutex);
720         /* Run over all pdd of the process */
721         for (i = 0; i < p->n_pdds; i++) {
722                 struct kfd_process_device *pdd = p->pdds[i];
723
724                 pAperture =
725                         &args->process_apertures[args->num_of_nodes];
726                 pAperture->gpu_id = pdd->dev->id;
727                 pAperture->lds_base = pdd->lds_base;
728                 pAperture->lds_limit = pdd->lds_limit;
729                 pAperture->gpuvm_base = pdd->gpuvm_base;
730                 pAperture->gpuvm_limit = pdd->gpuvm_limit;
731                 pAperture->scratch_base = pdd->scratch_base;
732                 pAperture->scratch_limit = pdd->scratch_limit;
733
734                 dev_dbg(kfd_device,
735                         "node id %u\n", args->num_of_nodes);
736                 dev_dbg(kfd_device,
737                         "gpu id %u\n", pdd->dev->id);
738                 dev_dbg(kfd_device,
739                         "lds_base %llX\n", pdd->lds_base);
740                 dev_dbg(kfd_device,
741                         "lds_limit %llX\n", pdd->lds_limit);
742                 dev_dbg(kfd_device,
743                         "gpuvm_base %llX\n", pdd->gpuvm_base);
744                 dev_dbg(kfd_device,
745                         "gpuvm_limit %llX\n", pdd->gpuvm_limit);
746                 dev_dbg(kfd_device,
747                         "scratch_base %llX\n", pdd->scratch_base);
748                 dev_dbg(kfd_device,
749                         "scratch_limit %llX\n", pdd->scratch_limit);
750
751                 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
752                         break;
753         }
754         mutex_unlock(&p->mutex);
755
756         return 0;
757 }
758
759 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
760                                 struct kfd_process *p, void *data)
761 {
762         struct kfd_ioctl_get_process_apertures_new_args *args = data;
763         struct kfd_process_device_apertures *pa;
764         int ret;
765         int i;
766
767         dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
768
769         if (args->num_of_nodes == 0) {
770                 /* Return number of nodes, so that user space can alloacate
771                  * sufficient memory
772                  */
773                 mutex_lock(&p->mutex);
774                 args->num_of_nodes = p->n_pdds;
775                 goto out_unlock;
776         }
777
778         /* Fill in process-aperture information for all available
779          * nodes, but not more than args->num_of_nodes as that is
780          * the amount of memory allocated by user
781          */
782         pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
783                                 args->num_of_nodes), GFP_KERNEL);
784         if (!pa)
785                 return -ENOMEM;
786
787         mutex_lock(&p->mutex);
788
789         if (!p->n_pdds) {
790                 args->num_of_nodes = 0;
791                 kfree(pa);
792                 goto out_unlock;
793         }
794
795         /* Run over all pdd of the process */
796         for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
797                 struct kfd_process_device *pdd = p->pdds[i];
798
799                 pa[i].gpu_id = pdd->dev->id;
800                 pa[i].lds_base = pdd->lds_base;
801                 pa[i].lds_limit = pdd->lds_limit;
802                 pa[i].gpuvm_base = pdd->gpuvm_base;
803                 pa[i].gpuvm_limit = pdd->gpuvm_limit;
804                 pa[i].scratch_base = pdd->scratch_base;
805                 pa[i].scratch_limit = pdd->scratch_limit;
806
807                 dev_dbg(kfd_device,
808                         "gpu id %u\n", pdd->dev->id);
809                 dev_dbg(kfd_device,
810                         "lds_base %llX\n", pdd->lds_base);
811                 dev_dbg(kfd_device,
812                         "lds_limit %llX\n", pdd->lds_limit);
813                 dev_dbg(kfd_device,
814                         "gpuvm_base %llX\n", pdd->gpuvm_base);
815                 dev_dbg(kfd_device,
816                         "gpuvm_limit %llX\n", pdd->gpuvm_limit);
817                 dev_dbg(kfd_device,
818                         "scratch_base %llX\n", pdd->scratch_base);
819                 dev_dbg(kfd_device,
820                         "scratch_limit %llX\n", pdd->scratch_limit);
821         }
822         mutex_unlock(&p->mutex);
823
824         args->num_of_nodes = i;
825         ret = copy_to_user(
826                         (void __user *)args->kfd_process_device_apertures_ptr,
827                         pa,
828                         (i * sizeof(struct kfd_process_device_apertures)));
829         kfree(pa);
830         return ret ? -EFAULT : 0;
831
832 out_unlock:
833         mutex_unlock(&p->mutex);
834         return 0;
835 }
836
837 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
838                                         void *data)
839 {
840         struct kfd_ioctl_create_event_args *args = data;
841         int err;
842
843         /* For dGPUs the event page is allocated in user mode. The
844          * handle is passed to KFD with the first call to this IOCTL
845          * through the event_page_offset field.
846          */
847         if (args->event_page_offset) {
848                 mutex_lock(&p->mutex);
849                 err = kfd_kmap_event_page(p, args->event_page_offset);
850                 mutex_unlock(&p->mutex);
851                 if (err)
852                         return err;
853         }
854
855         err = kfd_event_create(filp, p, args->event_type,
856                                 args->auto_reset != 0, args->node_id,
857                                 &args->event_id, &args->event_trigger_data,
858                                 &args->event_page_offset,
859                                 &args->event_slot_index);
860
861         pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
862         return err;
863 }
864
865 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
866                                         void *data)
867 {
868         struct kfd_ioctl_destroy_event_args *args = data;
869
870         return kfd_event_destroy(p, args->event_id);
871 }
872
873 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
874                                 void *data)
875 {
876         struct kfd_ioctl_set_event_args *args = data;
877
878         return kfd_set_event(p, args->event_id);
879 }
880
881 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
882                                 void *data)
883 {
884         struct kfd_ioctl_reset_event_args *args = data;
885
886         return kfd_reset_event(p, args->event_id);
887 }
888
889 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
890                                 void *data)
891 {
892         struct kfd_ioctl_wait_events_args *args = data;
893
894         return kfd_wait_on_events(p, args->num_events,
895                         (void __user *)args->events_ptr,
896                         (args->wait_for_all != 0),
897                         &args->timeout, &args->wait_result);
898 }
899 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
900                                         struct kfd_process *p, void *data)
901 {
902         struct kfd_ioctl_set_scratch_backing_va_args *args = data;
903         struct kfd_process_device *pdd;
904         struct kfd_node *dev;
905         long err;
906
907         mutex_lock(&p->mutex);
908         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
909         if (!pdd) {
910                 err = -EINVAL;
911                 goto err_pdd;
912         }
913         dev = pdd->dev;
914
915         pdd = kfd_bind_process_to_device(dev, p);
916         if (IS_ERR(pdd)) {
917                 err = PTR_ERR(pdd);
918                 goto bind_process_to_device_fail;
919         }
920
921         pdd->qpd.sh_hidden_private_base = args->va_addr;
922
923         mutex_unlock(&p->mutex);
924
925         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
926             pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
927                 dev->kfd2kgd->set_scratch_backing_va(
928                         dev->adev, args->va_addr, pdd->qpd.vmid);
929
930         return 0;
931
932 bind_process_to_device_fail:
933 err_pdd:
934         mutex_unlock(&p->mutex);
935         return err;
936 }
937
938 static int kfd_ioctl_get_tile_config(struct file *filep,
939                 struct kfd_process *p, void *data)
940 {
941         struct kfd_ioctl_get_tile_config_args *args = data;
942         struct kfd_process_device *pdd;
943         struct tile_config config;
944         int err = 0;
945
946         mutex_lock(&p->mutex);
947         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
948         mutex_unlock(&p->mutex);
949         if (!pdd)
950                 return -EINVAL;
951
952         amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
953
954         args->gb_addr_config = config.gb_addr_config;
955         args->num_banks = config.num_banks;
956         args->num_ranks = config.num_ranks;
957
958         if (args->num_tile_configs > config.num_tile_configs)
959                 args->num_tile_configs = config.num_tile_configs;
960         err = copy_to_user((void __user *)args->tile_config_ptr,
961                         config.tile_config_ptr,
962                         args->num_tile_configs * sizeof(uint32_t));
963         if (err) {
964                 args->num_tile_configs = 0;
965                 return -EFAULT;
966         }
967
968         if (args->num_macro_tile_configs > config.num_macro_tile_configs)
969                 args->num_macro_tile_configs =
970                                 config.num_macro_tile_configs;
971         err = copy_to_user((void __user *)args->macro_tile_config_ptr,
972                         config.macro_tile_config_ptr,
973                         args->num_macro_tile_configs * sizeof(uint32_t));
974         if (err) {
975                 args->num_macro_tile_configs = 0;
976                 return -EFAULT;
977         }
978
979         return 0;
980 }
981
982 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
983                                 void *data)
984 {
985         struct kfd_ioctl_acquire_vm_args *args = data;
986         struct kfd_process_device *pdd;
987         struct file *drm_file;
988         int ret;
989
990         drm_file = fget(args->drm_fd);
991         if (!drm_file)
992                 return -EINVAL;
993
994         mutex_lock(&p->mutex);
995         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
996         if (!pdd) {
997                 ret = -EINVAL;
998                 goto err_pdd;
999         }
1000
1001         if (pdd->drm_file) {
1002                 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1003                 goto err_drm_file;
1004         }
1005
1006         ret = kfd_process_device_init_vm(pdd, drm_file);
1007         if (ret)
1008                 goto err_unlock;
1009
1010         /* On success, the PDD keeps the drm_file reference */
1011         mutex_unlock(&p->mutex);
1012
1013         return 0;
1014
1015 err_unlock:
1016 err_pdd:
1017 err_drm_file:
1018         mutex_unlock(&p->mutex);
1019         fput(drm_file);
1020         return ret;
1021 }
1022
1023 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1024 {
1025         if (dev->kfd->adev->debug_largebar) {
1026                 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1027                 return true;
1028         }
1029
1030         if (dev->local_mem_info.local_mem_size_private == 0 &&
1031             dev->local_mem_info.local_mem_size_public > 0)
1032                 return true;
1033
1034         if (dev->local_mem_info.local_mem_size_public == 0 &&
1035             dev->kfd->adev->gmc.is_app_apu) {
1036                 pr_debug("APP APU, Consider like a large bar system\n");
1037                 return true;
1038         }
1039
1040         return false;
1041 }
1042
1043 static int kfd_ioctl_get_available_memory(struct file *filep,
1044                                           struct kfd_process *p, void *data)
1045 {
1046         struct kfd_ioctl_get_available_memory_args *args = data;
1047         struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1048
1049         if (!pdd)
1050                 return -EINVAL;
1051         args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1052                                                         pdd->dev->node_id);
1053         kfd_unlock_pdd(pdd);
1054         return 0;
1055 }
1056
1057 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1058                                         struct kfd_process *p, void *data)
1059 {
1060         struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1061         struct kfd_process_device *pdd;
1062         void *mem;
1063         struct kfd_node *dev;
1064         int idr_handle;
1065         long err;
1066         uint64_t offset = args->mmap_offset;
1067         uint32_t flags = args->flags;
1068
1069         if (args->size == 0)
1070                 return -EINVAL;
1071
1072 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1073         /* Flush pending deferred work to avoid racing with deferred actions
1074          * from previous memory map changes (e.g. munmap).
1075          */
1076         svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1077         mutex_lock(&p->svms.lock);
1078         mmap_write_unlock(current->mm);
1079         if (interval_tree_iter_first(&p->svms.objects,
1080                                      args->va_addr >> PAGE_SHIFT,
1081                                      (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1082                 pr_err("Address: 0x%llx already allocated by SVM\n",
1083                         args->va_addr);
1084                 mutex_unlock(&p->svms.lock);
1085                 return -EADDRINUSE;
1086         }
1087
1088         /* When register user buffer check if it has been registered by svm by
1089          * buffer cpu virtual address.
1090          */
1091         if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1092             interval_tree_iter_first(&p->svms.objects,
1093                                      args->mmap_offset >> PAGE_SHIFT,
1094                                      (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1095                 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1096                         args->mmap_offset);
1097                 mutex_unlock(&p->svms.lock);
1098                 return -EADDRINUSE;
1099         }
1100
1101         mutex_unlock(&p->svms.lock);
1102 #endif
1103         mutex_lock(&p->mutex);
1104         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1105         if (!pdd) {
1106                 err = -EINVAL;
1107                 goto err_pdd;
1108         }
1109
1110         dev = pdd->dev;
1111
1112         if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1113                 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1114                 !kfd_dev_is_large_bar(dev)) {
1115                 pr_err("Alloc host visible vram on small bar is not allowed\n");
1116                 err = -EINVAL;
1117                 goto err_large_bar;
1118         }
1119
1120         pdd = kfd_bind_process_to_device(dev, p);
1121         if (IS_ERR(pdd)) {
1122                 err = PTR_ERR(pdd);
1123                 goto err_unlock;
1124         }
1125
1126         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1127                 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1128                         err = -EINVAL;
1129                         goto err_unlock;
1130                 }
1131                 offset = kfd_get_process_doorbells(pdd);
1132                 if (!offset) {
1133                         err = -ENOMEM;
1134                         goto err_unlock;
1135                 }
1136         } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1137                 if (args->size != PAGE_SIZE) {
1138                         err = -EINVAL;
1139                         goto err_unlock;
1140                 }
1141                 offset = dev->adev->rmmio_remap.bus_addr;
1142                 if (!offset) {
1143                         err = -ENOMEM;
1144                         goto err_unlock;
1145                 }
1146         }
1147
1148         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1149                 dev->adev, args->va_addr, args->size,
1150                 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1151                 flags, false);
1152
1153         if (err)
1154                 goto err_unlock;
1155
1156         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1157         if (idr_handle < 0) {
1158                 err = -EFAULT;
1159                 goto err_free;
1160         }
1161
1162         /* Update the VRAM usage count */
1163         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1164                 uint64_t size = args->size;
1165
1166                 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1167                         size >>= 1;
1168                 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1169         }
1170
1171         mutex_unlock(&p->mutex);
1172
1173         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1174         args->mmap_offset = offset;
1175
1176         /* MMIO is mapped through kfd device
1177          * Generate a kfd mmap offset
1178          */
1179         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1180                 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1181                                         | KFD_MMAP_GPU_ID(args->gpu_id);
1182
1183         return 0;
1184
1185 err_free:
1186         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1187                                                pdd->drm_priv, NULL);
1188 err_unlock:
1189 err_pdd:
1190 err_large_bar:
1191         mutex_unlock(&p->mutex);
1192         return err;
1193 }
1194
1195 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1196                                         struct kfd_process *p, void *data)
1197 {
1198         struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1199         struct kfd_process_device *pdd;
1200         void *mem;
1201         int ret;
1202         uint64_t size = 0;
1203
1204         mutex_lock(&p->mutex);
1205         /*
1206          * Safeguard to prevent user space from freeing signal BO.
1207          * It will be freed at process termination.
1208          */
1209         if (p->signal_handle && (p->signal_handle == args->handle)) {
1210                 pr_err("Free signal BO is not allowed\n");
1211                 ret = -EPERM;
1212                 goto err_unlock;
1213         }
1214
1215         pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1216         if (!pdd) {
1217                 pr_err("Process device data doesn't exist\n");
1218                 ret = -EINVAL;
1219                 goto err_pdd;
1220         }
1221
1222         mem = kfd_process_device_translate_handle(
1223                 pdd, GET_IDR_HANDLE(args->handle));
1224         if (!mem) {
1225                 ret = -EINVAL;
1226                 goto err_unlock;
1227         }
1228
1229         ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1230                                 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1231
1232         /* If freeing the buffer failed, leave the handle in place for
1233          * clean-up during process tear-down.
1234          */
1235         if (!ret)
1236                 kfd_process_device_remove_obj_handle(
1237                         pdd, GET_IDR_HANDLE(args->handle));
1238
1239         WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1240
1241 err_unlock:
1242 err_pdd:
1243         mutex_unlock(&p->mutex);
1244         return ret;
1245 }
1246
1247 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1248                                         struct kfd_process *p, void *data)
1249 {
1250         struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1251         struct kfd_process_device *pdd, *peer_pdd;
1252         void *mem;
1253         struct kfd_node *dev;
1254         long err = 0;
1255         int i;
1256         uint32_t *devices_arr = NULL;
1257
1258         if (!args->n_devices) {
1259                 pr_debug("Device IDs array empty\n");
1260                 return -EINVAL;
1261         }
1262         if (args->n_success > args->n_devices) {
1263                 pr_debug("n_success exceeds n_devices\n");
1264                 return -EINVAL;
1265         }
1266
1267         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1268                                     GFP_KERNEL);
1269         if (!devices_arr)
1270                 return -ENOMEM;
1271
1272         err = copy_from_user(devices_arr,
1273                              (void __user *)args->device_ids_array_ptr,
1274                              args->n_devices * sizeof(*devices_arr));
1275         if (err != 0) {
1276                 err = -EFAULT;
1277                 goto copy_from_user_failed;
1278         }
1279
1280         mutex_lock(&p->mutex);
1281         pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1282         if (!pdd) {
1283                 err = -EINVAL;
1284                 goto get_process_device_data_failed;
1285         }
1286         dev = pdd->dev;
1287
1288         pdd = kfd_bind_process_to_device(dev, p);
1289         if (IS_ERR(pdd)) {
1290                 err = PTR_ERR(pdd);
1291                 goto bind_process_to_device_failed;
1292         }
1293
1294         mem = kfd_process_device_translate_handle(pdd,
1295                                                 GET_IDR_HANDLE(args->handle));
1296         if (!mem) {
1297                 err = -ENOMEM;
1298                 goto get_mem_obj_from_handle_failed;
1299         }
1300
1301         for (i = args->n_success; i < args->n_devices; i++) {
1302                 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1303                 if (!peer_pdd) {
1304                         pr_debug("Getting device by id failed for 0x%x\n",
1305                                  devices_arr[i]);
1306                         err = -EINVAL;
1307                         goto get_mem_obj_from_handle_failed;
1308                 }
1309
1310                 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1311                 if (IS_ERR(peer_pdd)) {
1312                         err = PTR_ERR(peer_pdd);
1313                         goto get_mem_obj_from_handle_failed;
1314                 }
1315
1316                 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1317                         peer_pdd->dev->adev, (struct kgd_mem *)mem,
1318                         peer_pdd->drm_priv);
1319                 if (err) {
1320                         struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1321
1322                         dev_err(dev->adev->dev,
1323                                "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1324                                pci_domain_nr(pdev->bus),
1325                                pdev->bus->number,
1326                                PCI_SLOT(pdev->devfn),
1327                                PCI_FUNC(pdev->devfn),
1328                                ((struct kgd_mem *)mem)->domain);
1329                         goto map_memory_to_gpu_failed;
1330                 }
1331                 args->n_success = i+1;
1332         }
1333
1334         err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1335         if (err) {
1336                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1337                 goto sync_memory_failed;
1338         }
1339
1340         mutex_unlock(&p->mutex);
1341
1342         /* Flush TLBs after waiting for the page table updates to complete */
1343         for (i = 0; i < args->n_devices; i++) {
1344                 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1345                 if (WARN_ON_ONCE(!peer_pdd))
1346                         continue;
1347                 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1348         }
1349         kfree(devices_arr);
1350
1351         return err;
1352
1353 get_process_device_data_failed:
1354 bind_process_to_device_failed:
1355 get_mem_obj_from_handle_failed:
1356 map_memory_to_gpu_failed:
1357 sync_memory_failed:
1358         mutex_unlock(&p->mutex);
1359 copy_from_user_failed:
1360         kfree(devices_arr);
1361
1362         return err;
1363 }
1364
1365 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1366                                         struct kfd_process *p, void *data)
1367 {
1368         struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1369         struct kfd_process_device *pdd, *peer_pdd;
1370         void *mem;
1371         long err = 0;
1372         uint32_t *devices_arr = NULL, i;
1373         bool flush_tlb;
1374
1375         if (!args->n_devices) {
1376                 pr_debug("Device IDs array empty\n");
1377                 return -EINVAL;
1378         }
1379         if (args->n_success > args->n_devices) {
1380                 pr_debug("n_success exceeds n_devices\n");
1381                 return -EINVAL;
1382         }
1383
1384         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1385                                     GFP_KERNEL);
1386         if (!devices_arr)
1387                 return -ENOMEM;
1388
1389         err = copy_from_user(devices_arr,
1390                              (void __user *)args->device_ids_array_ptr,
1391                              args->n_devices * sizeof(*devices_arr));
1392         if (err != 0) {
1393                 err = -EFAULT;
1394                 goto copy_from_user_failed;
1395         }
1396
1397         mutex_lock(&p->mutex);
1398         pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1399         if (!pdd) {
1400                 err = -EINVAL;
1401                 goto bind_process_to_device_failed;
1402         }
1403
1404         mem = kfd_process_device_translate_handle(pdd,
1405                                                 GET_IDR_HANDLE(args->handle));
1406         if (!mem) {
1407                 err = -ENOMEM;
1408                 goto get_mem_obj_from_handle_failed;
1409         }
1410
1411         for (i = args->n_success; i < args->n_devices; i++) {
1412                 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1413                 if (!peer_pdd) {
1414                         err = -EINVAL;
1415                         goto get_mem_obj_from_handle_failed;
1416                 }
1417                 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1418                         peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1419                 if (err) {
1420                         pr_err("Failed to unmap from gpu %d/%d\n",
1421                                i, args->n_devices);
1422                         goto unmap_memory_from_gpu_failed;
1423                 }
1424                 args->n_success = i+1;
1425         }
1426
1427         flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1428         if (flush_tlb) {
1429                 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1430                                 (struct kgd_mem *) mem, true);
1431                 if (err) {
1432                         pr_debug("Sync memory failed, wait interrupted by user signal\n");
1433                         goto sync_memory_failed;
1434                 }
1435         }
1436
1437         /* Flush TLBs after waiting for the page table updates to complete */
1438         for (i = 0; i < args->n_devices; i++) {
1439                 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1440                 if (WARN_ON_ONCE(!peer_pdd))
1441                         continue;
1442                 if (flush_tlb)
1443                         kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1444
1445                 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1446                 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1447                 if (err)
1448                         goto sync_memory_failed;
1449         }
1450
1451         mutex_unlock(&p->mutex);
1452
1453         kfree(devices_arr);
1454
1455         return 0;
1456
1457 bind_process_to_device_failed:
1458 get_mem_obj_from_handle_failed:
1459 unmap_memory_from_gpu_failed:
1460 sync_memory_failed:
1461         mutex_unlock(&p->mutex);
1462 copy_from_user_failed:
1463         kfree(devices_arr);
1464         return err;
1465 }
1466
1467 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1468                 struct kfd_process *p, void *data)
1469 {
1470         int retval;
1471         struct kfd_ioctl_alloc_queue_gws_args *args = data;
1472         struct queue *q;
1473         struct kfd_node *dev;
1474
1475         mutex_lock(&p->mutex);
1476         q = pqm_get_user_queue(&p->pqm, args->queue_id);
1477
1478         if (q) {
1479                 dev = q->device;
1480         } else {
1481                 retval = -EINVAL;
1482                 goto out_unlock;
1483         }
1484
1485         if (!dev->gws) {
1486                 retval = -ENODEV;
1487                 goto out_unlock;
1488         }
1489
1490         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1491                 retval = -ENODEV;
1492                 goto out_unlock;
1493         }
1494
1495         if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1496                                       kfd_dbg_has_cwsr_workaround(dev))) {
1497                 retval = -EBUSY;
1498                 goto out_unlock;
1499         }
1500
1501         retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1502         mutex_unlock(&p->mutex);
1503
1504         args->first_gws = 0;
1505         return retval;
1506
1507 out_unlock:
1508         mutex_unlock(&p->mutex);
1509         return retval;
1510 }
1511
1512 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1513                 struct kfd_process *p, void *data)
1514 {
1515         struct kfd_ioctl_get_dmabuf_info_args *args = data;
1516         struct kfd_node *dev = NULL;
1517         struct amdgpu_device *dmabuf_adev;
1518         void *metadata_buffer = NULL;
1519         uint32_t flags;
1520         int8_t xcp_id;
1521         unsigned int i;
1522         int r;
1523
1524         /* Find a KFD GPU device that supports the get_dmabuf_info query */
1525         for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1526                 if (dev)
1527                         break;
1528         if (!dev)
1529                 return -EINVAL;
1530
1531         if (args->metadata_ptr) {
1532                 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1533                 if (!metadata_buffer)
1534                         return -ENOMEM;
1535         }
1536
1537         /* Get dmabuf info from KGD */
1538         r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1539                                           &dmabuf_adev, &args->size,
1540                                           metadata_buffer, args->metadata_size,
1541                                           &args->metadata_size, &flags, &xcp_id);
1542         if (r)
1543                 goto exit;
1544
1545         if (xcp_id >= 0)
1546                 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1547         else
1548                 args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1549         args->flags = flags;
1550
1551         /* Copy metadata buffer to user mode */
1552         if (metadata_buffer) {
1553                 r = copy_to_user((void __user *)args->metadata_ptr,
1554                                  metadata_buffer, args->metadata_size);
1555                 if (r != 0)
1556                         r = -EFAULT;
1557         }
1558
1559 exit:
1560         kfree(metadata_buffer);
1561
1562         return r;
1563 }
1564
1565 static int kfd_ioctl_import_dmabuf(struct file *filep,
1566                                    struct kfd_process *p, void *data)
1567 {
1568         struct kfd_ioctl_import_dmabuf_args *args = data;
1569         struct kfd_process_device *pdd;
1570         int idr_handle;
1571         uint64_t size;
1572         void *mem;
1573         int r;
1574
1575         mutex_lock(&p->mutex);
1576         pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1577         if (!pdd) {
1578                 r = -EINVAL;
1579                 goto err_unlock;
1580         }
1581
1582         pdd = kfd_bind_process_to_device(pdd->dev, p);
1583         if (IS_ERR(pdd)) {
1584                 r = PTR_ERR(pdd);
1585                 goto err_unlock;
1586         }
1587
1588         r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1589                                                  args->va_addr, pdd->drm_priv,
1590                                                  (struct kgd_mem **)&mem, &size,
1591                                                  NULL);
1592         if (r)
1593                 goto err_unlock;
1594
1595         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1596         if (idr_handle < 0) {
1597                 r = -EFAULT;
1598                 goto err_free;
1599         }
1600
1601         mutex_unlock(&p->mutex);
1602
1603         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1604
1605         return 0;
1606
1607 err_free:
1608         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1609                                                pdd->drm_priv, NULL);
1610 err_unlock:
1611         mutex_unlock(&p->mutex);
1612         return r;
1613 }
1614
1615 static int kfd_ioctl_export_dmabuf(struct file *filep,
1616                                    struct kfd_process *p, void *data)
1617 {
1618         struct kfd_ioctl_export_dmabuf_args *args = data;
1619         struct kfd_process_device *pdd;
1620         struct dma_buf *dmabuf;
1621         struct kfd_node *dev;
1622         void *mem;
1623         int ret = 0;
1624
1625         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1626         if (!dev)
1627                 return -EINVAL;
1628
1629         mutex_lock(&p->mutex);
1630
1631         pdd = kfd_get_process_device_data(dev, p);
1632         if (!pdd) {
1633                 ret = -EINVAL;
1634                 goto err_unlock;
1635         }
1636
1637         mem = kfd_process_device_translate_handle(pdd,
1638                                                 GET_IDR_HANDLE(args->handle));
1639         if (!mem) {
1640                 ret = -EINVAL;
1641                 goto err_unlock;
1642         }
1643
1644         ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1645         mutex_unlock(&p->mutex);
1646         if (ret)
1647                 goto err_out;
1648
1649         ret = dma_buf_fd(dmabuf, args->flags);
1650         if (ret < 0) {
1651                 dma_buf_put(dmabuf);
1652                 goto err_out;
1653         }
1654         /* dma_buf_fd assigns the reference count to the fd, no need to
1655          * put the reference here.
1656          */
1657         args->dmabuf_fd = ret;
1658
1659         return 0;
1660
1661 err_unlock:
1662         mutex_unlock(&p->mutex);
1663 err_out:
1664         return ret;
1665 }
1666
1667 /* Handle requests for watching SMI events */
1668 static int kfd_ioctl_smi_events(struct file *filep,
1669                                 struct kfd_process *p, void *data)
1670 {
1671         struct kfd_ioctl_smi_events_args *args = data;
1672         struct kfd_process_device *pdd;
1673
1674         mutex_lock(&p->mutex);
1675
1676         pdd = kfd_process_device_data_by_id(p, args->gpuid);
1677         mutex_unlock(&p->mutex);
1678         if (!pdd)
1679                 return -EINVAL;
1680
1681         return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1682 }
1683
1684 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1685
1686 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1687                                     struct kfd_process *p, void *data)
1688 {
1689         struct kfd_ioctl_set_xnack_mode_args *args = data;
1690         int r = 0;
1691
1692         mutex_lock(&p->mutex);
1693         if (args->xnack_enabled >= 0) {
1694                 if (!list_empty(&p->pqm.queues)) {
1695                         pr_debug("Process has user queues running\n");
1696                         r = -EBUSY;
1697                         goto out_unlock;
1698                 }
1699
1700                 if (p->xnack_enabled == args->xnack_enabled)
1701                         goto out_unlock;
1702
1703                 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1704                         r = -EPERM;
1705                         goto out_unlock;
1706                 }
1707
1708                 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1709         } else {
1710                 args->xnack_enabled = p->xnack_enabled;
1711         }
1712
1713 out_unlock:
1714         mutex_unlock(&p->mutex);
1715
1716         return r;
1717 }
1718
1719 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1720 {
1721         struct kfd_ioctl_svm_args *args = data;
1722         int r = 0;
1723
1724         pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1725                  args->start_addr, args->size, args->op, args->nattr);
1726
1727         if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1728                 return -EINVAL;
1729         if (!args->start_addr || !args->size)
1730                 return -EINVAL;
1731
1732         r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1733                       args->attrs);
1734
1735         return r;
1736 }
1737 #else
1738 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1739                                     struct kfd_process *p, void *data)
1740 {
1741         return -EPERM;
1742 }
1743 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1744 {
1745         return -EPERM;
1746 }
1747 #endif
1748
1749 static int criu_checkpoint_process(struct kfd_process *p,
1750                              uint8_t __user *user_priv_data,
1751                              uint64_t *priv_offset)
1752 {
1753         struct kfd_criu_process_priv_data process_priv;
1754         int ret;
1755
1756         memset(&process_priv, 0, sizeof(process_priv));
1757
1758         process_priv.version = KFD_CRIU_PRIV_VERSION;
1759         /* For CR, we don't consider negative xnack mode which is used for
1760          * querying without changing it, here 0 simply means disabled and 1
1761          * means enabled so retry for finding a valid PTE.
1762          */
1763         process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1764
1765         ret = copy_to_user(user_priv_data + *priv_offset,
1766                                 &process_priv, sizeof(process_priv));
1767
1768         if (ret) {
1769                 pr_err("Failed to copy process information to user\n");
1770                 ret = -EFAULT;
1771         }
1772
1773         *priv_offset += sizeof(process_priv);
1774         return ret;
1775 }
1776
1777 static int criu_checkpoint_devices(struct kfd_process *p,
1778                              uint32_t num_devices,
1779                              uint8_t __user *user_addr,
1780                              uint8_t __user *user_priv_data,
1781                              uint64_t *priv_offset)
1782 {
1783         struct kfd_criu_device_priv_data *device_priv = NULL;
1784         struct kfd_criu_device_bucket *device_buckets = NULL;
1785         int ret = 0, i;
1786
1787         device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1788         if (!device_buckets) {
1789                 ret = -ENOMEM;
1790                 goto exit;
1791         }
1792
1793         device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1794         if (!device_priv) {
1795                 ret = -ENOMEM;
1796                 goto exit;
1797         }
1798
1799         for (i = 0; i < num_devices; i++) {
1800                 struct kfd_process_device *pdd = p->pdds[i];
1801
1802                 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1803                 device_buckets[i].actual_gpu_id = pdd->dev->id;
1804
1805                 /*
1806                  * priv_data does not contain useful information for now and is reserved for
1807                  * future use, so we do not set its contents.
1808                  */
1809         }
1810
1811         ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1812         if (ret) {
1813                 pr_err("Failed to copy device information to user\n");
1814                 ret = -EFAULT;
1815                 goto exit;
1816         }
1817
1818         ret = copy_to_user(user_priv_data + *priv_offset,
1819                            device_priv,
1820                            num_devices * sizeof(*device_priv));
1821         if (ret) {
1822                 pr_err("Failed to copy device information to user\n");
1823                 ret = -EFAULT;
1824         }
1825         *priv_offset += num_devices * sizeof(*device_priv);
1826
1827 exit:
1828         kvfree(device_buckets);
1829         kvfree(device_priv);
1830         return ret;
1831 }
1832
1833 static uint32_t get_process_num_bos(struct kfd_process *p)
1834 {
1835         uint32_t num_of_bos = 0;
1836         int i;
1837
1838         /* Run over all PDDs of the process */
1839         for (i = 0; i < p->n_pdds; i++) {
1840                 struct kfd_process_device *pdd = p->pdds[i];
1841                 void *mem;
1842                 int id;
1843
1844                 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1845                         struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1846
1847                         if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1848                                 num_of_bos++;
1849                 }
1850         }
1851         return num_of_bos;
1852 }
1853
1854 static int criu_get_prime_handle(struct kgd_mem *mem,
1855                                  int flags, u32 *shared_fd)
1856 {
1857         struct dma_buf *dmabuf;
1858         int ret;
1859
1860         ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1861         if (ret) {
1862                 pr_err("dmabuf export failed for the BO\n");
1863                 return ret;
1864         }
1865
1866         ret = dma_buf_fd(dmabuf, flags);
1867         if (ret < 0) {
1868                 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1869                 goto out_free_dmabuf;
1870         }
1871
1872         *shared_fd = ret;
1873         return 0;
1874
1875 out_free_dmabuf:
1876         dma_buf_put(dmabuf);
1877         return ret;
1878 }
1879
1880 static int criu_checkpoint_bos(struct kfd_process *p,
1881                                uint32_t num_bos,
1882                                uint8_t __user *user_bos,
1883                                uint8_t __user *user_priv_data,
1884                                uint64_t *priv_offset)
1885 {
1886         struct kfd_criu_bo_bucket *bo_buckets;
1887         struct kfd_criu_bo_priv_data *bo_privs;
1888         int ret = 0, pdd_index, bo_index = 0, id;
1889         void *mem;
1890
1891         bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1892         if (!bo_buckets)
1893                 return -ENOMEM;
1894
1895         bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1896         if (!bo_privs) {
1897                 ret = -ENOMEM;
1898                 goto exit;
1899         }
1900
1901         for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1902                 struct kfd_process_device *pdd = p->pdds[pdd_index];
1903                 struct amdgpu_bo *dumper_bo;
1904                 struct kgd_mem *kgd_mem;
1905
1906                 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1907                         struct kfd_criu_bo_bucket *bo_bucket;
1908                         struct kfd_criu_bo_priv_data *bo_priv;
1909                         int i, dev_idx = 0;
1910
1911                         if (!mem) {
1912                                 ret = -ENOMEM;
1913                                 goto exit;
1914                         }
1915
1916                         kgd_mem = (struct kgd_mem *)mem;
1917                         dumper_bo = kgd_mem->bo;
1918
1919                         /* Skip checkpointing BOs that are used for Trap handler
1920                          * code and state. Currently, these BOs have a VA that
1921                          * is less GPUVM Base
1922                          */
1923                         if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1924                                 continue;
1925
1926                         bo_bucket = &bo_buckets[bo_index];
1927                         bo_priv = &bo_privs[bo_index];
1928
1929                         bo_bucket->gpu_id = pdd->user_gpu_id;
1930                         bo_bucket->addr = (uint64_t)kgd_mem->va;
1931                         bo_bucket->size = amdgpu_bo_size(dumper_bo);
1932                         bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1933                         bo_priv->idr_handle = id;
1934
1935                         if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1936                                 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1937                                                                 &bo_priv->user_addr);
1938                                 if (ret) {
1939                                         pr_err("Failed to obtain user address for user-pointer bo\n");
1940                                         goto exit;
1941                                 }
1942                         }
1943                         if (bo_bucket->alloc_flags
1944                             & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1945                                 ret = criu_get_prime_handle(kgd_mem,
1946                                                 bo_bucket->alloc_flags &
1947                                                 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1948                                                 &bo_bucket->dmabuf_fd);
1949                                 if (ret)
1950                                         goto exit;
1951                         } else {
1952                                 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1953                         }
1954
1955                         if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1956                                 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1957                                         KFD_MMAP_GPU_ID(pdd->dev->id);
1958                         else if (bo_bucket->alloc_flags &
1959                                 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1960                                 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1961                                         KFD_MMAP_GPU_ID(pdd->dev->id);
1962                         else
1963                                 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1964
1965                         for (i = 0; i < p->n_pdds; i++) {
1966                                 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1967                                         bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1968                         }
1969
1970                         pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1971                                         "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1972                                         bo_bucket->size,
1973                                         bo_bucket->addr,
1974                                         bo_bucket->offset,
1975                                         bo_bucket->gpu_id,
1976                                         bo_bucket->alloc_flags,
1977                                         bo_priv->idr_handle);
1978                         bo_index++;
1979                 }
1980         }
1981
1982         ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1983         if (ret) {
1984                 pr_err("Failed to copy BO information to user\n");
1985                 ret = -EFAULT;
1986                 goto exit;
1987         }
1988
1989         ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1990         if (ret) {
1991                 pr_err("Failed to copy BO priv information to user\n");
1992                 ret = -EFAULT;
1993                 goto exit;
1994         }
1995
1996         *priv_offset += num_bos * sizeof(*bo_privs);
1997
1998 exit:
1999         while (ret && bo_index--) {
2000                 if (bo_buckets[bo_index].alloc_flags
2001                     & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2002                         close_fd(bo_buckets[bo_index].dmabuf_fd);
2003         }
2004
2005         kvfree(bo_buckets);
2006         kvfree(bo_privs);
2007         return ret;
2008 }
2009
2010 static int criu_get_process_object_info(struct kfd_process *p,
2011                                         uint32_t *num_devices,
2012                                         uint32_t *num_bos,
2013                                         uint32_t *num_objects,
2014                                         uint64_t *objs_priv_size)
2015 {
2016         uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2017         uint32_t num_queues, num_events, num_svm_ranges;
2018         int ret;
2019
2020         *num_devices = p->n_pdds;
2021         *num_bos = get_process_num_bos(p);
2022
2023         ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2024         if (ret)
2025                 return ret;
2026
2027         num_events = kfd_get_num_events(p);
2028
2029         ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2030         if (ret)
2031                 return ret;
2032
2033         *num_objects = num_queues + num_events + num_svm_ranges;
2034
2035         if (objs_priv_size) {
2036                 priv_size = sizeof(struct kfd_criu_process_priv_data);
2037                 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2038                 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2039                 priv_size += queues_priv_data_size;
2040                 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2041                 priv_size += svm_priv_data_size;
2042                 *objs_priv_size = priv_size;
2043         }
2044         return 0;
2045 }
2046
2047 static int criu_checkpoint(struct file *filep,
2048                            struct kfd_process *p,
2049                            struct kfd_ioctl_criu_args *args)
2050 {
2051         int ret;
2052         uint32_t num_devices, num_bos, num_objects;
2053         uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2054
2055         if (!args->devices || !args->bos || !args->priv_data)
2056                 return -EINVAL;
2057
2058         mutex_lock(&p->mutex);
2059
2060         if (!p->n_pdds) {
2061                 pr_err("No pdd for given process\n");
2062                 ret = -ENODEV;
2063                 goto exit_unlock;
2064         }
2065
2066         /* Confirm all process queues are evicted */
2067         if (!p->queues_paused) {
2068                 pr_err("Cannot dump process when queues are not in evicted state\n");
2069                 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2070                 ret = -EINVAL;
2071                 goto exit_unlock;
2072         }
2073
2074         ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2075         if (ret)
2076                 goto exit_unlock;
2077
2078         if (num_devices != args->num_devices ||
2079             num_bos != args->num_bos ||
2080             num_objects != args->num_objects ||
2081             priv_size != args->priv_data_size) {
2082
2083                 ret = -EINVAL;
2084                 goto exit_unlock;
2085         }
2086
2087         /* each function will store private data inside priv_data and adjust priv_offset */
2088         ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2089         if (ret)
2090                 goto exit_unlock;
2091
2092         ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2093                                 (uint8_t __user *)args->priv_data, &priv_offset);
2094         if (ret)
2095                 goto exit_unlock;
2096
2097         /* Leave room for BOs in the private data. They need to be restored
2098          * before events, but we checkpoint them last to simplify the error
2099          * handling.
2100          */
2101         bo_priv_offset = priv_offset;
2102         priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2103
2104         if (num_objects) {
2105                 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2106                                                  &priv_offset);
2107                 if (ret)
2108                         goto exit_unlock;
2109
2110                 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2111                                                  &priv_offset);
2112                 if (ret)
2113                         goto exit_unlock;
2114
2115                 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2116                 if (ret)
2117                         goto exit_unlock;
2118         }
2119
2120         /* This must be the last thing in this function that can fail.
2121          * Otherwise we leak dmabuf file descriptors.
2122          */
2123         ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2124                            (uint8_t __user *)args->priv_data, &bo_priv_offset);
2125
2126 exit_unlock:
2127         mutex_unlock(&p->mutex);
2128         if (ret)
2129                 pr_err("Failed to dump CRIU ret:%d\n", ret);
2130         else
2131                 pr_debug("CRIU dump ret:%d\n", ret);
2132
2133         return ret;
2134 }
2135
2136 static int criu_restore_process(struct kfd_process *p,
2137                                 struct kfd_ioctl_criu_args *args,
2138                                 uint64_t *priv_offset,
2139                                 uint64_t max_priv_data_size)
2140 {
2141         int ret = 0;
2142         struct kfd_criu_process_priv_data process_priv;
2143
2144         if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2145                 return -EINVAL;
2146
2147         ret = copy_from_user(&process_priv,
2148                                 (void __user *)(args->priv_data + *priv_offset),
2149                                 sizeof(process_priv));
2150         if (ret) {
2151                 pr_err("Failed to copy process private information from user\n");
2152                 ret = -EFAULT;
2153                 goto exit;
2154         }
2155         *priv_offset += sizeof(process_priv);
2156
2157         if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2158                 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2159                         process_priv.version, KFD_CRIU_PRIV_VERSION);
2160                 return -EINVAL;
2161         }
2162
2163         pr_debug("Setting XNACK mode\n");
2164         if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2165                 pr_err("xnack mode cannot be set\n");
2166                 ret = -EPERM;
2167                 goto exit;
2168         } else {
2169                 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2170                 p->xnack_enabled = process_priv.xnack_mode;
2171         }
2172
2173 exit:
2174         return ret;
2175 }
2176
2177 static int criu_restore_devices(struct kfd_process *p,
2178                                 struct kfd_ioctl_criu_args *args,
2179                                 uint64_t *priv_offset,
2180                                 uint64_t max_priv_data_size)
2181 {
2182         struct kfd_criu_device_bucket *device_buckets;
2183         struct kfd_criu_device_priv_data *device_privs;
2184         int ret = 0;
2185         uint32_t i;
2186
2187         if (args->num_devices != p->n_pdds)
2188                 return -EINVAL;
2189
2190         if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2191                 return -EINVAL;
2192
2193         device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2194         if (!device_buckets)
2195                 return -ENOMEM;
2196
2197         ret = copy_from_user(device_buckets, (void __user *)args->devices,
2198                                 args->num_devices * sizeof(*device_buckets));
2199         if (ret) {
2200                 pr_err("Failed to copy devices buckets from user\n");
2201                 ret = -EFAULT;
2202                 goto exit;
2203         }
2204
2205         for (i = 0; i < args->num_devices; i++) {
2206                 struct kfd_node *dev;
2207                 struct kfd_process_device *pdd;
2208                 struct file *drm_file;
2209
2210                 /* device private data is not currently used */
2211
2212                 if (!device_buckets[i].user_gpu_id) {
2213                         pr_err("Invalid user gpu_id\n");
2214                         ret = -EINVAL;
2215                         goto exit;
2216                 }
2217
2218                 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2219                 if (!dev) {
2220                         pr_err("Failed to find device with gpu_id = %x\n",
2221                                 device_buckets[i].actual_gpu_id);
2222                         ret = -EINVAL;
2223                         goto exit;
2224                 }
2225
2226                 pdd = kfd_get_process_device_data(dev, p);
2227                 if (!pdd) {
2228                         pr_err("Failed to get pdd for gpu_id = %x\n",
2229                                         device_buckets[i].actual_gpu_id);
2230                         ret = -EINVAL;
2231                         goto exit;
2232                 }
2233                 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2234
2235                 drm_file = fget(device_buckets[i].drm_fd);
2236                 if (!drm_file) {
2237                         pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2238                                 device_buckets[i].drm_fd);
2239                         ret = -EINVAL;
2240                         goto exit;
2241                 }
2242
2243                 if (pdd->drm_file) {
2244                         ret = -EINVAL;
2245                         goto exit;
2246                 }
2247
2248                 /* create the vm using render nodes for kfd pdd */
2249                 if (kfd_process_device_init_vm(pdd, drm_file)) {
2250                         pr_err("could not init vm for given pdd\n");
2251                         /* On success, the PDD keeps the drm_file reference */
2252                         fput(drm_file);
2253                         ret = -EINVAL;
2254                         goto exit;
2255                 }
2256                 /*
2257                  * pdd now already has the vm bound to render node so below api won't create a new
2258                  * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2259                  * for iommu v2 binding  and runtime pm.
2260                  */
2261                 pdd = kfd_bind_process_to_device(dev, p);
2262                 if (IS_ERR(pdd)) {
2263                         ret = PTR_ERR(pdd);
2264                         goto exit;
2265                 }
2266
2267                 if (!pdd->qpd.proc_doorbells) {
2268                         ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2269                         if (ret)
2270                                 goto exit;
2271                 }
2272         }
2273
2274         /*
2275          * We are not copying device private data from user as we are not using the data for now,
2276          * but we still adjust for its private data.
2277          */
2278         *priv_offset += args->num_devices * sizeof(*device_privs);
2279
2280 exit:
2281         kfree(device_buckets);
2282         return ret;
2283 }
2284
2285 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2286                                       struct kfd_criu_bo_bucket *bo_bucket,
2287                                       struct kfd_criu_bo_priv_data *bo_priv,
2288                                       struct kgd_mem **kgd_mem)
2289 {
2290         int idr_handle;
2291         int ret;
2292         const bool criu_resume = true;
2293         u64 offset;
2294
2295         if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2296                 if (bo_bucket->size !=
2297                                 kfd_doorbell_process_slice(pdd->dev->kfd))
2298                         return -EINVAL;
2299
2300                 offset = kfd_get_process_doorbells(pdd);
2301                 if (!offset)
2302                         return -ENOMEM;
2303         } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2304                 /* MMIO BOs need remapped bus address */
2305                 if (bo_bucket->size != PAGE_SIZE) {
2306                         pr_err("Invalid page size\n");
2307                         return -EINVAL;
2308                 }
2309                 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2310                 if (!offset) {
2311                         pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2312                         return -ENOMEM;
2313                 }
2314         } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2315                 offset = bo_priv->user_addr;
2316         }
2317         /* Create the BO */
2318         ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2319                                                       bo_bucket->size, pdd->drm_priv, kgd_mem,
2320                                                       &offset, bo_bucket->alloc_flags, criu_resume);
2321         if (ret) {
2322                 pr_err("Could not create the BO\n");
2323                 return ret;
2324         }
2325         pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2326                  bo_bucket->size, bo_bucket->addr, offset);
2327
2328         /* Restore previous IDR handle */
2329         pr_debug("Restoring old IDR handle for the BO");
2330         idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2331                                bo_priv->idr_handle + 1, GFP_KERNEL);
2332
2333         if (idr_handle < 0) {
2334                 pr_err("Could not allocate idr\n");
2335                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2336                                                        NULL);
2337                 return -ENOMEM;
2338         }
2339
2340         if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2341                 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2342         if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2343                 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2344         } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2345                 bo_bucket->restored_offset = offset;
2346         } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2347                 bo_bucket->restored_offset = offset;
2348                 /* Update the VRAM usage count */
2349                 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2350         }
2351         return 0;
2352 }
2353
2354 static int criu_restore_bo(struct kfd_process *p,
2355                            struct kfd_criu_bo_bucket *bo_bucket,
2356                            struct kfd_criu_bo_priv_data *bo_priv)
2357 {
2358         struct kfd_process_device *pdd;
2359         struct kgd_mem *kgd_mem;
2360         int ret;
2361         int j;
2362
2363         pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2364                  bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2365                  bo_priv->idr_handle);
2366
2367         pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2368         if (!pdd) {
2369                 pr_err("Failed to get pdd\n");
2370                 return -ENODEV;
2371         }
2372
2373         ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2374         if (ret)
2375                 return ret;
2376
2377         /* now map these BOs to GPU/s */
2378         for (j = 0; j < p->n_pdds; j++) {
2379                 struct kfd_node *peer;
2380                 struct kfd_process_device *peer_pdd;
2381
2382                 if (!bo_priv->mapped_gpuids[j])
2383                         break;
2384
2385                 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2386                 if (!peer_pdd)
2387                         return -EINVAL;
2388
2389                 peer = peer_pdd->dev;
2390
2391                 peer_pdd = kfd_bind_process_to_device(peer, p);
2392                 if (IS_ERR(peer_pdd))
2393                         return PTR_ERR(peer_pdd);
2394
2395                 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2396                                                             peer_pdd->drm_priv);
2397                 if (ret) {
2398                         pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2399                         return ret;
2400                 }
2401         }
2402
2403         pr_debug("map memory was successful for the BO\n");
2404         /* create the dmabuf object and export the bo */
2405         if (bo_bucket->alloc_flags
2406             & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2407                 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2408                                             &bo_bucket->dmabuf_fd);
2409                 if (ret)
2410                         return ret;
2411         } else {
2412                 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2413         }
2414
2415         return 0;
2416 }
2417
2418 static int criu_restore_bos(struct kfd_process *p,
2419                             struct kfd_ioctl_criu_args *args,
2420                             uint64_t *priv_offset,
2421                             uint64_t max_priv_data_size)
2422 {
2423         struct kfd_criu_bo_bucket *bo_buckets = NULL;
2424         struct kfd_criu_bo_priv_data *bo_privs = NULL;
2425         int ret = 0;
2426         uint32_t i = 0;
2427
2428         if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2429                 return -EINVAL;
2430
2431         /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2432         amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2433
2434         bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2435         if (!bo_buckets)
2436                 return -ENOMEM;
2437
2438         ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2439                              args->num_bos * sizeof(*bo_buckets));
2440         if (ret) {
2441                 pr_err("Failed to copy BOs information from user\n");
2442                 ret = -EFAULT;
2443                 goto exit;
2444         }
2445
2446         bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2447         if (!bo_privs) {
2448                 ret = -ENOMEM;
2449                 goto exit;
2450         }
2451
2452         ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2453                              args->num_bos * sizeof(*bo_privs));
2454         if (ret) {
2455                 pr_err("Failed to copy BOs information from user\n");
2456                 ret = -EFAULT;
2457                 goto exit;
2458         }
2459         *priv_offset += args->num_bos * sizeof(*bo_privs);
2460
2461         /* Create and map new BOs */
2462         for (; i < args->num_bos; i++) {
2463                 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2464                 if (ret) {
2465                         pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2466                         goto exit;
2467                 }
2468         } /* done */
2469
2470         /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2471         ret = copy_to_user((void __user *)args->bos,
2472                                 bo_buckets,
2473                                 (args->num_bos * sizeof(*bo_buckets)));
2474         if (ret)
2475                 ret = -EFAULT;
2476
2477 exit:
2478         while (ret && i--) {
2479                 if (bo_buckets[i].alloc_flags
2480                    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2481                         close_fd(bo_buckets[i].dmabuf_fd);
2482         }
2483         kvfree(bo_buckets);
2484         kvfree(bo_privs);
2485         return ret;
2486 }
2487
2488 static int criu_restore_objects(struct file *filep,
2489                                 struct kfd_process *p,
2490                                 struct kfd_ioctl_criu_args *args,
2491                                 uint64_t *priv_offset,
2492                                 uint64_t max_priv_data_size)
2493 {
2494         int ret = 0;
2495         uint32_t i;
2496
2497         BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2498         BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2499         BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2500
2501         for (i = 0; i < args->num_objects; i++) {
2502                 uint32_t object_type;
2503
2504                 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2505                         pr_err("Invalid private data size\n");
2506                         return -EINVAL;
2507                 }
2508
2509                 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2510                 if (ret) {
2511                         pr_err("Failed to copy private information from user\n");
2512                         goto exit;
2513                 }
2514
2515                 switch (object_type) {
2516                 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2517                         ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2518                                                      priv_offset, max_priv_data_size);
2519                         if (ret)
2520                                 goto exit;
2521                         break;
2522                 case KFD_CRIU_OBJECT_TYPE_EVENT:
2523                         ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2524                                                      priv_offset, max_priv_data_size);
2525                         if (ret)
2526                                 goto exit;
2527                         break;
2528                 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2529                         ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2530                                                      priv_offset, max_priv_data_size);
2531                         if (ret)
2532                                 goto exit;
2533                         break;
2534                 default:
2535                         pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2536                         ret = -EINVAL;
2537                         goto exit;
2538                 }
2539         }
2540 exit:
2541         return ret;
2542 }
2543
2544 static int criu_restore(struct file *filep,
2545                         struct kfd_process *p,
2546                         struct kfd_ioctl_criu_args *args)
2547 {
2548         uint64_t priv_offset = 0;
2549         int ret = 0;
2550
2551         pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2552                  args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2553
2554         if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2555             !args->num_devices || !args->num_bos)
2556                 return -EINVAL;
2557
2558         mutex_lock(&p->mutex);
2559
2560         /*
2561          * Set the process to evicted state to avoid running any new queues before all the memory
2562          * mappings are ready.
2563          */
2564         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2565         if (ret)
2566                 goto exit_unlock;
2567
2568         /* Each function will adjust priv_offset based on how many bytes they consumed */
2569         ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2570         if (ret)
2571                 goto exit_unlock;
2572
2573         ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2574         if (ret)
2575                 goto exit_unlock;
2576
2577         ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2578         if (ret)
2579                 goto exit_unlock;
2580
2581         ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2582         if (ret)
2583                 goto exit_unlock;
2584
2585         if (priv_offset != args->priv_data_size) {
2586                 pr_err("Invalid private data size\n");
2587                 ret = -EINVAL;
2588         }
2589
2590 exit_unlock:
2591         mutex_unlock(&p->mutex);
2592         if (ret)
2593                 pr_err("Failed to restore CRIU ret:%d\n", ret);
2594         else
2595                 pr_debug("CRIU restore successful\n");
2596
2597         return ret;
2598 }
2599
2600 static int criu_unpause(struct file *filep,
2601                         struct kfd_process *p,
2602                         struct kfd_ioctl_criu_args *args)
2603 {
2604         int ret;
2605
2606         mutex_lock(&p->mutex);
2607
2608         if (!p->queues_paused) {
2609                 mutex_unlock(&p->mutex);
2610                 return -EINVAL;
2611         }
2612
2613         ret = kfd_process_restore_queues(p);
2614         if (ret)
2615                 pr_err("Failed to unpause queues ret:%d\n", ret);
2616         else
2617                 p->queues_paused = false;
2618
2619         mutex_unlock(&p->mutex);
2620
2621         return ret;
2622 }
2623
2624 static int criu_resume(struct file *filep,
2625                         struct kfd_process *p,
2626                         struct kfd_ioctl_criu_args *args)
2627 {
2628         struct kfd_process *target = NULL;
2629         struct pid *pid = NULL;
2630         int ret = 0;
2631
2632         pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2633                  args->pid);
2634
2635         pid = find_get_pid(args->pid);
2636         if (!pid) {
2637                 pr_err("Cannot find pid info for %i\n", args->pid);
2638                 return -ESRCH;
2639         }
2640
2641         pr_debug("calling kfd_lookup_process_by_pid\n");
2642         target = kfd_lookup_process_by_pid(pid);
2643
2644         put_pid(pid);
2645
2646         if (!target) {
2647                 pr_debug("Cannot find process info for %i\n", args->pid);
2648                 return -ESRCH;
2649         }
2650
2651         mutex_lock(&target->mutex);
2652         ret = kfd_criu_resume_svm(target);
2653         if (ret) {
2654                 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2655                 goto exit;
2656         }
2657
2658         ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2659         if (ret)
2660                 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2661
2662 exit:
2663         mutex_unlock(&target->mutex);
2664
2665         kfd_unref_process(target);
2666         return ret;
2667 }
2668
2669 static int criu_process_info(struct file *filep,
2670                                 struct kfd_process *p,
2671                                 struct kfd_ioctl_criu_args *args)
2672 {
2673         int ret = 0;
2674
2675         mutex_lock(&p->mutex);
2676
2677         if (!p->n_pdds) {
2678                 pr_err("No pdd for given process\n");
2679                 ret = -ENODEV;
2680                 goto err_unlock;
2681         }
2682
2683         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2684         if (ret)
2685                 goto err_unlock;
2686
2687         p->queues_paused = true;
2688
2689         args->pid = task_pid_nr_ns(p->lead_thread,
2690                                         task_active_pid_ns(p->lead_thread));
2691
2692         ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2693                                            &args->num_objects, &args->priv_data_size);
2694         if (ret)
2695                 goto err_unlock;
2696
2697         dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2698                                 args->num_devices, args->num_bos, args->num_objects,
2699                                 args->priv_data_size);
2700
2701 err_unlock:
2702         if (ret) {
2703                 kfd_process_restore_queues(p);
2704                 p->queues_paused = false;
2705         }
2706         mutex_unlock(&p->mutex);
2707         return ret;
2708 }
2709
2710 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2711 {
2712         struct kfd_ioctl_criu_args *args = data;
2713         int ret;
2714
2715         dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2716         switch (args->op) {
2717         case KFD_CRIU_OP_PROCESS_INFO:
2718                 ret = criu_process_info(filep, p, args);
2719                 break;
2720         case KFD_CRIU_OP_CHECKPOINT:
2721                 ret = criu_checkpoint(filep, p, args);
2722                 break;
2723         case KFD_CRIU_OP_UNPAUSE:
2724                 ret = criu_unpause(filep, p, args);
2725                 break;
2726         case KFD_CRIU_OP_RESTORE:
2727                 ret = criu_restore(filep, p, args);
2728                 break;
2729         case KFD_CRIU_OP_RESUME:
2730                 ret = criu_resume(filep, p, args);
2731                 break;
2732         default:
2733                 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2734                 ret = -EINVAL;
2735                 break;
2736         }
2737
2738         if (ret)
2739                 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2740
2741         return ret;
2742 }
2743
2744 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2745                         bool enable_ttmp_setup)
2746 {
2747         int i = 0, ret = 0;
2748
2749         if (p->is_runtime_retry)
2750                 goto retry;
2751
2752         if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2753                 return -EBUSY;
2754
2755         for (i = 0; i < p->n_pdds; i++) {
2756                 struct kfd_process_device *pdd = p->pdds[i];
2757
2758                 if (pdd->qpd.queue_count)
2759                         return -EEXIST;
2760
2761                 /*
2762                  * Setup TTMPs by default.
2763                  * Note that this call must remain here for MES ADD QUEUE to
2764                  * skip_process_ctx_clear unconditionally as the first call to
2765                  * SET_SHADER_DEBUGGER clears any stale process context data
2766                  * saved in MES.
2767                  */
2768                 if (pdd->dev->kfd->shared_resources.enable_mes)
2769                         kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2770         }
2771
2772         p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2773         p->runtime_info.r_debug = r_debug;
2774         p->runtime_info.ttmp_setup = enable_ttmp_setup;
2775
2776         if (p->runtime_info.ttmp_setup) {
2777                 for (i = 0; i < p->n_pdds; i++) {
2778                         struct kfd_process_device *pdd = p->pdds[i];
2779
2780                         if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2781                                 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2782                                 pdd->dev->kfd2kgd->enable_debug_trap(
2783                                                 pdd->dev->adev,
2784                                                 true,
2785                                                 pdd->dev->vm_info.last_vmid_kfd);
2786                         } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2787                                 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2788                                                 pdd->dev->adev,
2789                                                 false,
2790                                                 0);
2791                         }
2792                 }
2793         }
2794
2795 retry:
2796         if (p->debug_trap_enabled) {
2797                 if (!p->is_runtime_retry) {
2798                         kfd_dbg_trap_activate(p);
2799                         kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2800                                         p, NULL, 0, false, NULL, 0);
2801                 }
2802
2803                 mutex_unlock(&p->mutex);
2804                 ret = down_interruptible(&p->runtime_enable_sema);
2805                 mutex_lock(&p->mutex);
2806
2807                 p->is_runtime_retry = !!ret;
2808         }
2809
2810         return ret;
2811 }
2812
2813 static int runtime_disable(struct kfd_process *p)
2814 {
2815         int i = 0, ret;
2816         bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2817
2818         p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2819         p->runtime_info.r_debug = 0;
2820
2821         if (p->debug_trap_enabled) {
2822                 if (was_enabled)
2823                         kfd_dbg_trap_deactivate(p, false, 0);
2824
2825                 if (!p->is_runtime_retry)
2826                         kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2827                                         p, NULL, 0, false, NULL, 0);
2828
2829                 mutex_unlock(&p->mutex);
2830                 ret = down_interruptible(&p->runtime_enable_sema);
2831                 mutex_lock(&p->mutex);
2832
2833                 p->is_runtime_retry = !!ret;
2834                 if (ret)
2835                         return ret;
2836         }
2837
2838         if (was_enabled && p->runtime_info.ttmp_setup) {
2839                 for (i = 0; i < p->n_pdds; i++) {
2840                         struct kfd_process_device *pdd = p->pdds[i];
2841
2842                         if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2843                                 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2844                 }
2845         }
2846
2847         p->runtime_info.ttmp_setup = false;
2848
2849         /* disable ttmp setup */
2850         for (i = 0; i < p->n_pdds; i++) {
2851                 struct kfd_process_device *pdd = p->pdds[i];
2852
2853                 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2854                         pdd->spi_dbg_override =
2855                                         pdd->dev->kfd2kgd->disable_debug_trap(
2856                                         pdd->dev->adev,
2857                                         false,
2858                                         pdd->dev->vm_info.last_vmid_kfd);
2859
2860                         if (!pdd->dev->kfd->shared_resources.enable_mes)
2861                                 debug_refresh_runlist(pdd->dev->dqm);
2862                         else
2863                                 kfd_dbg_set_mes_debug_mode(pdd,
2864                                                            !kfd_dbg_has_cwsr_workaround(pdd->dev));
2865                 }
2866         }
2867
2868         return 0;
2869 }
2870
2871 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2872 {
2873         struct kfd_ioctl_runtime_enable_args *args = data;
2874         int r;
2875
2876         mutex_lock(&p->mutex);
2877
2878         if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2879                 r = runtime_enable(p, args->r_debug,
2880                                 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2881         else
2882                 r = runtime_disable(p);
2883
2884         mutex_unlock(&p->mutex);
2885
2886         return r;
2887 }
2888
2889 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2890 {
2891         struct kfd_ioctl_dbg_trap_args *args = data;
2892         struct task_struct *thread = NULL;
2893         struct mm_struct *mm = NULL;
2894         struct pid *pid = NULL;
2895         struct kfd_process *target = NULL;
2896         struct kfd_process_device *pdd = NULL;
2897         int r = 0;
2898
2899         if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2900                 pr_err("Debugging does not support sched_policy %i", sched_policy);
2901                 return -EINVAL;
2902         }
2903
2904         pid = find_get_pid(args->pid);
2905         if (!pid) {
2906                 pr_debug("Cannot find pid info for %i\n", args->pid);
2907                 r = -ESRCH;
2908                 goto out;
2909         }
2910
2911         thread = get_pid_task(pid, PIDTYPE_PID);
2912         if (!thread) {
2913                 r = -ESRCH;
2914                 goto out;
2915         }
2916
2917         mm = get_task_mm(thread);
2918         if (!mm) {
2919                 r = -ESRCH;
2920                 goto out;
2921         }
2922
2923         if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2924                 bool create_process;
2925
2926                 rcu_read_lock();
2927                 create_process = thread && thread != current && ptrace_parent(thread) == current;
2928                 rcu_read_unlock();
2929
2930                 target = create_process ? kfd_create_process(thread) :
2931                                         kfd_lookup_process_by_pid(pid);
2932         } else {
2933                 target = kfd_lookup_process_by_pid(pid);
2934         }
2935
2936         if (IS_ERR_OR_NULL(target)) {
2937                 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2938                 r = target ? PTR_ERR(target) : -ESRCH;
2939                 target = NULL;
2940                 goto out;
2941         }
2942
2943         /* Check if target is still PTRACED. */
2944         rcu_read_lock();
2945         if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2946                                 && ptrace_parent(target->lead_thread) != current) {
2947                 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2948                 r = -EPERM;
2949         }
2950         rcu_read_unlock();
2951
2952         if (r)
2953                 goto out;
2954
2955         mutex_lock(&target->mutex);
2956
2957         if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2958                 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2959                 r = -EINVAL;
2960                 goto unlock_out;
2961         }
2962
2963         if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2964                         (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2965                          args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2966                          args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2967                          args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2968                          args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2969                          args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2970                          args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2971                 r = -EPERM;
2972                 goto unlock_out;
2973         }
2974
2975         if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2976             args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2977                 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2978                                 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2979                                         args->set_node_address_watch.gpu_id :
2980                                         args->clear_node_address_watch.gpu_id);
2981
2982                 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2983                 if (user_gpu_id == -EINVAL || !pdd) {
2984                         r = -ENODEV;
2985                         goto unlock_out;
2986                 }
2987         }
2988
2989         switch (args->op) {
2990         case KFD_IOC_DBG_TRAP_ENABLE:
2991                 if (target != p)
2992                         target->debugger_process = p;
2993
2994                 r = kfd_dbg_trap_enable(target,
2995                                         args->enable.dbg_fd,
2996                                         (void __user *)args->enable.rinfo_ptr,
2997                                         &args->enable.rinfo_size);
2998                 if (!r)
2999                         target->exception_enable_mask = args->enable.exception_mask;
3000
3001                 break;
3002         case KFD_IOC_DBG_TRAP_DISABLE:
3003                 r = kfd_dbg_trap_disable(target);
3004                 break;
3005         case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3006                 r = kfd_dbg_send_exception_to_runtime(target,
3007                                 args->send_runtime_event.gpu_id,
3008                                 args->send_runtime_event.queue_id,
3009                                 args->send_runtime_event.exception_mask);
3010                 break;
3011         case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3012                 kfd_dbg_set_enabled_debug_exception_mask(target,
3013                                 args->set_exceptions_enabled.exception_mask);
3014                 break;
3015         case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3016                 r = kfd_dbg_trap_set_wave_launch_override(target,
3017                                 args->launch_override.override_mode,
3018                                 args->launch_override.enable_mask,
3019                                 args->launch_override.support_request_mask,
3020                                 &args->launch_override.enable_mask,
3021                                 &args->launch_override.support_request_mask);
3022                 break;
3023         case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3024                 r = kfd_dbg_trap_set_wave_launch_mode(target,
3025                                 args->launch_mode.launch_mode);
3026                 break;
3027         case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3028                 r = suspend_queues(target,
3029                                 args->suspend_queues.num_queues,
3030                                 args->suspend_queues.grace_period,
3031                                 args->suspend_queues.exception_mask,
3032                                 (uint32_t *)args->suspend_queues.queue_array_ptr);
3033
3034                 break;
3035         case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3036                 r = resume_queues(target, args->resume_queues.num_queues,
3037                                 (uint32_t *)args->resume_queues.queue_array_ptr);
3038                 break;
3039         case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3040                 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3041                                 args->set_node_address_watch.address,
3042                                 args->set_node_address_watch.mask,
3043                                 &args->set_node_address_watch.id,
3044                                 args->set_node_address_watch.mode);
3045                 break;
3046         case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3047                 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3048                                 args->clear_node_address_watch.id);
3049                 break;
3050         case KFD_IOC_DBG_TRAP_SET_FLAGS:
3051                 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3052                 break;
3053         case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3054                 r = kfd_dbg_ev_query_debug_event(target,
3055                                 &args->query_debug_event.queue_id,
3056                                 &args->query_debug_event.gpu_id,
3057                                 args->query_debug_event.exception_mask,
3058                                 &args->query_debug_event.exception_mask);
3059                 break;
3060         case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3061                 r = kfd_dbg_trap_query_exception_info(target,
3062                                 args->query_exception_info.source_id,
3063                                 args->query_exception_info.exception_code,
3064                                 args->query_exception_info.clear_exception,
3065                                 (void __user *)args->query_exception_info.info_ptr,
3066                                 &args->query_exception_info.info_size);
3067                 break;
3068         case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3069                 r = pqm_get_queue_snapshot(&target->pqm,
3070                                 args->queue_snapshot.exception_mask,
3071                                 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3072                                 &args->queue_snapshot.num_queues,
3073                                 &args->queue_snapshot.entry_size);
3074                 break;
3075         case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3076                 r = kfd_dbg_trap_device_snapshot(target,
3077                                 args->device_snapshot.exception_mask,
3078                                 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3079                                 &args->device_snapshot.num_devices,
3080                                 &args->device_snapshot.entry_size);
3081                 break;
3082         default:
3083                 pr_err("Invalid option: %i\n", args->op);
3084                 r = -EINVAL;
3085         }
3086
3087 unlock_out:
3088         mutex_unlock(&target->mutex);
3089
3090 out:
3091         if (thread)
3092                 put_task_struct(thread);
3093
3094         if (mm)
3095                 mmput(mm);
3096
3097         if (pid)
3098                 put_pid(pid);
3099
3100         if (target)
3101                 kfd_unref_process(target);
3102
3103         return r;
3104 }
3105
3106 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3107         [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3108                             .cmd_drv = 0, .name = #ioctl}
3109
3110 /** Ioctl table */
3111 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3112         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3113                         kfd_ioctl_get_version, 0),
3114
3115         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3116                         kfd_ioctl_create_queue, 0),
3117
3118         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3119                         kfd_ioctl_destroy_queue, 0),
3120
3121         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3122                         kfd_ioctl_set_memory_policy, 0),
3123
3124         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3125                         kfd_ioctl_get_clock_counters, 0),
3126
3127         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3128                         kfd_ioctl_get_process_apertures, 0),
3129
3130         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3131                         kfd_ioctl_update_queue, 0),
3132
3133         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3134                         kfd_ioctl_create_event, 0),
3135
3136         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3137                         kfd_ioctl_destroy_event, 0),
3138
3139         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3140                         kfd_ioctl_set_event, 0),
3141
3142         AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3143                         kfd_ioctl_reset_event, 0),
3144
3145         AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3146                         kfd_ioctl_wait_events, 0),
3147
3148         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3149                         kfd_ioctl_dbg_register, 0),
3150
3151         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3152                         kfd_ioctl_dbg_unregister, 0),
3153
3154         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3155                         kfd_ioctl_dbg_address_watch, 0),
3156
3157         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3158                         kfd_ioctl_dbg_wave_control, 0),
3159
3160         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3161                         kfd_ioctl_set_scratch_backing_va, 0),
3162
3163         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3164                         kfd_ioctl_get_tile_config, 0),
3165
3166         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3167                         kfd_ioctl_set_trap_handler, 0),
3168
3169         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3170                         kfd_ioctl_get_process_apertures_new, 0),
3171
3172         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3173                         kfd_ioctl_acquire_vm, 0),
3174
3175         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3176                         kfd_ioctl_alloc_memory_of_gpu, 0),
3177
3178         AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3179                         kfd_ioctl_free_memory_of_gpu, 0),
3180
3181         AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3182                         kfd_ioctl_map_memory_to_gpu, 0),
3183
3184         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3185                         kfd_ioctl_unmap_memory_from_gpu, 0),
3186
3187         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3188                         kfd_ioctl_set_cu_mask, 0),
3189
3190         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3191                         kfd_ioctl_get_queue_wave_state, 0),
3192
3193         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3194                                 kfd_ioctl_get_dmabuf_info, 0),
3195
3196         AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3197                                 kfd_ioctl_import_dmabuf, 0),
3198
3199         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3200                         kfd_ioctl_alloc_queue_gws, 0),
3201
3202         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3203                         kfd_ioctl_smi_events, 0),
3204
3205         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3206
3207         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3208                         kfd_ioctl_set_xnack_mode, 0),
3209
3210         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3211                         kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3212
3213         AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3214                         kfd_ioctl_get_available_memory, 0),
3215
3216         AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3217                                 kfd_ioctl_export_dmabuf, 0),
3218
3219         AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3220                         kfd_ioctl_runtime_enable, 0),
3221
3222         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3223                         kfd_ioctl_set_debug_trap, 0),
3224 };
3225
3226 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3227
3228 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3229 {
3230         struct kfd_process *process;
3231         amdkfd_ioctl_t *func;
3232         const struct amdkfd_ioctl_desc *ioctl = NULL;
3233         unsigned int nr = _IOC_NR(cmd);
3234         char stack_kdata[128];
3235         char *kdata = NULL;
3236         unsigned int usize, asize;
3237         int retcode = -EINVAL;
3238         bool ptrace_attached = false;
3239
3240         if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3241                 goto err_i1;
3242
3243         if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3244                 u32 amdkfd_size;
3245
3246                 ioctl = &amdkfd_ioctls[nr];
3247
3248                 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3249                 usize = asize = _IOC_SIZE(cmd);
3250                 if (amdkfd_size > asize)
3251                         asize = amdkfd_size;
3252
3253                 cmd = ioctl->cmd;
3254         } else
3255                 goto err_i1;
3256
3257         dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3258
3259         /* Get the process struct from the filep. Only the process
3260          * that opened /dev/kfd can use the file descriptor. Child
3261          * processes need to create their own KFD device context.
3262          */
3263         process = filep->private_data;
3264
3265         rcu_read_lock();
3266         if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3267             ptrace_parent(process->lead_thread) == current)
3268                 ptrace_attached = true;
3269         rcu_read_unlock();
3270
3271         if (process->lead_thread != current->group_leader
3272             && !ptrace_attached) {
3273                 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3274                 retcode = -EBADF;
3275                 goto err_i1;
3276         }
3277
3278         /* Do not trust userspace, use our own definition */
3279         func = ioctl->func;
3280
3281         if (unlikely(!func)) {
3282                 dev_dbg(kfd_device, "no function\n");
3283                 retcode = -EINVAL;
3284                 goto err_i1;
3285         }
3286
3287         /*
3288          * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3289          * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3290          * more priviledged access.
3291          */
3292         if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3293                 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3294                                                 !capable(CAP_SYS_ADMIN)) {
3295                         retcode = -EACCES;
3296                         goto err_i1;
3297                 }
3298         }
3299
3300         if (cmd & (IOC_IN | IOC_OUT)) {
3301                 if (asize <= sizeof(stack_kdata)) {
3302                         kdata = stack_kdata;
3303                 } else {
3304                         kdata = kmalloc(asize, GFP_KERNEL);
3305                         if (!kdata) {
3306                                 retcode = -ENOMEM;
3307                                 goto err_i1;
3308                         }
3309                 }
3310                 if (asize > usize)
3311                         memset(kdata + usize, 0, asize - usize);
3312         }
3313
3314         if (cmd & IOC_IN) {
3315                 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3316                         retcode = -EFAULT;
3317                         goto err_i1;
3318                 }
3319         } else if (cmd & IOC_OUT) {
3320                 memset(kdata, 0, usize);
3321         }
3322
3323         retcode = func(filep, process, kdata);
3324
3325         if (cmd & IOC_OUT)
3326                 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3327                         retcode = -EFAULT;
3328
3329 err_i1:
3330         if (!ioctl)
3331                 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3332                           task_pid_nr(current), cmd, nr);
3333
3334         if (kdata != stack_kdata)
3335                 kfree(kdata);
3336
3337         if (retcode)
3338                 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3339                                 nr, arg, retcode);
3340
3341         return retcode;
3342 }
3343
3344 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3345                       struct vm_area_struct *vma)
3346 {
3347         phys_addr_t address;
3348
3349         if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3350                 return -EINVAL;
3351
3352         address = dev->adev->rmmio_remap.bus_addr;
3353
3354         vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3355                                 VM_DONTDUMP | VM_PFNMAP);
3356
3357         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3358
3359         pr_debug("pasid 0x%x mapping mmio page\n"
3360                  "     target user address == 0x%08llX\n"
3361                  "     physical address    == 0x%08llX\n"
3362                  "     vm_flags            == 0x%04lX\n"
3363                  "     size                == 0x%04lX\n",
3364                  process->pasid, (unsigned long long) vma->vm_start,
3365                  address, vma->vm_flags, PAGE_SIZE);
3366
3367         return io_remap_pfn_range(vma,
3368                                 vma->vm_start,
3369                                 address >> PAGE_SHIFT,
3370                                 PAGE_SIZE,
3371                                 vma->vm_page_prot);
3372 }
3373
3374
3375 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3376 {
3377         struct kfd_process *process;
3378         struct kfd_node *dev = NULL;
3379         unsigned long mmap_offset;
3380         unsigned int gpu_id;
3381
3382         process = kfd_get_process(current);
3383         if (IS_ERR(process))
3384                 return PTR_ERR(process);
3385
3386         mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3387         gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3388         if (gpu_id)
3389                 dev = kfd_device_by_id(gpu_id);
3390
3391         switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3392         case KFD_MMAP_TYPE_DOORBELL:
3393                 if (!dev)
3394                         return -ENODEV;
3395                 return kfd_doorbell_mmap(dev, process, vma);
3396
3397         case KFD_MMAP_TYPE_EVENTS:
3398                 return kfd_event_mmap(process, vma);
3399
3400         case KFD_MMAP_TYPE_RESERVED_MEM:
3401                 if (!dev)
3402                         return -ENODEV;
3403                 return kfd_reserved_mem_mmap(dev, process, vma);
3404         case KFD_MMAP_TYPE_MMIO:
3405                 if (!dev)
3406                         return -ENODEV;
3407                 return kfd_mmio_mmap(dev, process, vma);
3408         }
3409
3410         return -EFAULT;
3411 }