Merge tag 'fuse-update-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mszered...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58
59 #include "amdgpu_ras.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73
74 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
75 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
76
77 #define WREG32_SDMA(instance, offset, value) \
78         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
79 #define RREG32_SDMA(instance, offset) \
80         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
81
82 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
87
88 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
89         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
101         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
102         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
113         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
114 };
115
116 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
120         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
123         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
124 };
125
126 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
127         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
129         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
130         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
133         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
134 };
135
136 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
148 };
149
150 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
151         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
152 };
153
154 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
155 {
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
182         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
183 };
184
185 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
212         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
213 };
214
215 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
216 {
217         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
218         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
219 };
220
221 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
222 {
223         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
224         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
225 };
226
227 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
228 {
229         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
232         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
233         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
236         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
237         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
240         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
241         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
244         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
245         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
248         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
249         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
252         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
253         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
256         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
257         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
260         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
261 };
262
263 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
264         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
268         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
269         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
270         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
272         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
273         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
274 };
275
276 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
277         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
278         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
279         0, 0,
280         },
281         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
282         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
283         0, 0,
284         },
285         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
286         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
287         0, 0,
288         },
289         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
290         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
291         0, 0,
292         },
293         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
294         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
295         0, 0,
296         },
297         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
298         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
299         0, 0,
300         },
301         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
302         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
303         0, 0,
304         },
305         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
306         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
307         0, 0,
308         },
309         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
310         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
311         0, 0,
312         },
313         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
314         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
315         0, 0,
316         },
317         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
318         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
319         0, 0,
320         },
321         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
322         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
323         0, 0,
324         },
325         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
326         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
327         0, 0,
328         },
329         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
330         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
331         0, 0,
332         },
333         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
334         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
335         0, 0,
336         },
337         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
338         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
339         0, 0,
340         },
341         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
342         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
343         0, 0,
344         },
345         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
346         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
347         0, 0,
348         },
349         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
350         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
351         0, 0,
352         },
353         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
354         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
355         0, 0,
356         },
357         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
358         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
359         0, 0,
360         },
361         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
362         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
363         0, 0,
364         },
365         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
366         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
367         0, 0,
368         },
369         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
370         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
371         0, 0,
372         },
373 };
374
375 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
376                 u32 instance, u32 offset)
377 {
378         switch (instance) {
379         case 0:
380                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
381         case 1:
382                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
383         case 2:
384                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
385         case 3:
386                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
387         case 4:
388                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
389         case 5:
390                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
391         case 6:
392                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
393         case 7:
394                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
395         default:
396                 break;
397         }
398         return 0;
399 }
400
401 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
402 {
403         switch (seq_num) {
404         case 0:
405                 return SOC15_IH_CLIENTID_SDMA0;
406         case 1:
407                 return SOC15_IH_CLIENTID_SDMA1;
408         case 2:
409                 return SOC15_IH_CLIENTID_SDMA2;
410         case 3:
411                 return SOC15_IH_CLIENTID_SDMA3;
412         case 4:
413                 return SOC15_IH_CLIENTID_SDMA4;
414         case 5:
415                 return SOC15_IH_CLIENTID_SDMA5;
416         case 6:
417                 return SOC15_IH_CLIENTID_SDMA6;
418         case 7:
419                 return SOC15_IH_CLIENTID_SDMA7;
420         default:
421                 break;
422         }
423         return -EINVAL;
424 }
425
426 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
427 {
428         switch (client_id) {
429         case SOC15_IH_CLIENTID_SDMA0:
430                 return 0;
431         case SOC15_IH_CLIENTID_SDMA1:
432                 return 1;
433         case SOC15_IH_CLIENTID_SDMA2:
434                 return 2;
435         case SOC15_IH_CLIENTID_SDMA3:
436                 return 3;
437         case SOC15_IH_CLIENTID_SDMA4:
438                 return 4;
439         case SOC15_IH_CLIENTID_SDMA5:
440                 return 5;
441         case SOC15_IH_CLIENTID_SDMA6:
442                 return 6;
443         case SOC15_IH_CLIENTID_SDMA7:
444                 return 7;
445         default:
446                 break;
447         }
448         return -EINVAL;
449 }
450
451 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
452 {
453         switch (adev->asic_type) {
454         case CHIP_VEGA10:
455                 soc15_program_register_sequence(adev,
456                                                 golden_settings_sdma_4,
457                                                 ARRAY_SIZE(golden_settings_sdma_4));
458                 soc15_program_register_sequence(adev,
459                                                 golden_settings_sdma_vg10,
460                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
461                 break;
462         case CHIP_VEGA12:
463                 soc15_program_register_sequence(adev,
464                                                 golden_settings_sdma_4,
465                                                 ARRAY_SIZE(golden_settings_sdma_4));
466                 soc15_program_register_sequence(adev,
467                                                 golden_settings_sdma_vg12,
468                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
469                 break;
470         case CHIP_VEGA20:
471                 soc15_program_register_sequence(adev,
472                                                 golden_settings_sdma0_4_2_init,
473                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
474                 soc15_program_register_sequence(adev,
475                                                 golden_settings_sdma0_4_2,
476                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
477                 soc15_program_register_sequence(adev,
478                                                 golden_settings_sdma1_4_2,
479                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
480                 break;
481         case CHIP_ARCTURUS:
482                 soc15_program_register_sequence(adev,
483                                                 golden_settings_sdma_arct,
484                                                 ARRAY_SIZE(golden_settings_sdma_arct));
485                 break;
486         case CHIP_RAVEN:
487                 soc15_program_register_sequence(adev,
488                                                 golden_settings_sdma_4_1,
489                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
490                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
491                         soc15_program_register_sequence(adev,
492                                                         golden_settings_sdma_rv2,
493                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
494                 else
495                         soc15_program_register_sequence(adev,
496                                                         golden_settings_sdma_rv1,
497                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
498                 break;
499         case CHIP_RENOIR:
500                 soc15_program_register_sequence(adev,
501                                                 golden_settings_sdma_4_3,
502                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
503                 break;
504         default:
505                 break;
506         }
507 }
508
509 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
510 {
511         int i;
512
513         /*
514          * The only chips with SDMAv4 and ULV are VG10 and VG20.
515          * Server SKUs take a different hysteresis setting from other SKUs.
516          */
517         switch (adev->asic_type) {
518         case CHIP_VEGA10:
519                 if (adev->pdev->device == 0x6860)
520                         break;
521                 return;
522         case CHIP_VEGA20:
523                 if (adev->pdev->device == 0x66a1)
524                         break;
525                 return;
526         default:
527                 return;
528         }
529
530         for (i = 0; i < adev->sdma.num_instances; i++) {
531                 uint32_t temp;
532
533                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
534                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
535                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
536         }
537 }
538
539 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
540 {
541         int err = 0;
542         const struct sdma_firmware_header_v1_0 *hdr;
543
544         err = amdgpu_ucode_validate(sdma_inst->fw);
545         if (err)
546                 return err;
547
548         hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
549         sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
550         sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
551
552         if (sdma_inst->feature_version >= 20)
553                 sdma_inst->burst_nop = true;
554
555         return 0;
556 }
557
558 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
559 {
560         int i;
561
562         for (i = 0; i < adev->sdma.num_instances; i++) {
563                 release_firmware(adev->sdma.instance[i].fw);
564                 adev->sdma.instance[i].fw = NULL;
565
566                 /* arcturus shares the same FW memory across
567                    all SDMA isntances */
568                 if (adev->asic_type == CHIP_ARCTURUS)
569                         break;
570         }
571
572         memset((void *)adev->sdma.instance, 0,
573                 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
574 }
575
576 /**
577  * sdma_v4_0_init_microcode - load ucode images from disk
578  *
579  * @adev: amdgpu_device pointer
580  *
581  * Use the firmware interface to load the ucode images into
582  * the driver (not loaded into hw).
583  * Returns 0 on success, error on failure.
584  */
585
586 // emulation only, won't work on real chip
587 // vega10 real chip need to use PSP to load firmware
588 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
589 {
590         const char *chip_name;
591         char fw_name[30];
592         int err = 0, i;
593         struct amdgpu_firmware_info *info = NULL;
594         const struct common_firmware_header *header = NULL;
595
596         DRM_DEBUG("\n");
597
598         switch (adev->asic_type) {
599         case CHIP_VEGA10:
600                 chip_name = "vega10";
601                 break;
602         case CHIP_VEGA12:
603                 chip_name = "vega12";
604                 break;
605         case CHIP_VEGA20:
606                 chip_name = "vega20";
607                 break;
608         case CHIP_RAVEN:
609                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
610                         chip_name = "raven2";
611                 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
612                         chip_name = "picasso";
613                 else
614                         chip_name = "raven";
615                 break;
616         case CHIP_ARCTURUS:
617                 chip_name = "arcturus";
618                 break;
619         case CHIP_RENOIR:
620                 if (adev->apu_flags & AMD_APU_IS_RENOIR)
621                         chip_name = "renoir";
622                 else
623                         chip_name = "green_sardine";
624                 break;
625         default:
626                 BUG();
627         }
628
629         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
630
631         err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
632         if (err)
633                 goto out;
634
635         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
636         if (err)
637                 goto out;
638
639         for (i = 1; i < adev->sdma.num_instances; i++) {
640                 if (adev->asic_type == CHIP_ARCTURUS) {
641                         /* Acturus will leverage the same FW memory
642                            for every SDMA instance */
643                         memcpy((void *)&adev->sdma.instance[i],
644                                (void *)&adev->sdma.instance[0],
645                                sizeof(struct amdgpu_sdma_instance));
646                 }
647                 else {
648                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
649
650                         err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
651                         if (err)
652                                 goto out;
653
654                         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
655                         if (err)
656                                 goto out;
657                 }
658         }
659
660         DRM_DEBUG("psp_load == '%s'\n",
661                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
662
663         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
664                 for (i = 0; i < adev->sdma.num_instances; i++) {
665                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
666                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
667                         info->fw = adev->sdma.instance[i].fw;
668                         header = (const struct common_firmware_header *)info->fw->data;
669                         adev->firmware.fw_size +=
670                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
671                 }
672         }
673
674 out:
675         if (err) {
676                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
677                 sdma_v4_0_destroy_inst_ctx(adev);
678         }
679         return err;
680 }
681
682 /**
683  * sdma_v4_0_ring_get_rptr - get the current read pointer
684  *
685  * @ring: amdgpu ring pointer
686  *
687  * Get the current rptr from the hardware (VEGA10+).
688  */
689 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
690 {
691         u64 *rptr;
692
693         /* XXX check if swapping is necessary on BE */
694         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
695
696         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
697         return ((*rptr) >> 2);
698 }
699
700 /**
701  * sdma_v4_0_ring_get_wptr - get the current write pointer
702  *
703  * @ring: amdgpu ring pointer
704  *
705  * Get the current wptr from the hardware (VEGA10+).
706  */
707 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
708 {
709         struct amdgpu_device *adev = ring->adev;
710         u64 wptr;
711
712         if (ring->use_doorbell) {
713                 /* XXX check if swapping is necessary on BE */
714                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
715                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
716         } else {
717                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
718                 wptr = wptr << 32;
719                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
720                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
721                                 ring->me, wptr);
722         }
723
724         return wptr >> 2;
725 }
726
727 /**
728  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
729  *
730  * @ring: amdgpu ring pointer
731  *
732  * Write the wptr back to the hardware (VEGA10+).
733  */
734 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
735 {
736         struct amdgpu_device *adev = ring->adev;
737
738         DRM_DEBUG("Setting write pointer\n");
739         if (ring->use_doorbell) {
740                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
741
742                 DRM_DEBUG("Using doorbell -- "
743                                 "wptr_offs == 0x%08x "
744                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
745                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
746                                 ring->wptr_offs,
747                                 lower_32_bits(ring->wptr << 2),
748                                 upper_32_bits(ring->wptr << 2));
749                 /* XXX check if swapping is necessary on BE */
750                 WRITE_ONCE(*wb, (ring->wptr << 2));
751                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
752                                 ring->doorbell_index, ring->wptr << 2);
753                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
754         } else {
755                 DRM_DEBUG("Not using doorbell -- "
756                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
757                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
758                                 ring->me,
759                                 lower_32_bits(ring->wptr << 2),
760                                 ring->me,
761                                 upper_32_bits(ring->wptr << 2));
762                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
763                             lower_32_bits(ring->wptr << 2));
764                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
765                             upper_32_bits(ring->wptr << 2));
766         }
767 }
768
769 /**
770  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
771  *
772  * @ring: amdgpu ring pointer
773  *
774  * Get the current wptr from the hardware (VEGA10+).
775  */
776 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
777 {
778         struct amdgpu_device *adev = ring->adev;
779         u64 wptr;
780
781         if (ring->use_doorbell) {
782                 /* XXX check if swapping is necessary on BE */
783                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
784         } else {
785                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
786                 wptr = wptr << 32;
787                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
788         }
789
790         return wptr >> 2;
791 }
792
793 /**
794  * sdma_v4_0_ring_set_wptr - commit the write pointer
795  *
796  * @ring: amdgpu ring pointer
797  *
798  * Write the wptr back to the hardware (VEGA10+).
799  */
800 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
801 {
802         struct amdgpu_device *adev = ring->adev;
803
804         if (ring->use_doorbell) {
805                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
806
807                 /* XXX check if swapping is necessary on BE */
808                 WRITE_ONCE(*wb, (ring->wptr << 2));
809                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
810         } else {
811                 uint64_t wptr = ring->wptr << 2;
812
813                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
814                             lower_32_bits(wptr));
815                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
816                             upper_32_bits(wptr));
817         }
818 }
819
820 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
821 {
822         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
823         int i;
824
825         for (i = 0; i < count; i++)
826                 if (sdma && sdma->burst_nop && (i == 0))
827                         amdgpu_ring_write(ring, ring->funcs->nop |
828                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
829                 else
830                         amdgpu_ring_write(ring, ring->funcs->nop);
831 }
832
833 /**
834  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
835  *
836  * @ring: amdgpu ring pointer
837  * @job: job to retrieve vmid from
838  * @ib: IB object to schedule
839  * @flags: unused
840  *
841  * Schedule an IB in the DMA ring (VEGA10).
842  */
843 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
844                                    struct amdgpu_job *job,
845                                    struct amdgpu_ib *ib,
846                                    uint32_t flags)
847 {
848         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
849
850         /* IB packet must end on a 8 DW boundary */
851         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
852
853         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
854                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
855         /* base must be 32 byte aligned */
856         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
857         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
858         amdgpu_ring_write(ring, ib->length_dw);
859         amdgpu_ring_write(ring, 0);
860         amdgpu_ring_write(ring, 0);
861
862 }
863
864 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
865                                    int mem_space, int hdp,
866                                    uint32_t addr0, uint32_t addr1,
867                                    uint32_t ref, uint32_t mask,
868                                    uint32_t inv)
869 {
870         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
871                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
872                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
873                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
874         if (mem_space) {
875                 /* memory */
876                 amdgpu_ring_write(ring, addr0);
877                 amdgpu_ring_write(ring, addr1);
878         } else {
879                 /* registers */
880                 amdgpu_ring_write(ring, addr0 << 2);
881                 amdgpu_ring_write(ring, addr1 << 2);
882         }
883         amdgpu_ring_write(ring, ref); /* reference */
884         amdgpu_ring_write(ring, mask); /* mask */
885         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
886                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
887 }
888
889 /**
890  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
891  *
892  * @ring: amdgpu ring pointer
893  *
894  * Emit an hdp flush packet on the requested DMA ring.
895  */
896 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
897 {
898         struct amdgpu_device *adev = ring->adev;
899         u32 ref_and_mask = 0;
900         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
901
902         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
903
904         sdma_v4_0_wait_reg_mem(ring, 0, 1,
905                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
906                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
907                                ref_and_mask, ref_and_mask, 10);
908 }
909
910 /**
911  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
912  *
913  * @ring: amdgpu ring pointer
914  * @addr: address
915  * @seq: sequence number
916  * @flags: fence related flags
917  *
918  * Add a DMA fence packet to the ring to write
919  * the fence seq number and DMA trap packet to generate
920  * an interrupt if needed (VEGA10).
921  */
922 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
923                                       unsigned flags)
924 {
925         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
926         /* write the fence */
927         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
928         /* zero in first two bits */
929         BUG_ON(addr & 0x3);
930         amdgpu_ring_write(ring, lower_32_bits(addr));
931         amdgpu_ring_write(ring, upper_32_bits(addr));
932         amdgpu_ring_write(ring, lower_32_bits(seq));
933
934         /* optionally write high bits as well */
935         if (write64bit) {
936                 addr += 4;
937                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
938                 /* zero in first two bits */
939                 BUG_ON(addr & 0x3);
940                 amdgpu_ring_write(ring, lower_32_bits(addr));
941                 amdgpu_ring_write(ring, upper_32_bits(addr));
942                 amdgpu_ring_write(ring, upper_32_bits(seq));
943         }
944
945         /* generate an interrupt */
946         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
947         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
948 }
949
950
951 /**
952  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
953  *
954  * @adev: amdgpu_device pointer
955  *
956  * Stop the gfx async dma ring buffers (VEGA10).
957  */
958 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
959 {
960         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
961         u32 rb_cntl, ib_cntl;
962         int i, unset = 0;
963
964         for (i = 0; i < adev->sdma.num_instances; i++) {
965                 sdma[i] = &adev->sdma.instance[i].ring;
966
967                 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
968                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
969                         unset = 1;
970                 }
971
972                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
973                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
974                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
975                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
976                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
977                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
978         }
979 }
980
981 /**
982  * sdma_v4_0_rlc_stop - stop the compute async dma engines
983  *
984  * @adev: amdgpu_device pointer
985  *
986  * Stop the compute async dma queues (VEGA10).
987  */
988 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
989 {
990         /* XXX todo */
991 }
992
993 /**
994  * sdma_v4_0_page_stop - stop the page async dma engines
995  *
996  * @adev: amdgpu_device pointer
997  *
998  * Stop the page async dma ring buffers (VEGA10).
999  */
1000 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1001 {
1002         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1003         u32 rb_cntl, ib_cntl;
1004         int i;
1005         bool unset = false;
1006
1007         for (i = 0; i < adev->sdma.num_instances; i++) {
1008                 sdma[i] = &adev->sdma.instance[i].page;
1009
1010                 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1011                         (!unset)) {
1012                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1013                         unset = true;
1014                 }
1015
1016                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1017                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1018                                         RB_ENABLE, 0);
1019                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1020                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1021                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1022                                         IB_ENABLE, 0);
1023                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1024         }
1025 }
1026
1027 /**
1028  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1029  *
1030  * @adev: amdgpu_device pointer
1031  * @enable: enable/disable the DMA MEs context switch.
1032  *
1033  * Halt or unhalt the async dma engines context switch (VEGA10).
1034  */
1035 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1036 {
1037         u32 f32_cntl, phase_quantum = 0;
1038         int i;
1039
1040         if (amdgpu_sdma_phase_quantum) {
1041                 unsigned value = amdgpu_sdma_phase_quantum;
1042                 unsigned unit = 0;
1043
1044                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1045                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1046                         value = (value + 1) >> 1;
1047                         unit++;
1048                 }
1049                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1050                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1051                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1052                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1053                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1054                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1055                         WARN_ONCE(1,
1056                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1057                                   value << unit);
1058                 }
1059                 phase_quantum =
1060                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1061                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1062         }
1063
1064         for (i = 0; i < adev->sdma.num_instances; i++) {
1065                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1066                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1067                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1068                 if (enable && amdgpu_sdma_phase_quantum) {
1069                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1070                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1071                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1072                 }
1073                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1074
1075                 /*
1076                  * Enable SDMA utilization. Its only supported on
1077                  * Arcturus for the moment and firmware version 14
1078                  * and above.
1079                  */
1080                 if (adev->asic_type == CHIP_ARCTURUS &&
1081                     adev->sdma.instance[i].fw_version >= 14)
1082                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1083         }
1084
1085 }
1086
1087 /**
1088  * sdma_v4_0_enable - stop the async dma engines
1089  *
1090  * @adev: amdgpu_device pointer
1091  * @enable: enable/disable the DMA MEs.
1092  *
1093  * Halt or unhalt the async dma engines (VEGA10).
1094  */
1095 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1096 {
1097         u32 f32_cntl;
1098         int i;
1099
1100         if (!enable) {
1101                 sdma_v4_0_gfx_stop(adev);
1102                 sdma_v4_0_rlc_stop(adev);
1103                 if (adev->sdma.has_page_queue)
1104                         sdma_v4_0_page_stop(adev);
1105         }
1106
1107         for (i = 0; i < adev->sdma.num_instances; i++) {
1108                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1109                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1110                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1111         }
1112 }
1113
1114 /*
1115  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1116  */
1117 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1118 {
1119         /* Set ring buffer size in dwords */
1120         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1121
1122         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1123 #ifdef __BIG_ENDIAN
1124         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1125         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1126                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1127 #endif
1128         return rb_cntl;
1129 }
1130
1131 /**
1132  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1133  *
1134  * @adev: amdgpu_device pointer
1135  * @i: instance to resume
1136  *
1137  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1138  * Returns 0 for success, error for failure.
1139  */
1140 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1141 {
1142         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1143         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1144         u32 wb_offset;
1145         u32 doorbell;
1146         u32 doorbell_offset;
1147         u64 wptr_gpu_addr;
1148
1149         wb_offset = (ring->rptr_offs * 4);
1150
1151         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1152         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1153         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1154
1155         /* Initialize the ring buffer's read and write pointers */
1156         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1157         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1158         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1159         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1160
1161         /* set the wb address whether it's enabled or not */
1162         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1163                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1164         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1165                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1166
1167         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1168                                 RPTR_WRITEBACK_ENABLE, 1);
1169
1170         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1171         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1172
1173         ring->wptr = 0;
1174
1175         /* before programing wptr to a less value, need set minor_ptr_update first */
1176         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1177
1178         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1179         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1180
1181         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1182                                  ring->use_doorbell);
1183         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1184                                         SDMA0_GFX_DOORBELL_OFFSET,
1185                                         OFFSET, ring->doorbell_index);
1186         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1187         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1188
1189         sdma_v4_0_ring_set_wptr(ring);
1190
1191         /* set minor_ptr_update to 0 after wptr programed */
1192         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1193
1194         /* setup the wptr shadow polling */
1195         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1196         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1197                     lower_32_bits(wptr_gpu_addr));
1198         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1199                     upper_32_bits(wptr_gpu_addr));
1200         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1201         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1202                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1203                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1204         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1205
1206         /* enable DMA RB */
1207         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1208         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1209
1210         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1211         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1212 #ifdef __BIG_ENDIAN
1213         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1214 #endif
1215         /* enable DMA IBs */
1216         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1217
1218         ring->sched.ready = true;
1219 }
1220
1221 /**
1222  * sdma_v4_0_page_resume - setup and start the async dma engines
1223  *
1224  * @adev: amdgpu_device pointer
1225  * @i: instance to resume
1226  *
1227  * Set up the page DMA ring buffers and enable them (VEGA10).
1228  * Returns 0 for success, error for failure.
1229  */
1230 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1231 {
1232         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1233         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1234         u32 wb_offset;
1235         u32 doorbell;
1236         u32 doorbell_offset;
1237         u64 wptr_gpu_addr;
1238
1239         wb_offset = (ring->rptr_offs * 4);
1240
1241         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1242         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1243         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1244
1245         /* Initialize the ring buffer's read and write pointers */
1246         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1247         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1248         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1249         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1250
1251         /* set the wb address whether it's enabled or not */
1252         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1253                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1254         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1255                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1256
1257         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1258                                 RPTR_WRITEBACK_ENABLE, 1);
1259
1260         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1261         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1262
1263         ring->wptr = 0;
1264
1265         /* before programing wptr to a less value, need set minor_ptr_update first */
1266         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1267
1268         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1269         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1270
1271         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1272                                  ring->use_doorbell);
1273         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1274                                         SDMA0_PAGE_DOORBELL_OFFSET,
1275                                         OFFSET, ring->doorbell_index);
1276         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1277         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1278
1279         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1280         sdma_v4_0_page_ring_set_wptr(ring);
1281
1282         /* set minor_ptr_update to 0 after wptr programed */
1283         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1284
1285         /* setup the wptr shadow polling */
1286         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1287         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1288                     lower_32_bits(wptr_gpu_addr));
1289         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1290                     upper_32_bits(wptr_gpu_addr));
1291         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1292         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1293                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1294                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1295         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1296
1297         /* enable DMA RB */
1298         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1299         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1300
1301         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1302         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1303 #ifdef __BIG_ENDIAN
1304         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1305 #endif
1306         /* enable DMA IBs */
1307         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1308
1309         ring->sched.ready = true;
1310 }
1311
1312 static void
1313 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1314 {
1315         uint32_t def, data;
1316
1317         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1318                 /* enable idle interrupt */
1319                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1320                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1321
1322                 if (data != def)
1323                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1324         } else {
1325                 /* disable idle interrupt */
1326                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1327                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1328                 if (data != def)
1329                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1330         }
1331 }
1332
1333 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1334 {
1335         uint32_t def, data;
1336
1337         /* Enable HW based PG. */
1338         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1339         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1340         if (data != def)
1341                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1342
1343         /* enable interrupt */
1344         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1345         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1346         if (data != def)
1347                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1348
1349         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1350         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1351         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1352         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1353         /* Configure switch time for hysteresis purpose. Use default right now */
1354         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1355         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1356         if(data != def)
1357                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1358 }
1359
1360 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1361 {
1362         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1363                 return;
1364
1365         switch (adev->asic_type) {
1366         case CHIP_RAVEN:
1367         case CHIP_RENOIR:
1368                 sdma_v4_1_init_power_gating(adev);
1369                 sdma_v4_1_update_power_gating(adev, true);
1370                 break;
1371         default:
1372                 break;
1373         }
1374 }
1375
1376 /**
1377  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1378  *
1379  * @adev: amdgpu_device pointer
1380  *
1381  * Set up the compute DMA queues and enable them (VEGA10).
1382  * Returns 0 for success, error for failure.
1383  */
1384 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1385 {
1386         sdma_v4_0_init_pg(adev);
1387
1388         return 0;
1389 }
1390
1391 /**
1392  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1393  *
1394  * @adev: amdgpu_device pointer
1395  *
1396  * Loads the sDMA0/1 ucode.
1397  * Returns 0 for success, -EINVAL if the ucode is not available.
1398  */
1399 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1400 {
1401         const struct sdma_firmware_header_v1_0 *hdr;
1402         const __le32 *fw_data;
1403         u32 fw_size;
1404         int i, j;
1405
1406         /* halt the MEs */
1407         sdma_v4_0_enable(adev, false);
1408
1409         for (i = 0; i < adev->sdma.num_instances; i++) {
1410                 if (!adev->sdma.instance[i].fw)
1411                         return -EINVAL;
1412
1413                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1414                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1415                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1416
1417                 fw_data = (const __le32 *)
1418                         (adev->sdma.instance[i].fw->data +
1419                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1420
1421                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1422
1423                 for (j = 0; j < fw_size; j++)
1424                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1425                                     le32_to_cpup(fw_data++));
1426
1427                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1428                             adev->sdma.instance[i].fw_version);
1429         }
1430
1431         return 0;
1432 }
1433
1434 /**
1435  * sdma_v4_0_start - setup and start the async dma engines
1436  *
1437  * @adev: amdgpu_device pointer
1438  *
1439  * Set up the DMA engines and enable them (VEGA10).
1440  * Returns 0 for success, error for failure.
1441  */
1442 static int sdma_v4_0_start(struct amdgpu_device *adev)
1443 {
1444         struct amdgpu_ring *ring;
1445         int i, r = 0;
1446
1447         if (amdgpu_sriov_vf(adev)) {
1448                 sdma_v4_0_ctx_switch_enable(adev, false);
1449                 sdma_v4_0_enable(adev, false);
1450         } else {
1451
1452                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1453                         r = sdma_v4_0_load_microcode(adev);
1454                         if (r)
1455                                 return r;
1456                 }
1457
1458                 /* unhalt the MEs */
1459                 sdma_v4_0_enable(adev, true);
1460                 /* enable sdma ring preemption */
1461                 sdma_v4_0_ctx_switch_enable(adev, true);
1462         }
1463
1464         /* start the gfx rings and rlc compute queues */
1465         for (i = 0; i < adev->sdma.num_instances; i++) {
1466                 uint32_t temp;
1467
1468                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1469                 sdma_v4_0_gfx_resume(adev, i);
1470                 if (adev->sdma.has_page_queue)
1471                         sdma_v4_0_page_resume(adev, i);
1472
1473                 /* set utc l1 enable flag always to 1 */
1474                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1475                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1476                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1477
1478                 if (!amdgpu_sriov_vf(adev)) {
1479                         /* unhalt engine */
1480                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1481                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1482                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1483                 }
1484         }
1485
1486         if (amdgpu_sriov_vf(adev)) {
1487                 sdma_v4_0_ctx_switch_enable(adev, true);
1488                 sdma_v4_0_enable(adev, true);
1489         } else {
1490                 r = sdma_v4_0_rlc_resume(adev);
1491                 if (r)
1492                         return r;
1493         }
1494
1495         for (i = 0; i < adev->sdma.num_instances; i++) {
1496                 ring = &adev->sdma.instance[i].ring;
1497
1498                 r = amdgpu_ring_test_helper(ring);
1499                 if (r)
1500                         return r;
1501
1502                 if (adev->sdma.has_page_queue) {
1503                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1504
1505                         r = amdgpu_ring_test_helper(page);
1506                         if (r)
1507                                 return r;
1508
1509                         if (adev->mman.buffer_funcs_ring == page)
1510                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1511                 }
1512
1513                 if (adev->mman.buffer_funcs_ring == ring)
1514                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1515         }
1516
1517         return r;
1518 }
1519
1520 /**
1521  * sdma_v4_0_ring_test_ring - simple async dma engine test
1522  *
1523  * @ring: amdgpu_ring structure holding ring information
1524  *
1525  * Test the DMA engine by writing using it to write an
1526  * value to memory. (VEGA10).
1527  * Returns 0 for success, error for failure.
1528  */
1529 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1530 {
1531         struct amdgpu_device *adev = ring->adev;
1532         unsigned i;
1533         unsigned index;
1534         int r;
1535         u32 tmp;
1536         u64 gpu_addr;
1537
1538         r = amdgpu_device_wb_get(adev, &index);
1539         if (r)
1540                 return r;
1541
1542         gpu_addr = adev->wb.gpu_addr + (index * 4);
1543         tmp = 0xCAFEDEAD;
1544         adev->wb.wb[index] = cpu_to_le32(tmp);
1545
1546         r = amdgpu_ring_alloc(ring, 5);
1547         if (r)
1548                 goto error_free_wb;
1549
1550         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1551                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1552         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1553         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1554         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1555         amdgpu_ring_write(ring, 0xDEADBEEF);
1556         amdgpu_ring_commit(ring);
1557
1558         for (i = 0; i < adev->usec_timeout; i++) {
1559                 tmp = le32_to_cpu(adev->wb.wb[index]);
1560                 if (tmp == 0xDEADBEEF)
1561                         break;
1562                 udelay(1);
1563         }
1564
1565         if (i >= adev->usec_timeout)
1566                 r = -ETIMEDOUT;
1567
1568 error_free_wb:
1569         amdgpu_device_wb_free(adev, index);
1570         return r;
1571 }
1572
1573 /**
1574  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1575  *
1576  * @ring: amdgpu_ring structure holding ring information
1577  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1578  *
1579  * Test a simple IB in the DMA ring (VEGA10).
1580  * Returns 0 on success, error on failure.
1581  */
1582 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1583 {
1584         struct amdgpu_device *adev = ring->adev;
1585         struct amdgpu_ib ib;
1586         struct dma_fence *f = NULL;
1587         unsigned index;
1588         long r;
1589         u32 tmp = 0;
1590         u64 gpu_addr;
1591
1592         r = amdgpu_device_wb_get(adev, &index);
1593         if (r)
1594                 return r;
1595
1596         gpu_addr = adev->wb.gpu_addr + (index * 4);
1597         tmp = 0xCAFEDEAD;
1598         adev->wb.wb[index] = cpu_to_le32(tmp);
1599         memset(&ib, 0, sizeof(ib));
1600         r = amdgpu_ib_get(adev, NULL, 256,
1601                                         AMDGPU_IB_POOL_DIRECT, &ib);
1602         if (r)
1603                 goto err0;
1604
1605         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1606                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1607         ib.ptr[1] = lower_32_bits(gpu_addr);
1608         ib.ptr[2] = upper_32_bits(gpu_addr);
1609         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1610         ib.ptr[4] = 0xDEADBEEF;
1611         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1612         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1613         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1614         ib.length_dw = 8;
1615
1616         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1617         if (r)
1618                 goto err1;
1619
1620         r = dma_fence_wait_timeout(f, false, timeout);
1621         if (r == 0) {
1622                 r = -ETIMEDOUT;
1623                 goto err1;
1624         } else if (r < 0) {
1625                 goto err1;
1626         }
1627         tmp = le32_to_cpu(adev->wb.wb[index]);
1628         if (tmp == 0xDEADBEEF)
1629                 r = 0;
1630         else
1631                 r = -EINVAL;
1632
1633 err1:
1634         amdgpu_ib_free(adev, &ib, NULL);
1635         dma_fence_put(f);
1636 err0:
1637         amdgpu_device_wb_free(adev, index);
1638         return r;
1639 }
1640
1641
1642 /**
1643  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1644  *
1645  * @ib: indirect buffer to fill with commands
1646  * @pe: addr of the page entry
1647  * @src: src addr to copy from
1648  * @count: number of page entries to update
1649  *
1650  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1651  */
1652 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1653                                   uint64_t pe, uint64_t src,
1654                                   unsigned count)
1655 {
1656         unsigned bytes = count * 8;
1657
1658         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1659                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1660         ib->ptr[ib->length_dw++] = bytes - 1;
1661         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1662         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1663         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1664         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1665         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1666
1667 }
1668
1669 /**
1670  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1671  *
1672  * @ib: indirect buffer to fill with commands
1673  * @pe: addr of the page entry
1674  * @value: dst addr to write into pe
1675  * @count: number of page entries to update
1676  * @incr: increase next addr by incr bytes
1677  *
1678  * Update PTEs by writing them manually using sDMA (VEGA10).
1679  */
1680 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1681                                    uint64_t value, unsigned count,
1682                                    uint32_t incr)
1683 {
1684         unsigned ndw = count * 2;
1685
1686         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1687                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1688         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1689         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1690         ib->ptr[ib->length_dw++] = ndw - 1;
1691         for (; ndw > 0; ndw -= 2) {
1692                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1693                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1694                 value += incr;
1695         }
1696 }
1697
1698 /**
1699  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1700  *
1701  * @ib: indirect buffer to fill with commands
1702  * @pe: addr of the page entry
1703  * @addr: dst addr to write into pe
1704  * @count: number of page entries to update
1705  * @incr: increase next addr by incr bytes
1706  * @flags: access flags
1707  *
1708  * Update the page tables using sDMA (VEGA10).
1709  */
1710 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1711                                      uint64_t pe,
1712                                      uint64_t addr, unsigned count,
1713                                      uint32_t incr, uint64_t flags)
1714 {
1715         /* for physically contiguous pages (vram) */
1716         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1717         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1718         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1719         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1720         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1721         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1722         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1723         ib->ptr[ib->length_dw++] = incr; /* increment size */
1724         ib->ptr[ib->length_dw++] = 0;
1725         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1726 }
1727
1728 /**
1729  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1730  *
1731  * @ring: amdgpu_ring structure holding ring information
1732  * @ib: indirect buffer to fill with padding
1733  */
1734 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1735 {
1736         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1737         u32 pad_count;
1738         int i;
1739
1740         pad_count = (-ib->length_dw) & 7;
1741         for (i = 0; i < pad_count; i++)
1742                 if (sdma && sdma->burst_nop && (i == 0))
1743                         ib->ptr[ib->length_dw++] =
1744                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1745                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1746                 else
1747                         ib->ptr[ib->length_dw++] =
1748                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1749 }
1750
1751
1752 /**
1753  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1754  *
1755  * @ring: amdgpu_ring pointer
1756  *
1757  * Make sure all previous operations are completed (CIK).
1758  */
1759 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1760 {
1761         uint32_t seq = ring->fence_drv.sync_seq;
1762         uint64_t addr = ring->fence_drv.gpu_addr;
1763
1764         /* wait for idle */
1765         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1766                                addr & 0xfffffffc,
1767                                upper_32_bits(addr) & 0xffffffff,
1768                                seq, 0xffffffff, 4);
1769 }
1770
1771
1772 /**
1773  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1774  *
1775  * @ring: amdgpu_ring pointer
1776  * @vmid: vmid number to use
1777  * @pd_addr: address
1778  *
1779  * Update the page table base and flush the VM TLB
1780  * using sDMA (VEGA10).
1781  */
1782 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1783                                          unsigned vmid, uint64_t pd_addr)
1784 {
1785         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1786 }
1787
1788 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1789                                      uint32_t reg, uint32_t val)
1790 {
1791         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1792                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1793         amdgpu_ring_write(ring, reg);
1794         amdgpu_ring_write(ring, val);
1795 }
1796
1797 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1798                                          uint32_t val, uint32_t mask)
1799 {
1800         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1801 }
1802
1803 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1804 {
1805         uint fw_version = adev->sdma.instance[0].fw_version;
1806
1807         switch (adev->asic_type) {
1808         case CHIP_VEGA10:
1809                 return fw_version >= 430;
1810         case CHIP_VEGA12:
1811                 /*return fw_version >= 31;*/
1812                 return false;
1813         case CHIP_VEGA20:
1814                 return fw_version >= 123;
1815         default:
1816                 return false;
1817         }
1818 }
1819
1820 static int sdma_v4_0_early_init(void *handle)
1821 {
1822         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1823         int r;
1824
1825         if (adev->flags & AMD_IS_APU)
1826                 adev->sdma.num_instances = 1;
1827         else if (adev->asic_type == CHIP_ARCTURUS)
1828                 adev->sdma.num_instances = 8;
1829         else
1830                 adev->sdma.num_instances = 2;
1831
1832         r = sdma_v4_0_init_microcode(adev);
1833         if (r) {
1834                 DRM_ERROR("Failed to load sdma firmware!\n");
1835                 return r;
1836         }
1837
1838         /* TODO: Page queue breaks driver reload under SRIOV */
1839         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1840                 adev->sdma.has_page_queue = false;
1841         else if (sdma_v4_0_fw_support_paging_queue(adev))
1842                 adev->sdma.has_page_queue = true;
1843
1844         sdma_v4_0_set_ring_funcs(adev);
1845         sdma_v4_0_set_buffer_funcs(adev);
1846         sdma_v4_0_set_vm_pte_funcs(adev);
1847         sdma_v4_0_set_irq_funcs(adev);
1848         sdma_v4_0_set_ras_funcs(adev);
1849
1850         return 0;
1851 }
1852
1853 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1854                 void *err_data,
1855                 struct amdgpu_iv_entry *entry);
1856
1857 static int sdma_v4_0_late_init(void *handle)
1858 {
1859         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1860         struct ras_ih_if ih_info = {
1861                 .cb = sdma_v4_0_process_ras_data_cb,
1862         };
1863
1864         sdma_v4_0_setup_ulv(adev);
1865
1866         if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1867                 adev->sdma.funcs->reset_ras_error_count(adev);
1868
1869         if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1870                 return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1871         else
1872                 return 0;
1873 }
1874
1875 static int sdma_v4_0_sw_init(void *handle)
1876 {
1877         struct amdgpu_ring *ring;
1878         int r, i;
1879         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1880
1881         /* SDMA trap event */
1882         for (i = 0; i < adev->sdma.num_instances; i++) {
1883                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1884                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1885                                       &adev->sdma.trap_irq);
1886                 if (r)
1887                         return r;
1888         }
1889
1890         /* SDMA SRAM ECC event */
1891         for (i = 0; i < adev->sdma.num_instances; i++) {
1892                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1893                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1894                                       &adev->sdma.ecc_irq);
1895                 if (r)
1896                         return r;
1897         }
1898
1899         for (i = 0; i < adev->sdma.num_instances; i++) {
1900                 ring = &adev->sdma.instance[i].ring;
1901                 ring->ring_obj = NULL;
1902                 ring->use_doorbell = true;
1903
1904                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1905                                 ring->use_doorbell?"true":"false");
1906
1907                 /* doorbell size is 2 dwords, get DWORD offset */
1908                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1909
1910                 sprintf(ring->name, "sdma%d", i);
1911                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1912                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1913                                      AMDGPU_RING_PRIO_DEFAULT);
1914                 if (r)
1915                         return r;
1916
1917                 if (adev->sdma.has_page_queue) {
1918                         ring = &adev->sdma.instance[i].page;
1919                         ring->ring_obj = NULL;
1920                         ring->use_doorbell = true;
1921
1922                         /* paging queue use same doorbell index/routing as gfx queue
1923                          * with 0x400 (4096 dwords) offset on second doorbell page
1924                          */
1925                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1926                         ring->doorbell_index += 0x400;
1927
1928                         sprintf(ring->name, "page%d", i);
1929                         r = amdgpu_ring_init(adev, ring, 1024,
1930                                              &adev->sdma.trap_irq,
1931                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1932                                              AMDGPU_RING_PRIO_DEFAULT);
1933                         if (r)
1934                                 return r;
1935                 }
1936         }
1937
1938         return r;
1939 }
1940
1941 static int sdma_v4_0_sw_fini(void *handle)
1942 {
1943         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1944         int i;
1945
1946         if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1947                 adev->sdma.funcs->ras_fini(adev);
1948
1949         for (i = 0; i < adev->sdma.num_instances; i++) {
1950                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1951                 if (adev->sdma.has_page_queue)
1952                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1953         }
1954
1955         sdma_v4_0_destroy_inst_ctx(adev);
1956
1957         return 0;
1958 }
1959
1960 static int sdma_v4_0_hw_init(void *handle)
1961 {
1962         int r;
1963         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1964
1965         if (adev->flags & AMD_IS_APU)
1966                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1967
1968         if (!amdgpu_sriov_vf(adev))
1969                 sdma_v4_0_init_golden_registers(adev);
1970
1971         r = sdma_v4_0_start(adev);
1972
1973         return r;
1974 }
1975
1976 static int sdma_v4_0_hw_fini(void *handle)
1977 {
1978         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1979         int i;
1980
1981         if (amdgpu_sriov_vf(adev))
1982                 return 0;
1983
1984         for (i = 0; i < adev->sdma.num_instances; i++) {
1985                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1986                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1987         }
1988
1989         sdma_v4_0_ctx_switch_enable(adev, false);
1990         sdma_v4_0_enable(adev, false);
1991
1992         if (adev->flags & AMD_IS_APU)
1993                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1994
1995         return 0;
1996 }
1997
1998 static int sdma_v4_0_suspend(void *handle)
1999 {
2000         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2001
2002         return sdma_v4_0_hw_fini(adev);
2003 }
2004
2005 static int sdma_v4_0_resume(void *handle)
2006 {
2007         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2008
2009         return sdma_v4_0_hw_init(adev);
2010 }
2011
2012 static bool sdma_v4_0_is_idle(void *handle)
2013 {
2014         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2015         u32 i;
2016
2017         for (i = 0; i < adev->sdma.num_instances; i++) {
2018                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2019
2020                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2021                         return false;
2022         }
2023
2024         return true;
2025 }
2026
2027 static int sdma_v4_0_wait_for_idle(void *handle)
2028 {
2029         unsigned i, j;
2030         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2031         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2032
2033         for (i = 0; i < adev->usec_timeout; i++) {
2034                 for (j = 0; j < adev->sdma.num_instances; j++) {
2035                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2036                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2037                                 break;
2038                 }
2039                 if (j == adev->sdma.num_instances)
2040                         return 0;
2041                 udelay(1);
2042         }
2043         return -ETIMEDOUT;
2044 }
2045
2046 static int sdma_v4_0_soft_reset(void *handle)
2047 {
2048         /* todo */
2049
2050         return 0;
2051 }
2052
2053 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2054                                         struct amdgpu_irq_src *source,
2055                                         unsigned type,
2056                                         enum amdgpu_interrupt_state state)
2057 {
2058         u32 sdma_cntl;
2059
2060         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2061         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2062                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2063         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2064
2065         return 0;
2066 }
2067
2068 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2069                                       struct amdgpu_irq_src *source,
2070                                       struct amdgpu_iv_entry *entry)
2071 {
2072         uint32_t instance;
2073
2074         DRM_DEBUG("IH: SDMA trap\n");
2075         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2076         switch (entry->ring_id) {
2077         case 0:
2078                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2079                 break;
2080         case 1:
2081                 if (adev->asic_type == CHIP_VEGA20)
2082                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2083                 break;
2084         case 2:
2085                 /* XXX compute */
2086                 break;
2087         case 3:
2088                 if (adev->asic_type != CHIP_VEGA20)
2089                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2090                 break;
2091         }
2092         return 0;
2093 }
2094
2095 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2096                 void *err_data,
2097                 struct amdgpu_iv_entry *entry)
2098 {
2099         int instance;
2100
2101         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2102          * be disabled and the driver should only look for the aggregated
2103          * interrupt via sync flood
2104          */
2105         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2106                 goto out;
2107
2108         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2109         if (instance < 0)
2110                 goto out;
2111
2112         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2113
2114 out:
2115         return AMDGPU_RAS_SUCCESS;
2116 }
2117
2118 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2119                                               struct amdgpu_irq_src *source,
2120                                               struct amdgpu_iv_entry *entry)
2121 {
2122         int instance;
2123
2124         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2125
2126         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2127         if (instance < 0)
2128                 return 0;
2129
2130         switch (entry->ring_id) {
2131         case 0:
2132                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2133                 break;
2134         }
2135         return 0;
2136 }
2137
2138 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2139                                         struct amdgpu_irq_src *source,
2140                                         unsigned type,
2141                                         enum amdgpu_interrupt_state state)
2142 {
2143         u32 sdma_edc_config;
2144
2145         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2146         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2147                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2148         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2149
2150         return 0;
2151 }
2152
2153 static void sdma_v4_0_update_medium_grain_clock_gating(
2154                 struct amdgpu_device *adev,
2155                 bool enable)
2156 {
2157         uint32_t data, def;
2158         int i;
2159
2160         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2161                 for (i = 0; i < adev->sdma.num_instances; i++) {
2162                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2163                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2164                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2165                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2166                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2167                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2168                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2169                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2170                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2171                         if (def != data)
2172                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2173                 }
2174         } else {
2175                 for (i = 0; i < adev->sdma.num_instances; i++) {
2176                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2177                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2178                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2179                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2180                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2181                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2182                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2183                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2184                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2185                         if (def != data)
2186                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2187                 }
2188         }
2189 }
2190
2191
2192 static void sdma_v4_0_update_medium_grain_light_sleep(
2193                 struct amdgpu_device *adev,
2194                 bool enable)
2195 {
2196         uint32_t data, def;
2197         int i;
2198
2199         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2200                 for (i = 0; i < adev->sdma.num_instances; i++) {
2201                         /* 1-not override: enable sdma mem light sleep */
2202                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2203                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2204                         if (def != data)
2205                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2206                 }
2207         } else {
2208                 for (i = 0; i < adev->sdma.num_instances; i++) {
2209                 /* 0-override:disable sdma mem light sleep */
2210                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2211                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2212                         if (def != data)
2213                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2214                 }
2215         }
2216 }
2217
2218 static int sdma_v4_0_set_clockgating_state(void *handle,
2219                                           enum amd_clockgating_state state)
2220 {
2221         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2222
2223         if (amdgpu_sriov_vf(adev))
2224                 return 0;
2225
2226         switch (adev->asic_type) {
2227         case CHIP_VEGA10:
2228         case CHIP_VEGA12:
2229         case CHIP_VEGA20:
2230         case CHIP_RAVEN:
2231         case CHIP_ARCTURUS:
2232         case CHIP_RENOIR:
2233                 sdma_v4_0_update_medium_grain_clock_gating(adev,
2234                                 state == AMD_CG_STATE_GATE);
2235                 sdma_v4_0_update_medium_grain_light_sleep(adev,
2236                                 state == AMD_CG_STATE_GATE);
2237                 break;
2238         default:
2239                 break;
2240         }
2241         return 0;
2242 }
2243
2244 static int sdma_v4_0_set_powergating_state(void *handle,
2245                                           enum amd_powergating_state state)
2246 {
2247         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2248
2249         switch (adev->asic_type) {
2250         case CHIP_RAVEN:
2251         case CHIP_RENOIR:
2252                 sdma_v4_1_update_power_gating(adev,
2253                                 state == AMD_PG_STATE_GATE ? true : false);
2254                 break;
2255         default:
2256                 break;
2257         }
2258
2259         return 0;
2260 }
2261
2262 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2263 {
2264         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2265         int data;
2266
2267         if (amdgpu_sriov_vf(adev))
2268                 *flags = 0;
2269
2270         /* AMD_CG_SUPPORT_SDMA_MGCG */
2271         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2272         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2273                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2274
2275         /* AMD_CG_SUPPORT_SDMA_LS */
2276         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2277         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2278                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2279 }
2280
2281 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2282         .name = "sdma_v4_0",
2283         .early_init = sdma_v4_0_early_init,
2284         .late_init = sdma_v4_0_late_init,
2285         .sw_init = sdma_v4_0_sw_init,
2286         .sw_fini = sdma_v4_0_sw_fini,
2287         .hw_init = sdma_v4_0_hw_init,
2288         .hw_fini = sdma_v4_0_hw_fini,
2289         .suspend = sdma_v4_0_suspend,
2290         .resume = sdma_v4_0_resume,
2291         .is_idle = sdma_v4_0_is_idle,
2292         .wait_for_idle = sdma_v4_0_wait_for_idle,
2293         .soft_reset = sdma_v4_0_soft_reset,
2294         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2295         .set_powergating_state = sdma_v4_0_set_powergating_state,
2296         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2297 };
2298
2299 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2300         .type = AMDGPU_RING_TYPE_SDMA,
2301         .align_mask = 0xf,
2302         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2303         .support_64bit_ptrs = true,
2304         .vmhub = AMDGPU_MMHUB_0,
2305         .get_rptr = sdma_v4_0_ring_get_rptr,
2306         .get_wptr = sdma_v4_0_ring_get_wptr,
2307         .set_wptr = sdma_v4_0_ring_set_wptr,
2308         .emit_frame_size =
2309                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2310                 3 + /* hdp invalidate */
2311                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2312                 /* sdma_v4_0_ring_emit_vm_flush */
2313                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2314                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2315                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2316         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2317         .emit_ib = sdma_v4_0_ring_emit_ib,
2318         .emit_fence = sdma_v4_0_ring_emit_fence,
2319         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2320         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2321         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2322         .test_ring = sdma_v4_0_ring_test_ring,
2323         .test_ib = sdma_v4_0_ring_test_ib,
2324         .insert_nop = sdma_v4_0_ring_insert_nop,
2325         .pad_ib = sdma_v4_0_ring_pad_ib,
2326         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2327         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2328         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2329 };
2330
2331 /*
2332  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2333  * So create a individual constant ring_funcs for those instances.
2334  */
2335 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2336         .type = AMDGPU_RING_TYPE_SDMA,
2337         .align_mask = 0xf,
2338         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2339         .support_64bit_ptrs = true,
2340         .vmhub = AMDGPU_MMHUB_1,
2341         .get_rptr = sdma_v4_0_ring_get_rptr,
2342         .get_wptr = sdma_v4_0_ring_get_wptr,
2343         .set_wptr = sdma_v4_0_ring_set_wptr,
2344         .emit_frame_size =
2345                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2346                 3 + /* hdp invalidate */
2347                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2348                 /* sdma_v4_0_ring_emit_vm_flush */
2349                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2350                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2351                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2352         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2353         .emit_ib = sdma_v4_0_ring_emit_ib,
2354         .emit_fence = sdma_v4_0_ring_emit_fence,
2355         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2356         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2357         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2358         .test_ring = sdma_v4_0_ring_test_ring,
2359         .test_ib = sdma_v4_0_ring_test_ib,
2360         .insert_nop = sdma_v4_0_ring_insert_nop,
2361         .pad_ib = sdma_v4_0_ring_pad_ib,
2362         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2363         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2364         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2365 };
2366
2367 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2368         .type = AMDGPU_RING_TYPE_SDMA,
2369         .align_mask = 0xf,
2370         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2371         .support_64bit_ptrs = true,
2372         .vmhub = AMDGPU_MMHUB_0,
2373         .get_rptr = sdma_v4_0_ring_get_rptr,
2374         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2375         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2376         .emit_frame_size =
2377                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2378                 3 + /* hdp invalidate */
2379                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2380                 /* sdma_v4_0_ring_emit_vm_flush */
2381                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2382                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2383                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2384         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2385         .emit_ib = sdma_v4_0_ring_emit_ib,
2386         .emit_fence = sdma_v4_0_ring_emit_fence,
2387         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2388         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2389         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2390         .test_ring = sdma_v4_0_ring_test_ring,
2391         .test_ib = sdma_v4_0_ring_test_ib,
2392         .insert_nop = sdma_v4_0_ring_insert_nop,
2393         .pad_ib = sdma_v4_0_ring_pad_ib,
2394         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2395         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2396         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2397 };
2398
2399 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2400         .type = AMDGPU_RING_TYPE_SDMA,
2401         .align_mask = 0xf,
2402         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2403         .support_64bit_ptrs = true,
2404         .vmhub = AMDGPU_MMHUB_1,
2405         .get_rptr = sdma_v4_0_ring_get_rptr,
2406         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2407         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2408         .emit_frame_size =
2409                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2410                 3 + /* hdp invalidate */
2411                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2412                 /* sdma_v4_0_ring_emit_vm_flush */
2413                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2414                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2415                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2416         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2417         .emit_ib = sdma_v4_0_ring_emit_ib,
2418         .emit_fence = sdma_v4_0_ring_emit_fence,
2419         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2420         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2421         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2422         .test_ring = sdma_v4_0_ring_test_ring,
2423         .test_ib = sdma_v4_0_ring_test_ib,
2424         .insert_nop = sdma_v4_0_ring_insert_nop,
2425         .pad_ib = sdma_v4_0_ring_pad_ib,
2426         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2427         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2428         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2429 };
2430
2431 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2432 {
2433         int i;
2434
2435         for (i = 0; i < adev->sdma.num_instances; i++) {
2436                 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2437                         adev->sdma.instance[i].ring.funcs =
2438                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2439                 else
2440                         adev->sdma.instance[i].ring.funcs =
2441                                         &sdma_v4_0_ring_funcs;
2442                 adev->sdma.instance[i].ring.me = i;
2443                 if (adev->sdma.has_page_queue) {
2444                         if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2445                                 adev->sdma.instance[i].page.funcs =
2446                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2447                         else
2448                                 adev->sdma.instance[i].page.funcs =
2449                                         &sdma_v4_0_page_ring_funcs;
2450                         adev->sdma.instance[i].page.me = i;
2451                 }
2452         }
2453 }
2454
2455 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2456         .set = sdma_v4_0_set_trap_irq_state,
2457         .process = sdma_v4_0_process_trap_irq,
2458 };
2459
2460 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2461         .process = sdma_v4_0_process_illegal_inst_irq,
2462 };
2463
2464 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2465         .set = sdma_v4_0_set_ecc_irq_state,
2466         .process = amdgpu_sdma_process_ecc_irq,
2467 };
2468
2469
2470
2471 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2472 {
2473         switch (adev->sdma.num_instances) {
2474         case 1:
2475                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2476                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2477                 break;
2478         case 8:
2479                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2480                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2481                 break;
2482         case 2:
2483         default:
2484                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2485                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2486                 break;
2487         }
2488         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2489         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2490         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2491 }
2492
2493 /**
2494  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2495  *
2496  * @ib: indirect buffer to copy to
2497  * @src_offset: src GPU address
2498  * @dst_offset: dst GPU address
2499  * @byte_count: number of bytes to xfer
2500  * @tmz: if a secure copy should be used
2501  *
2502  * Copy GPU buffers using the DMA engine (VEGA10/12).
2503  * Used by the amdgpu ttm implementation to move pages if
2504  * registered as the asic copy callback.
2505  */
2506 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2507                                        uint64_t src_offset,
2508                                        uint64_t dst_offset,
2509                                        uint32_t byte_count,
2510                                        bool tmz)
2511 {
2512         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2513                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2514                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2515         ib->ptr[ib->length_dw++] = byte_count - 1;
2516         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2517         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2518         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2519         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2520         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2521 }
2522
2523 /**
2524  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2525  *
2526  * @ib: indirect buffer to copy to
2527  * @src_data: value to write to buffer
2528  * @dst_offset: dst GPU address
2529  * @byte_count: number of bytes to xfer
2530  *
2531  * Fill GPU buffers using the DMA engine (VEGA10/12).
2532  */
2533 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2534                                        uint32_t src_data,
2535                                        uint64_t dst_offset,
2536                                        uint32_t byte_count)
2537 {
2538         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2539         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2540         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2541         ib->ptr[ib->length_dw++] = src_data;
2542         ib->ptr[ib->length_dw++] = byte_count - 1;
2543 }
2544
2545 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2546         .copy_max_bytes = 0x400000,
2547         .copy_num_dw = 7,
2548         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2549
2550         .fill_max_bytes = 0x400000,
2551         .fill_num_dw = 5,
2552         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2553 };
2554
2555 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2556 {
2557         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2558         if (adev->sdma.has_page_queue)
2559                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2560         else
2561                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2562 }
2563
2564 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2565         .copy_pte_num_dw = 7,
2566         .copy_pte = sdma_v4_0_vm_copy_pte,
2567
2568         .write_pte = sdma_v4_0_vm_write_pte,
2569         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2570 };
2571
2572 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2573 {
2574         struct drm_gpu_scheduler *sched;
2575         unsigned i;
2576
2577         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2578         for (i = 0; i < adev->sdma.num_instances; i++) {
2579                 if (adev->sdma.has_page_queue)
2580                         sched = &adev->sdma.instance[i].page.sched;
2581                 else
2582                         sched = &adev->sdma.instance[i].ring.sched;
2583                 adev->vm_manager.vm_pte_scheds[i] = sched;
2584         }
2585         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2586 }
2587
2588 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2589                                         uint32_t instance,
2590                                         uint32_t *sec_count)
2591 {
2592         uint32_t i;
2593         uint32_t sec_cnt;
2594
2595         /* double bits error (multiple bits) error detection is not supported */
2596         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2597                 /* the SDMA_EDC_COUNTER register in each sdma instance
2598                  * shares the same sed shift_mask
2599                  * */
2600                 sec_cnt = (value &
2601                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2602                         sdma_v4_0_ras_fields[i].sec_count_shift;
2603                 if (sec_cnt) {
2604                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2605                                 sdma_v4_0_ras_fields[i].name,
2606                                 instance, sec_cnt);
2607                         *sec_count += sec_cnt;
2608                 }
2609         }
2610 }
2611
2612 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2613                         uint32_t instance, void *ras_error_status)
2614 {
2615         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2616         uint32_t sec_count = 0;
2617         uint32_t reg_value = 0;
2618
2619         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2620         /* double bit error is not supported */
2621         if (reg_value)
2622                 sdma_v4_0_get_ras_error_count(reg_value,
2623                                 instance, &sec_count);
2624         /* err_data->ce_count should be initialized to 0
2625          * before calling into this function */
2626         err_data->ce_count += sec_count;
2627         /* double bit error is not supported
2628          * set ue count to 0 */
2629         err_data->ue_count = 0;
2630
2631         return 0;
2632 };
2633
2634 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2635 {
2636         int i;
2637
2638         /* read back edc counter registers to clear the counters */
2639         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2640                 for (i = 0; i < adev->sdma.num_instances; i++)
2641                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2642         }
2643 }
2644
2645 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2646         .ras_late_init = amdgpu_sdma_ras_late_init,
2647         .ras_fini = amdgpu_sdma_ras_fini,
2648         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2649         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2650 };
2651
2652 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2653 {
2654         switch (adev->asic_type) {
2655         case CHIP_VEGA20:
2656         case CHIP_ARCTURUS:
2657                 adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2658                 break;
2659         default:
2660                 break;
2661         }
2662 }
2663
2664 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2665         .type = AMD_IP_BLOCK_TYPE_SDMA,
2666         .major = 4,
2667         .minor = 0,
2668         .rev = 0,
2669         .funcs = &sdma_v4_0_ip_funcs,
2670 };