Merge tag 'devicetree-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78 #define WREG32_SDMA(instance, offset, value) \
79         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298         0, 0,
299         },
300         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302         0, 0,
303         },
304         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306         0, 0,
307         },
308         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310         0, 0,
311         },
312         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314         0, 0,
315         },
316         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362         0, 0,
363         },
364         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366         0, 0,
367         },
368         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370         0, 0,
371         },
372         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374         0, 0,
375         },
376         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378         0, 0,
379         },
380         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382         0, 0,
383         },
384         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386         0, 0,
387         },
388         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390         0, 0,
391         },
392 };
393
394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395                 u32 instance, u32 offset)
396 {
397         switch (instance) {
398         case 0:
399                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400         case 1:
401                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402         case 2:
403                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404         case 3:
405                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406         case 4:
407                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408         case 5:
409                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410         case 6:
411                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412         case 7:
413                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414         default:
415                 break;
416         }
417         return 0;
418 }
419
420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422         switch (seq_num) {
423         case 0:
424                 return SOC15_IH_CLIENTID_SDMA0;
425         case 1:
426                 return SOC15_IH_CLIENTID_SDMA1;
427         case 2:
428                 return SOC15_IH_CLIENTID_SDMA2;
429         case 3:
430                 return SOC15_IH_CLIENTID_SDMA3;
431         case 4:
432                 return SOC15_IH_CLIENTID_SDMA4;
433         case 5:
434                 return SOC15_IH_CLIENTID_SDMA5;
435         case 6:
436                 return SOC15_IH_CLIENTID_SDMA6;
437         case 7:
438                 return SOC15_IH_CLIENTID_SDMA7;
439         default:
440                 break;
441         }
442         return -EINVAL;
443 }
444
445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447         switch (client_id) {
448         case SOC15_IH_CLIENTID_SDMA0:
449                 return 0;
450         case SOC15_IH_CLIENTID_SDMA1:
451                 return 1;
452         case SOC15_IH_CLIENTID_SDMA2:
453                 return 2;
454         case SOC15_IH_CLIENTID_SDMA3:
455                 return 3;
456         case SOC15_IH_CLIENTID_SDMA4:
457                 return 4;
458         case SOC15_IH_CLIENTID_SDMA5:
459                 return 5;
460         case SOC15_IH_CLIENTID_SDMA6:
461                 return 6;
462         case SOC15_IH_CLIENTID_SDMA7:
463                 return 7;
464         default:
465                 break;
466         }
467         return -EINVAL;
468 }
469
470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472         switch (adev->asic_type) {
473         case CHIP_VEGA10:
474                 soc15_program_register_sequence(adev,
475                                                 golden_settings_sdma_4,
476                                                 ARRAY_SIZE(golden_settings_sdma_4));
477                 soc15_program_register_sequence(adev,
478                                                 golden_settings_sdma_vg10,
479                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
480                 break;
481         case CHIP_VEGA12:
482                 soc15_program_register_sequence(adev,
483                                                 golden_settings_sdma_4,
484                                                 ARRAY_SIZE(golden_settings_sdma_4));
485                 soc15_program_register_sequence(adev,
486                                                 golden_settings_sdma_vg12,
487                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
488                 break;
489         case CHIP_VEGA20:
490                 soc15_program_register_sequence(adev,
491                                                 golden_settings_sdma0_4_2_init,
492                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493                 soc15_program_register_sequence(adev,
494                                                 golden_settings_sdma0_4_2,
495                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
496                 soc15_program_register_sequence(adev,
497                                                 golden_settings_sdma1_4_2,
498                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
499                 break;
500         case CHIP_ARCTURUS:
501                 soc15_program_register_sequence(adev,
502                                                 golden_settings_sdma_arct,
503                                                 ARRAY_SIZE(golden_settings_sdma_arct));
504                 break;
505         case CHIP_ALDEBARAN:
506                 soc15_program_register_sequence(adev,
507                                                 golden_settings_sdma_aldebaran,
508                                                 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509                 break;
510         case CHIP_RAVEN:
511                 soc15_program_register_sequence(adev,
512                                                 golden_settings_sdma_4_1,
513                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
514                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
515                         soc15_program_register_sequence(adev,
516                                                         golden_settings_sdma_rv2,
517                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
518                 else
519                         soc15_program_register_sequence(adev,
520                                                         golden_settings_sdma_rv1,
521                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
522                 break;
523         case CHIP_RENOIR:
524                 soc15_program_register_sequence(adev,
525                                                 golden_settings_sdma_4_3,
526                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
527                 break;
528         default:
529                 break;
530         }
531 }
532
533 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
534 {
535         int i;
536
537         /*
538          * The only chips with SDMAv4 and ULV are VG10 and VG20.
539          * Server SKUs take a different hysteresis setting from other SKUs.
540          */
541         switch (adev->asic_type) {
542         case CHIP_VEGA10:
543                 if (adev->pdev->device == 0x6860)
544                         break;
545                 return;
546         case CHIP_VEGA20:
547                 if (adev->pdev->device == 0x66a1)
548                         break;
549                 return;
550         default:
551                 return;
552         }
553
554         for (i = 0; i < adev->sdma.num_instances; i++) {
555                 uint32_t temp;
556
557                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
558                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
559                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
560         }
561 }
562
563 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
564 {
565         int err = 0;
566         const struct sdma_firmware_header_v1_0 *hdr;
567
568         err = amdgpu_ucode_validate(sdma_inst->fw);
569         if (err)
570                 return err;
571
572         hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
573         sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
574         sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
575
576         if (sdma_inst->feature_version >= 20)
577                 sdma_inst->burst_nop = true;
578
579         return 0;
580 }
581
582 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
583 {
584         int i;
585
586         for (i = 0; i < adev->sdma.num_instances; i++) {
587                 release_firmware(adev->sdma.instance[i].fw);
588                 adev->sdma.instance[i].fw = NULL;
589
590                 /* arcturus shares the same FW memory across
591                    all SDMA isntances */
592                 if (adev->asic_type == CHIP_ARCTURUS ||
593                     adev->asic_type == CHIP_ALDEBARAN)
594                         break;
595         }
596
597         memset((void *)adev->sdma.instance, 0,
598                 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
599 }
600
601 /**
602  * sdma_v4_0_init_microcode - load ucode images from disk
603  *
604  * @adev: amdgpu_device pointer
605  *
606  * Use the firmware interface to load the ucode images into
607  * the driver (not loaded into hw).
608  * Returns 0 on success, error on failure.
609  */
610
611 // emulation only, won't work on real chip
612 // vega10 real chip need to use PSP to load firmware
613 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
614 {
615         const char *chip_name;
616         char fw_name[30];
617         int err = 0, i;
618         struct amdgpu_firmware_info *info = NULL;
619         const struct common_firmware_header *header = NULL;
620
621         DRM_DEBUG("\n");
622
623         switch (adev->asic_type) {
624         case CHIP_VEGA10:
625                 chip_name = "vega10";
626                 break;
627         case CHIP_VEGA12:
628                 chip_name = "vega12";
629                 break;
630         case CHIP_VEGA20:
631                 chip_name = "vega20";
632                 break;
633         case CHIP_RAVEN:
634                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
635                         chip_name = "raven2";
636                 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
637                         chip_name = "picasso";
638                 else
639                         chip_name = "raven";
640                 break;
641         case CHIP_ARCTURUS:
642                 chip_name = "arcturus";
643                 break;
644         case CHIP_RENOIR:
645                 if (adev->apu_flags & AMD_APU_IS_RENOIR)
646                         chip_name = "renoir";
647                 else
648                         chip_name = "green_sardine";
649                 break;
650         case CHIP_ALDEBARAN:
651                 chip_name = "aldebaran";
652                 break;
653         default:
654                 BUG();
655         }
656
657         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
658
659         err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
660         if (err)
661                 goto out;
662
663         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
664         if (err)
665                 goto out;
666
667         for (i = 1; i < adev->sdma.num_instances; i++) {
668                 if (adev->asic_type == CHIP_ARCTURUS ||
669                     adev->asic_type == CHIP_ALDEBARAN) {
670                         /* Acturus & Aldebaran will leverage the same FW memory
671                            for every SDMA instance */
672                         memcpy((void *)&adev->sdma.instance[i],
673                                (void *)&adev->sdma.instance[0],
674                                sizeof(struct amdgpu_sdma_instance));
675                 }
676                 else {
677                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
678
679                         err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
680                         if (err)
681                                 goto out;
682
683                         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
684                         if (err)
685                                 goto out;
686                 }
687         }
688
689         DRM_DEBUG("psp_load == '%s'\n",
690                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
691
692         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
693                 for (i = 0; i < adev->sdma.num_instances; i++) {
694                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
695                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
696                         info->fw = adev->sdma.instance[i].fw;
697                         header = (const struct common_firmware_header *)info->fw->data;
698                         adev->firmware.fw_size +=
699                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
700                 }
701         }
702
703 out:
704         if (err) {
705                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
706                 sdma_v4_0_destroy_inst_ctx(adev);
707         }
708         return err;
709 }
710
711 /**
712  * sdma_v4_0_ring_get_rptr - get the current read pointer
713  *
714  * @ring: amdgpu ring pointer
715  *
716  * Get the current rptr from the hardware (VEGA10+).
717  */
718 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
719 {
720         u64 *rptr;
721
722         /* XXX check if swapping is necessary on BE */
723         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
724
725         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
726         return ((*rptr) >> 2);
727 }
728
729 /**
730  * sdma_v4_0_ring_get_wptr - get the current write pointer
731  *
732  * @ring: amdgpu ring pointer
733  *
734  * Get the current wptr from the hardware (VEGA10+).
735  */
736 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
737 {
738         struct amdgpu_device *adev = ring->adev;
739         u64 wptr;
740
741         if (ring->use_doorbell) {
742                 /* XXX check if swapping is necessary on BE */
743                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
744                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
745         } else {
746                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
747                 wptr = wptr << 32;
748                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
749                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
750                                 ring->me, wptr);
751         }
752
753         return wptr >> 2;
754 }
755
756 /**
757  * sdma_v4_0_ring_set_wptr - commit the write pointer
758  *
759  * @ring: amdgpu ring pointer
760  *
761  * Write the wptr back to the hardware (VEGA10+).
762  */
763 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
764 {
765         struct amdgpu_device *adev = ring->adev;
766
767         DRM_DEBUG("Setting write pointer\n");
768         if (ring->use_doorbell) {
769                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
770
771                 DRM_DEBUG("Using doorbell -- "
772                                 "wptr_offs == 0x%08x "
773                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
774                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
775                                 ring->wptr_offs,
776                                 lower_32_bits(ring->wptr << 2),
777                                 upper_32_bits(ring->wptr << 2));
778                 /* XXX check if swapping is necessary on BE */
779                 WRITE_ONCE(*wb, (ring->wptr << 2));
780                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
781                                 ring->doorbell_index, ring->wptr << 2);
782                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
783         } else {
784                 DRM_DEBUG("Not using doorbell -- "
785                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
786                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
787                                 ring->me,
788                                 lower_32_bits(ring->wptr << 2),
789                                 ring->me,
790                                 upper_32_bits(ring->wptr << 2));
791                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
792                             lower_32_bits(ring->wptr << 2));
793                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
794                             upper_32_bits(ring->wptr << 2));
795         }
796 }
797
798 /**
799  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
800  *
801  * @ring: amdgpu ring pointer
802  *
803  * Get the current wptr from the hardware (VEGA10+).
804  */
805 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
806 {
807         struct amdgpu_device *adev = ring->adev;
808         u64 wptr;
809
810         if (ring->use_doorbell) {
811                 /* XXX check if swapping is necessary on BE */
812                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
813         } else {
814                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
815                 wptr = wptr << 32;
816                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
817         }
818
819         return wptr >> 2;
820 }
821
822 /**
823  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
824  *
825  * @ring: amdgpu ring pointer
826  *
827  * Write the wptr back to the hardware (VEGA10+).
828  */
829 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
830 {
831         struct amdgpu_device *adev = ring->adev;
832
833         if (ring->use_doorbell) {
834                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
835
836                 /* XXX check if swapping is necessary on BE */
837                 WRITE_ONCE(*wb, (ring->wptr << 2));
838                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
839         } else {
840                 uint64_t wptr = ring->wptr << 2;
841
842                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
843                             lower_32_bits(wptr));
844                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
845                             upper_32_bits(wptr));
846         }
847 }
848
849 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
850 {
851         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
852         int i;
853
854         for (i = 0; i < count; i++)
855                 if (sdma && sdma->burst_nop && (i == 0))
856                         amdgpu_ring_write(ring, ring->funcs->nop |
857                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
858                 else
859                         amdgpu_ring_write(ring, ring->funcs->nop);
860 }
861
862 /**
863  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
864  *
865  * @ring: amdgpu ring pointer
866  * @job: job to retrieve vmid from
867  * @ib: IB object to schedule
868  * @flags: unused
869  *
870  * Schedule an IB in the DMA ring (VEGA10).
871  */
872 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
873                                    struct amdgpu_job *job,
874                                    struct amdgpu_ib *ib,
875                                    uint32_t flags)
876 {
877         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
878
879         /* IB packet must end on a 8 DW boundary */
880         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
881
882         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
883                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
884         /* base must be 32 byte aligned */
885         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
886         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
887         amdgpu_ring_write(ring, ib->length_dw);
888         amdgpu_ring_write(ring, 0);
889         amdgpu_ring_write(ring, 0);
890
891 }
892
893 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
894                                    int mem_space, int hdp,
895                                    uint32_t addr0, uint32_t addr1,
896                                    uint32_t ref, uint32_t mask,
897                                    uint32_t inv)
898 {
899         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
900                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
901                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
902                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
903         if (mem_space) {
904                 /* memory */
905                 amdgpu_ring_write(ring, addr0);
906                 amdgpu_ring_write(ring, addr1);
907         } else {
908                 /* registers */
909                 amdgpu_ring_write(ring, addr0 << 2);
910                 amdgpu_ring_write(ring, addr1 << 2);
911         }
912         amdgpu_ring_write(ring, ref); /* reference */
913         amdgpu_ring_write(ring, mask); /* mask */
914         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
915                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
916 }
917
918 /**
919  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
920  *
921  * @ring: amdgpu ring pointer
922  *
923  * Emit an hdp flush packet on the requested DMA ring.
924  */
925 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
926 {
927         struct amdgpu_device *adev = ring->adev;
928         u32 ref_and_mask = 0;
929         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
930
931         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
932
933         sdma_v4_0_wait_reg_mem(ring, 0, 1,
934                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
935                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
936                                ref_and_mask, ref_and_mask, 10);
937 }
938
939 /**
940  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
941  *
942  * @ring: amdgpu ring pointer
943  * @addr: address
944  * @seq: sequence number
945  * @flags: fence related flags
946  *
947  * Add a DMA fence packet to the ring to write
948  * the fence seq number and DMA trap packet to generate
949  * an interrupt if needed (VEGA10).
950  */
951 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
952                                       unsigned flags)
953 {
954         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
955         /* write the fence */
956         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
957         /* zero in first two bits */
958         BUG_ON(addr & 0x3);
959         amdgpu_ring_write(ring, lower_32_bits(addr));
960         amdgpu_ring_write(ring, upper_32_bits(addr));
961         amdgpu_ring_write(ring, lower_32_bits(seq));
962
963         /* optionally write high bits as well */
964         if (write64bit) {
965                 addr += 4;
966                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
967                 /* zero in first two bits */
968                 BUG_ON(addr & 0x3);
969                 amdgpu_ring_write(ring, lower_32_bits(addr));
970                 amdgpu_ring_write(ring, upper_32_bits(addr));
971                 amdgpu_ring_write(ring, upper_32_bits(seq));
972         }
973
974         /* generate an interrupt */
975         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
976         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
977 }
978
979
980 /**
981  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
982  *
983  * @adev: amdgpu_device pointer
984  *
985  * Stop the gfx async dma ring buffers (VEGA10).
986  */
987 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
988 {
989         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
990         u32 rb_cntl, ib_cntl;
991         int i, unset = 0;
992
993         for (i = 0; i < adev->sdma.num_instances; i++) {
994                 sdma[i] = &adev->sdma.instance[i].ring;
995
996                 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
997                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
998                         unset = 1;
999                 }
1000
1001                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1002                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
1003                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1004                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1005                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
1006                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1007         }
1008 }
1009
1010 /**
1011  * sdma_v4_0_rlc_stop - stop the compute async dma engines
1012  *
1013  * @adev: amdgpu_device pointer
1014  *
1015  * Stop the compute async dma queues (VEGA10).
1016  */
1017 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
1018 {
1019         /* XXX todo */
1020 }
1021
1022 /**
1023  * sdma_v4_0_page_stop - stop the page async dma engines
1024  *
1025  * @adev: amdgpu_device pointer
1026  *
1027  * Stop the page async dma ring buffers (VEGA10).
1028  */
1029 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1030 {
1031         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1032         u32 rb_cntl, ib_cntl;
1033         int i;
1034         bool unset = false;
1035
1036         for (i = 0; i < adev->sdma.num_instances; i++) {
1037                 sdma[i] = &adev->sdma.instance[i].page;
1038
1039                 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1040                         (!unset)) {
1041                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1042                         unset = true;
1043                 }
1044
1045                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1046                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1047                                         RB_ENABLE, 0);
1048                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1049                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1050                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1051                                         IB_ENABLE, 0);
1052                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1053         }
1054 }
1055
1056 /**
1057  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1058  *
1059  * @adev: amdgpu_device pointer
1060  * @enable: enable/disable the DMA MEs context switch.
1061  *
1062  * Halt or unhalt the async dma engines context switch (VEGA10).
1063  */
1064 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1065 {
1066         u32 f32_cntl, phase_quantum = 0;
1067         int i;
1068
1069         if (amdgpu_sdma_phase_quantum) {
1070                 unsigned value = amdgpu_sdma_phase_quantum;
1071                 unsigned unit = 0;
1072
1073                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1074                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1075                         value = (value + 1) >> 1;
1076                         unit++;
1077                 }
1078                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1079                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1080                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1081                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1082                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1083                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1084                         WARN_ONCE(1,
1085                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1086                                   value << unit);
1087                 }
1088                 phase_quantum =
1089                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1090                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1091         }
1092
1093         for (i = 0; i < adev->sdma.num_instances; i++) {
1094                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1095                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1096                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1097                 if (enable && amdgpu_sdma_phase_quantum) {
1098                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1099                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1100                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1101                 }
1102                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1103
1104                 /*
1105                  * Enable SDMA utilization. Its only supported on
1106                  * Arcturus for the moment and firmware version 14
1107                  * and above.
1108                  */
1109                 if (adev->asic_type == CHIP_ARCTURUS &&
1110                     adev->sdma.instance[i].fw_version >= 14)
1111                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1112                 /* Extend page fault timeout to avoid interrupt storm */
1113                 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1114         }
1115
1116 }
1117
1118 /**
1119  * sdma_v4_0_enable - stop the async dma engines
1120  *
1121  * @adev: amdgpu_device pointer
1122  * @enable: enable/disable the DMA MEs.
1123  *
1124  * Halt or unhalt the async dma engines (VEGA10).
1125  */
1126 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1127 {
1128         u32 f32_cntl;
1129         int i;
1130
1131         if (!enable) {
1132                 sdma_v4_0_gfx_stop(adev);
1133                 sdma_v4_0_rlc_stop(adev);
1134                 if (adev->sdma.has_page_queue)
1135                         sdma_v4_0_page_stop(adev);
1136         }
1137
1138         for (i = 0; i < adev->sdma.num_instances; i++) {
1139                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1140                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1141                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1142         }
1143 }
1144
1145 /*
1146  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1147  */
1148 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1149 {
1150         /* Set ring buffer size in dwords */
1151         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1152
1153         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1154 #ifdef __BIG_ENDIAN
1155         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1156         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1157                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1158 #endif
1159         return rb_cntl;
1160 }
1161
1162 /**
1163  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1164  *
1165  * @adev: amdgpu_device pointer
1166  * @i: instance to resume
1167  *
1168  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1169  * Returns 0 for success, error for failure.
1170  */
1171 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1172 {
1173         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1174         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1175         u32 wb_offset;
1176         u32 doorbell;
1177         u32 doorbell_offset;
1178         u64 wptr_gpu_addr;
1179
1180         wb_offset = (ring->rptr_offs * 4);
1181
1182         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1183         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1184         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1185
1186         /* Initialize the ring buffer's read and write pointers */
1187         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1188         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1189         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1190         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1191
1192         /* set the wb address whether it's enabled or not */
1193         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1194                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1195         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1196                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1197
1198         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1199                                 RPTR_WRITEBACK_ENABLE, 1);
1200
1201         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1202         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1203
1204         ring->wptr = 0;
1205
1206         /* before programing wptr to a less value, need set minor_ptr_update first */
1207         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1208
1209         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1210         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1211
1212         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1213                                  ring->use_doorbell);
1214         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1215                                         SDMA0_GFX_DOORBELL_OFFSET,
1216                                         OFFSET, ring->doorbell_index);
1217         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1218         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1219
1220         sdma_v4_0_ring_set_wptr(ring);
1221
1222         /* set minor_ptr_update to 0 after wptr programed */
1223         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1224
1225         /* setup the wptr shadow polling */
1226         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1227         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1228                     lower_32_bits(wptr_gpu_addr));
1229         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1230                     upper_32_bits(wptr_gpu_addr));
1231         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1232         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1233                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1234                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1235         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1236
1237         /* enable DMA RB */
1238         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1239         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1240
1241         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1242         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1243 #ifdef __BIG_ENDIAN
1244         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1245 #endif
1246         /* enable DMA IBs */
1247         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1248
1249         ring->sched.ready = true;
1250 }
1251
1252 /**
1253  * sdma_v4_0_page_resume - setup and start the async dma engines
1254  *
1255  * @adev: amdgpu_device pointer
1256  * @i: instance to resume
1257  *
1258  * Set up the page DMA ring buffers and enable them (VEGA10).
1259  * Returns 0 for success, error for failure.
1260  */
1261 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1262 {
1263         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1264         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1265         u32 wb_offset;
1266         u32 doorbell;
1267         u32 doorbell_offset;
1268         u64 wptr_gpu_addr;
1269
1270         wb_offset = (ring->rptr_offs * 4);
1271
1272         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1273         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1274         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1275
1276         /* Initialize the ring buffer's read and write pointers */
1277         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1278         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1279         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1280         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1281
1282         /* set the wb address whether it's enabled or not */
1283         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1284                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1285         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1286                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1287
1288         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1289                                 RPTR_WRITEBACK_ENABLE, 1);
1290
1291         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1292         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1293
1294         ring->wptr = 0;
1295
1296         /* before programing wptr to a less value, need set minor_ptr_update first */
1297         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1298
1299         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1300         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1301
1302         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1303                                  ring->use_doorbell);
1304         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1305                                         SDMA0_PAGE_DOORBELL_OFFSET,
1306                                         OFFSET, ring->doorbell_index);
1307         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1308         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1309
1310         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1311         sdma_v4_0_page_ring_set_wptr(ring);
1312
1313         /* set minor_ptr_update to 0 after wptr programed */
1314         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1315
1316         /* setup the wptr shadow polling */
1317         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1318         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1319                     lower_32_bits(wptr_gpu_addr));
1320         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1321                     upper_32_bits(wptr_gpu_addr));
1322         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1323         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1324                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1325                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1326         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1327
1328         /* enable DMA RB */
1329         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1330         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1331
1332         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1333         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1334 #ifdef __BIG_ENDIAN
1335         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1336 #endif
1337         /* enable DMA IBs */
1338         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1339
1340         ring->sched.ready = true;
1341 }
1342
1343 static void
1344 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1345 {
1346         uint32_t def, data;
1347
1348         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1349                 /* enable idle interrupt */
1350                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1351                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1352
1353                 if (data != def)
1354                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1355         } else {
1356                 /* disable idle interrupt */
1357                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1358                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1359                 if (data != def)
1360                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1361         }
1362 }
1363
1364 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1365 {
1366         uint32_t def, data;
1367
1368         /* Enable HW based PG. */
1369         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1370         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1371         if (data != def)
1372                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1373
1374         /* enable interrupt */
1375         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1376         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1377         if (data != def)
1378                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1379
1380         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1381         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1382         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1383         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1384         /* Configure switch time for hysteresis purpose. Use default right now */
1385         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1386         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1387         if(data != def)
1388                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1389 }
1390
1391 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1392 {
1393         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1394                 return;
1395
1396         switch (adev->asic_type) {
1397         case CHIP_RAVEN:
1398         case CHIP_RENOIR:
1399                 sdma_v4_1_init_power_gating(adev);
1400                 sdma_v4_1_update_power_gating(adev, true);
1401                 break;
1402         default:
1403                 break;
1404         }
1405 }
1406
1407 /**
1408  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1409  *
1410  * @adev: amdgpu_device pointer
1411  *
1412  * Set up the compute DMA queues and enable them (VEGA10).
1413  * Returns 0 for success, error for failure.
1414  */
1415 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1416 {
1417         sdma_v4_0_init_pg(adev);
1418
1419         return 0;
1420 }
1421
1422 /**
1423  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1424  *
1425  * @adev: amdgpu_device pointer
1426  *
1427  * Loads the sDMA0/1 ucode.
1428  * Returns 0 for success, -EINVAL if the ucode is not available.
1429  */
1430 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1431 {
1432         const struct sdma_firmware_header_v1_0 *hdr;
1433         const __le32 *fw_data;
1434         u32 fw_size;
1435         int i, j;
1436
1437         /* halt the MEs */
1438         sdma_v4_0_enable(adev, false);
1439
1440         for (i = 0; i < adev->sdma.num_instances; i++) {
1441                 if (!adev->sdma.instance[i].fw)
1442                         return -EINVAL;
1443
1444                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1445                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1446                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1447
1448                 fw_data = (const __le32 *)
1449                         (adev->sdma.instance[i].fw->data +
1450                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1451
1452                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1453
1454                 for (j = 0; j < fw_size; j++)
1455                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1456                                     le32_to_cpup(fw_data++));
1457
1458                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1459                             adev->sdma.instance[i].fw_version);
1460         }
1461
1462         return 0;
1463 }
1464
1465 /**
1466  * sdma_v4_0_start - setup and start the async dma engines
1467  *
1468  * @adev: amdgpu_device pointer
1469  *
1470  * Set up the DMA engines and enable them (VEGA10).
1471  * Returns 0 for success, error for failure.
1472  */
1473 static int sdma_v4_0_start(struct amdgpu_device *adev)
1474 {
1475         struct amdgpu_ring *ring;
1476         int i, r = 0;
1477
1478         if (amdgpu_sriov_vf(adev)) {
1479                 sdma_v4_0_ctx_switch_enable(adev, false);
1480                 sdma_v4_0_enable(adev, false);
1481         } else {
1482
1483                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1484                         r = sdma_v4_0_load_microcode(adev);
1485                         if (r)
1486                                 return r;
1487                 }
1488
1489                 /* unhalt the MEs */
1490                 sdma_v4_0_enable(adev, true);
1491                 /* enable sdma ring preemption */
1492                 sdma_v4_0_ctx_switch_enable(adev, true);
1493         }
1494
1495         /* start the gfx rings and rlc compute queues */
1496         for (i = 0; i < adev->sdma.num_instances; i++) {
1497                 uint32_t temp;
1498
1499                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1500                 sdma_v4_0_gfx_resume(adev, i);
1501                 if (adev->sdma.has_page_queue)
1502                         sdma_v4_0_page_resume(adev, i);
1503
1504                 /* set utc l1 enable flag always to 1 */
1505                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1506                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1507                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1508
1509                 if (!amdgpu_sriov_vf(adev)) {
1510                         /* unhalt engine */
1511                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1512                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1513                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1514                 }
1515         }
1516
1517         if (amdgpu_sriov_vf(adev)) {
1518                 sdma_v4_0_ctx_switch_enable(adev, true);
1519                 sdma_v4_0_enable(adev, true);
1520         } else {
1521                 r = sdma_v4_0_rlc_resume(adev);
1522                 if (r)
1523                         return r;
1524         }
1525
1526         for (i = 0; i < adev->sdma.num_instances; i++) {
1527                 ring = &adev->sdma.instance[i].ring;
1528
1529                 r = amdgpu_ring_test_helper(ring);
1530                 if (r)
1531                         return r;
1532
1533                 if (adev->sdma.has_page_queue) {
1534                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1535
1536                         r = amdgpu_ring_test_helper(page);
1537                         if (r)
1538                                 return r;
1539
1540                         if (adev->mman.buffer_funcs_ring == page)
1541                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1542                 }
1543
1544                 if (adev->mman.buffer_funcs_ring == ring)
1545                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1546         }
1547
1548         return r;
1549 }
1550
1551 /**
1552  * sdma_v4_0_ring_test_ring - simple async dma engine test
1553  *
1554  * @ring: amdgpu_ring structure holding ring information
1555  *
1556  * Test the DMA engine by writing using it to write an
1557  * value to memory. (VEGA10).
1558  * Returns 0 for success, error for failure.
1559  */
1560 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1561 {
1562         struct amdgpu_device *adev = ring->adev;
1563         unsigned i;
1564         unsigned index;
1565         int r;
1566         u32 tmp;
1567         u64 gpu_addr;
1568
1569         r = amdgpu_device_wb_get(adev, &index);
1570         if (r)
1571                 return r;
1572
1573         gpu_addr = adev->wb.gpu_addr + (index * 4);
1574         tmp = 0xCAFEDEAD;
1575         adev->wb.wb[index] = cpu_to_le32(tmp);
1576
1577         r = amdgpu_ring_alloc(ring, 5);
1578         if (r)
1579                 goto error_free_wb;
1580
1581         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1582                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1583         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1584         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1585         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1586         amdgpu_ring_write(ring, 0xDEADBEEF);
1587         amdgpu_ring_commit(ring);
1588
1589         for (i = 0; i < adev->usec_timeout; i++) {
1590                 tmp = le32_to_cpu(adev->wb.wb[index]);
1591                 if (tmp == 0xDEADBEEF)
1592                         break;
1593                 udelay(1);
1594         }
1595
1596         if (i >= adev->usec_timeout)
1597                 r = -ETIMEDOUT;
1598
1599 error_free_wb:
1600         amdgpu_device_wb_free(adev, index);
1601         return r;
1602 }
1603
1604 /**
1605  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1606  *
1607  * @ring: amdgpu_ring structure holding ring information
1608  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1609  *
1610  * Test a simple IB in the DMA ring (VEGA10).
1611  * Returns 0 on success, error on failure.
1612  */
1613 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1614 {
1615         struct amdgpu_device *adev = ring->adev;
1616         struct amdgpu_ib ib;
1617         struct dma_fence *f = NULL;
1618         unsigned index;
1619         long r;
1620         u32 tmp = 0;
1621         u64 gpu_addr;
1622
1623         r = amdgpu_device_wb_get(adev, &index);
1624         if (r)
1625                 return r;
1626
1627         gpu_addr = adev->wb.gpu_addr + (index * 4);
1628         tmp = 0xCAFEDEAD;
1629         adev->wb.wb[index] = cpu_to_le32(tmp);
1630         memset(&ib, 0, sizeof(ib));
1631         r = amdgpu_ib_get(adev, NULL, 256,
1632                                         AMDGPU_IB_POOL_DIRECT, &ib);
1633         if (r)
1634                 goto err0;
1635
1636         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1637                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1638         ib.ptr[1] = lower_32_bits(gpu_addr);
1639         ib.ptr[2] = upper_32_bits(gpu_addr);
1640         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1641         ib.ptr[4] = 0xDEADBEEF;
1642         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1643         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1644         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1645         ib.length_dw = 8;
1646
1647         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1648         if (r)
1649                 goto err1;
1650
1651         r = dma_fence_wait_timeout(f, false, timeout);
1652         if (r == 0) {
1653                 r = -ETIMEDOUT;
1654                 goto err1;
1655         } else if (r < 0) {
1656                 goto err1;
1657         }
1658         tmp = le32_to_cpu(adev->wb.wb[index]);
1659         if (tmp == 0xDEADBEEF)
1660                 r = 0;
1661         else
1662                 r = -EINVAL;
1663
1664 err1:
1665         amdgpu_ib_free(adev, &ib, NULL);
1666         dma_fence_put(f);
1667 err0:
1668         amdgpu_device_wb_free(adev, index);
1669         return r;
1670 }
1671
1672
1673 /**
1674  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1675  *
1676  * @ib: indirect buffer to fill with commands
1677  * @pe: addr of the page entry
1678  * @src: src addr to copy from
1679  * @count: number of page entries to update
1680  *
1681  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1682  */
1683 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1684                                   uint64_t pe, uint64_t src,
1685                                   unsigned count)
1686 {
1687         unsigned bytes = count * 8;
1688
1689         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691         ib->ptr[ib->length_dw++] = bytes - 1;
1692         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1694         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1695         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1696         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1697
1698 }
1699
1700 /**
1701  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1702  *
1703  * @ib: indirect buffer to fill with commands
1704  * @pe: addr of the page entry
1705  * @value: dst addr to write into pe
1706  * @count: number of page entries to update
1707  * @incr: increase next addr by incr bytes
1708  *
1709  * Update PTEs by writing them manually using sDMA (VEGA10).
1710  */
1711 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1712                                    uint64_t value, unsigned count,
1713                                    uint32_t incr)
1714 {
1715         unsigned ndw = count * 2;
1716
1717         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1718                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1719         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1720         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1721         ib->ptr[ib->length_dw++] = ndw - 1;
1722         for (; ndw > 0; ndw -= 2) {
1723                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1724                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1725                 value += incr;
1726         }
1727 }
1728
1729 /**
1730  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1731  *
1732  * @ib: indirect buffer to fill with commands
1733  * @pe: addr of the page entry
1734  * @addr: dst addr to write into pe
1735  * @count: number of page entries to update
1736  * @incr: increase next addr by incr bytes
1737  * @flags: access flags
1738  *
1739  * Update the page tables using sDMA (VEGA10).
1740  */
1741 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1742                                      uint64_t pe,
1743                                      uint64_t addr, unsigned count,
1744                                      uint32_t incr, uint64_t flags)
1745 {
1746         /* for physically contiguous pages (vram) */
1747         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1748         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1749         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1750         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1751         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1752         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1753         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1754         ib->ptr[ib->length_dw++] = incr; /* increment size */
1755         ib->ptr[ib->length_dw++] = 0;
1756         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1757 }
1758
1759 /**
1760  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1761  *
1762  * @ring: amdgpu_ring structure holding ring information
1763  * @ib: indirect buffer to fill with padding
1764  */
1765 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1766 {
1767         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1768         u32 pad_count;
1769         int i;
1770
1771         pad_count = (-ib->length_dw) & 7;
1772         for (i = 0; i < pad_count; i++)
1773                 if (sdma && sdma->burst_nop && (i == 0))
1774                         ib->ptr[ib->length_dw++] =
1775                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1776                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1777                 else
1778                         ib->ptr[ib->length_dw++] =
1779                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1780 }
1781
1782
1783 /**
1784  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1785  *
1786  * @ring: amdgpu_ring pointer
1787  *
1788  * Make sure all previous operations are completed (CIK).
1789  */
1790 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1791 {
1792         uint32_t seq = ring->fence_drv.sync_seq;
1793         uint64_t addr = ring->fence_drv.gpu_addr;
1794
1795         /* wait for idle */
1796         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1797                                addr & 0xfffffffc,
1798                                upper_32_bits(addr) & 0xffffffff,
1799                                seq, 0xffffffff, 4);
1800 }
1801
1802
1803 /**
1804  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1805  *
1806  * @ring: amdgpu_ring pointer
1807  * @vmid: vmid number to use
1808  * @pd_addr: address
1809  *
1810  * Update the page table base and flush the VM TLB
1811  * using sDMA (VEGA10).
1812  */
1813 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1814                                          unsigned vmid, uint64_t pd_addr)
1815 {
1816         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1817 }
1818
1819 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1820                                      uint32_t reg, uint32_t val)
1821 {
1822         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1823                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1824         amdgpu_ring_write(ring, reg);
1825         amdgpu_ring_write(ring, val);
1826 }
1827
1828 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1829                                          uint32_t val, uint32_t mask)
1830 {
1831         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1832 }
1833
1834 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1835 {
1836         uint fw_version = adev->sdma.instance[0].fw_version;
1837
1838         switch (adev->asic_type) {
1839         case CHIP_VEGA10:
1840                 return fw_version >= 430;
1841         case CHIP_VEGA12:
1842                 /*return fw_version >= 31;*/
1843                 return false;
1844         case CHIP_VEGA20:
1845                 return fw_version >= 123;
1846         default:
1847                 return false;
1848         }
1849 }
1850
1851 static int sdma_v4_0_early_init(void *handle)
1852 {
1853         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1854         int r;
1855
1856         if (adev->flags & AMD_IS_APU)
1857                 adev->sdma.num_instances = 1;
1858         else if (adev->asic_type == CHIP_ARCTURUS)
1859                 adev->sdma.num_instances = 8;
1860         else if (adev->asic_type == CHIP_ALDEBARAN)
1861                 adev->sdma.num_instances = 5;
1862         else
1863                 adev->sdma.num_instances = 2;
1864
1865         r = sdma_v4_0_init_microcode(adev);
1866         if (r) {
1867                 DRM_ERROR("Failed to load sdma firmware!\n");
1868                 return r;
1869         }
1870
1871         /* TODO: Page queue breaks driver reload under SRIOV */
1872         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1873                 adev->sdma.has_page_queue = false;
1874         else if (sdma_v4_0_fw_support_paging_queue(adev))
1875                 adev->sdma.has_page_queue = true;
1876
1877         sdma_v4_0_set_ring_funcs(adev);
1878         sdma_v4_0_set_buffer_funcs(adev);
1879         sdma_v4_0_set_vm_pte_funcs(adev);
1880         sdma_v4_0_set_irq_funcs(adev);
1881         sdma_v4_0_set_ras_funcs(adev);
1882
1883         return 0;
1884 }
1885
1886 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1887                 void *err_data,
1888                 struct amdgpu_iv_entry *entry);
1889
1890 static int sdma_v4_0_late_init(void *handle)
1891 {
1892         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1893         struct ras_ih_if ih_info = {
1894                 .cb = sdma_v4_0_process_ras_data_cb,
1895         };
1896
1897         sdma_v4_0_setup_ulv(adev);
1898
1899         if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1900                 if (adev->sdma.funcs &&
1901                     adev->sdma.funcs->reset_ras_error_count)
1902                         adev->sdma.funcs->reset_ras_error_count(adev);
1903         }
1904
1905         if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1906                 return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1907         else
1908                 return 0;
1909 }
1910
1911 static int sdma_v4_0_sw_init(void *handle)
1912 {
1913         struct amdgpu_ring *ring;
1914         int r, i;
1915         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1916
1917         /* SDMA trap event */
1918         for (i = 0; i < adev->sdma.num_instances; i++) {
1919                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1920                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1921                                       &adev->sdma.trap_irq);
1922                 if (r)
1923                         return r;
1924         }
1925
1926         /* SDMA SRAM ECC event */
1927         for (i = 0; i < adev->sdma.num_instances; i++) {
1928                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1929                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1930                                       &adev->sdma.ecc_irq);
1931                 if (r)
1932                         return r;
1933         }
1934
1935         /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1936         for (i = 0; i < adev->sdma.num_instances; i++) {
1937                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1938                                       SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1939                                       &adev->sdma.vm_hole_irq);
1940                 if (r)
1941                         return r;
1942
1943                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1944                                       SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1945                                       &adev->sdma.doorbell_invalid_irq);
1946                 if (r)
1947                         return r;
1948
1949                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1950                                       SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1951                                       &adev->sdma.pool_timeout_irq);
1952                 if (r)
1953                         return r;
1954
1955                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1956                                       SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1957                                       &adev->sdma.srbm_write_irq);
1958                 if (r)
1959                         return r;
1960         }
1961
1962         for (i = 0; i < adev->sdma.num_instances; i++) {
1963                 ring = &adev->sdma.instance[i].ring;
1964                 ring->ring_obj = NULL;
1965                 ring->use_doorbell = true;
1966
1967                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1968                                 ring->use_doorbell?"true":"false");
1969
1970                 /* doorbell size is 2 dwords, get DWORD offset */
1971                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1972
1973                 sprintf(ring->name, "sdma%d", i);
1974                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1975                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1976                                      AMDGPU_RING_PRIO_DEFAULT, NULL);
1977                 if (r)
1978                         return r;
1979
1980                 if (adev->sdma.has_page_queue) {
1981                         ring = &adev->sdma.instance[i].page;
1982                         ring->ring_obj = NULL;
1983                         ring->use_doorbell = true;
1984
1985                         /* paging queue use same doorbell index/routing as gfx queue
1986                          * with 0x400 (4096 dwords) offset on second doorbell page
1987                          */
1988                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1989                         ring->doorbell_index += 0x400;
1990
1991                         sprintf(ring->name, "page%d", i);
1992                         r = amdgpu_ring_init(adev, ring, 1024,
1993                                              &adev->sdma.trap_irq,
1994                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1995                                              AMDGPU_RING_PRIO_DEFAULT, NULL);
1996                         if (r)
1997                                 return r;
1998                 }
1999         }
2000
2001         return r;
2002 }
2003
2004 static int sdma_v4_0_sw_fini(void *handle)
2005 {
2006         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2007         int i;
2008
2009         if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
2010                 adev->sdma.funcs->ras_fini(adev);
2011
2012         for (i = 0; i < adev->sdma.num_instances; i++) {
2013                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
2014                 if (adev->sdma.has_page_queue)
2015                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
2016         }
2017
2018         sdma_v4_0_destroy_inst_ctx(adev);
2019
2020         return 0;
2021 }
2022
2023 static int sdma_v4_0_hw_init(void *handle)
2024 {
2025         int r;
2026         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2027
2028         if (adev->flags & AMD_IS_APU)
2029                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
2030
2031         if (!amdgpu_sriov_vf(adev))
2032                 sdma_v4_0_init_golden_registers(adev);
2033
2034         r = sdma_v4_0_start(adev);
2035
2036         return r;
2037 }
2038
2039 static int sdma_v4_0_hw_fini(void *handle)
2040 {
2041         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2042         int i;
2043
2044         if (amdgpu_sriov_vf(adev))
2045                 return 0;
2046
2047         for (i = 0; i < adev->sdma.num_instances; i++) {
2048                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2049                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2050         }
2051
2052         sdma_v4_0_ctx_switch_enable(adev, false);
2053         sdma_v4_0_enable(adev, false);
2054
2055         if (adev->flags & AMD_IS_APU)
2056                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
2057
2058         return 0;
2059 }
2060
2061 static int sdma_v4_0_suspend(void *handle)
2062 {
2063         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2064
2065         return sdma_v4_0_hw_fini(adev);
2066 }
2067
2068 static int sdma_v4_0_resume(void *handle)
2069 {
2070         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2071
2072         return sdma_v4_0_hw_init(adev);
2073 }
2074
2075 static bool sdma_v4_0_is_idle(void *handle)
2076 {
2077         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2078         u32 i;
2079
2080         for (i = 0; i < adev->sdma.num_instances; i++) {
2081                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2082
2083                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2084                         return false;
2085         }
2086
2087         return true;
2088 }
2089
2090 static int sdma_v4_0_wait_for_idle(void *handle)
2091 {
2092         unsigned i, j;
2093         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2094         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2095
2096         for (i = 0; i < adev->usec_timeout; i++) {
2097                 for (j = 0; j < adev->sdma.num_instances; j++) {
2098                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2099                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2100                                 break;
2101                 }
2102                 if (j == adev->sdma.num_instances)
2103                         return 0;
2104                 udelay(1);
2105         }
2106         return -ETIMEDOUT;
2107 }
2108
2109 static int sdma_v4_0_soft_reset(void *handle)
2110 {
2111         /* todo */
2112
2113         return 0;
2114 }
2115
2116 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2117                                         struct amdgpu_irq_src *source,
2118                                         unsigned type,
2119                                         enum amdgpu_interrupt_state state)
2120 {
2121         u32 sdma_cntl;
2122
2123         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2124         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2125                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2126         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2127
2128         return 0;
2129 }
2130
2131 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2132                                       struct amdgpu_irq_src *source,
2133                                       struct amdgpu_iv_entry *entry)
2134 {
2135         uint32_t instance;
2136
2137         DRM_DEBUG("IH: SDMA trap\n");
2138         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2139         switch (entry->ring_id) {
2140         case 0:
2141                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2142                 break;
2143         case 1:
2144                 if (adev->asic_type == CHIP_VEGA20)
2145                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2146                 break;
2147         case 2:
2148                 /* XXX compute */
2149                 break;
2150         case 3:
2151                 if (adev->asic_type != CHIP_VEGA20)
2152                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2153                 break;
2154         }
2155         return 0;
2156 }
2157
2158 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2159                 void *err_data,
2160                 struct amdgpu_iv_entry *entry)
2161 {
2162         int instance;
2163
2164         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2165          * be disabled and the driver should only look for the aggregated
2166          * interrupt via sync flood
2167          */
2168         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2169                 goto out;
2170
2171         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2172         if (instance < 0)
2173                 goto out;
2174
2175         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2176
2177 out:
2178         return AMDGPU_RAS_SUCCESS;
2179 }
2180
2181 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2182                                               struct amdgpu_irq_src *source,
2183                                               struct amdgpu_iv_entry *entry)
2184 {
2185         int instance;
2186
2187         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2188
2189         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2190         if (instance < 0)
2191                 return 0;
2192
2193         switch (entry->ring_id) {
2194         case 0:
2195                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2196                 break;
2197         }
2198         return 0;
2199 }
2200
2201 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2202                                         struct amdgpu_irq_src *source,
2203                                         unsigned type,
2204                                         enum amdgpu_interrupt_state state)
2205 {
2206         u32 sdma_edc_config;
2207
2208         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2209         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2210                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2211         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2212
2213         return 0;
2214 }
2215
2216 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2217                                               struct amdgpu_iv_entry *entry)
2218 {
2219         int instance;
2220         struct amdgpu_task_info task_info;
2221         u64 addr;
2222
2223         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2224         if (instance < 0 || instance >= adev->sdma.num_instances) {
2225                 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2226                 return -EINVAL;
2227         }
2228
2229         addr = (u64)entry->src_data[0] << 12;
2230         addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2231
2232         memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2233         amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2234
2235         dev_dbg_ratelimited(adev->dev,
2236                    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2237                    "pasid:%u, for process %s pid %d thread %s pid %d\n",
2238                    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2239                    entry->pasid, task_info.process_name, task_info.tgid,
2240                    task_info.task_name, task_info.pid);
2241         return 0;
2242 }
2243
2244 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2245                                               struct amdgpu_irq_src *source,
2246                                               struct amdgpu_iv_entry *entry)
2247 {
2248         dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2249         sdma_v4_0_print_iv_entry(adev, entry);
2250         return 0;
2251 }
2252
2253 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2254                                               struct amdgpu_irq_src *source,
2255                                               struct amdgpu_iv_entry *entry)
2256 {
2257         dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2258         sdma_v4_0_print_iv_entry(adev, entry);
2259         return 0;
2260 }
2261
2262 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2263                                               struct amdgpu_irq_src *source,
2264                                               struct amdgpu_iv_entry *entry)
2265 {
2266         dev_dbg_ratelimited(adev->dev,
2267                 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2268         sdma_v4_0_print_iv_entry(adev, entry);
2269         return 0;
2270 }
2271
2272 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2273                                               struct amdgpu_irq_src *source,
2274                                               struct amdgpu_iv_entry *entry)
2275 {
2276         dev_dbg_ratelimited(adev->dev,
2277                 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2278         sdma_v4_0_print_iv_entry(adev, entry);
2279         return 0;
2280 }
2281
2282 static void sdma_v4_0_update_medium_grain_clock_gating(
2283                 struct amdgpu_device *adev,
2284                 bool enable)
2285 {
2286         uint32_t data, def;
2287         int i;
2288
2289         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2290                 for (i = 0; i < adev->sdma.num_instances; i++) {
2291                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2292                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2293                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2294                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2295                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2296                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2297                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2298                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2299                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2300                         if (def != data)
2301                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2302                 }
2303         } else {
2304                 for (i = 0; i < adev->sdma.num_instances; i++) {
2305                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2306                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2307                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2308                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2309                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2310                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2311                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2312                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2313                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2314                         if (def != data)
2315                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2316                 }
2317         }
2318 }
2319
2320
2321 static void sdma_v4_0_update_medium_grain_light_sleep(
2322                 struct amdgpu_device *adev,
2323                 bool enable)
2324 {
2325         uint32_t data, def;
2326         int i;
2327
2328         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2329                 for (i = 0; i < adev->sdma.num_instances; i++) {
2330                         /* 1-not override: enable sdma mem light sleep */
2331                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2332                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2333                         if (def != data)
2334                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2335                 }
2336         } else {
2337                 for (i = 0; i < adev->sdma.num_instances; i++) {
2338                 /* 0-override:disable sdma mem light sleep */
2339                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2340                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2341                         if (def != data)
2342                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2343                 }
2344         }
2345 }
2346
2347 static int sdma_v4_0_set_clockgating_state(void *handle,
2348                                           enum amd_clockgating_state state)
2349 {
2350         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2351
2352         if (amdgpu_sriov_vf(adev))
2353                 return 0;
2354
2355         sdma_v4_0_update_medium_grain_clock_gating(adev,
2356                         state == AMD_CG_STATE_GATE);
2357         sdma_v4_0_update_medium_grain_light_sleep(adev,
2358                         state == AMD_CG_STATE_GATE);
2359         return 0;
2360 }
2361
2362 static int sdma_v4_0_set_powergating_state(void *handle,
2363                                           enum amd_powergating_state state)
2364 {
2365         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2366
2367         switch (adev->asic_type) {
2368         case CHIP_RAVEN:
2369         case CHIP_RENOIR:
2370                 sdma_v4_1_update_power_gating(adev,
2371                                 state == AMD_PG_STATE_GATE);
2372                 break;
2373         default:
2374                 break;
2375         }
2376
2377         return 0;
2378 }
2379
2380 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2381 {
2382         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2383         int data;
2384
2385         if (amdgpu_sriov_vf(adev))
2386                 *flags = 0;
2387
2388         /* AMD_CG_SUPPORT_SDMA_MGCG */
2389         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2390         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2391                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2392
2393         /* AMD_CG_SUPPORT_SDMA_LS */
2394         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2395         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2396                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2397 }
2398
2399 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2400         .name = "sdma_v4_0",
2401         .early_init = sdma_v4_0_early_init,
2402         .late_init = sdma_v4_0_late_init,
2403         .sw_init = sdma_v4_0_sw_init,
2404         .sw_fini = sdma_v4_0_sw_fini,
2405         .hw_init = sdma_v4_0_hw_init,
2406         .hw_fini = sdma_v4_0_hw_fini,
2407         .suspend = sdma_v4_0_suspend,
2408         .resume = sdma_v4_0_resume,
2409         .is_idle = sdma_v4_0_is_idle,
2410         .wait_for_idle = sdma_v4_0_wait_for_idle,
2411         .soft_reset = sdma_v4_0_soft_reset,
2412         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2413         .set_powergating_state = sdma_v4_0_set_powergating_state,
2414         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2415 };
2416
2417 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2418         .type = AMDGPU_RING_TYPE_SDMA,
2419         .align_mask = 0xf,
2420         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2421         .support_64bit_ptrs = true,
2422         .vmhub = AMDGPU_MMHUB_0,
2423         .get_rptr = sdma_v4_0_ring_get_rptr,
2424         .get_wptr = sdma_v4_0_ring_get_wptr,
2425         .set_wptr = sdma_v4_0_ring_set_wptr,
2426         .emit_frame_size =
2427                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2428                 3 + /* hdp invalidate */
2429                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2430                 /* sdma_v4_0_ring_emit_vm_flush */
2431                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2432                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2433                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2434         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2435         .emit_ib = sdma_v4_0_ring_emit_ib,
2436         .emit_fence = sdma_v4_0_ring_emit_fence,
2437         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2438         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2439         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2440         .test_ring = sdma_v4_0_ring_test_ring,
2441         .test_ib = sdma_v4_0_ring_test_ib,
2442         .insert_nop = sdma_v4_0_ring_insert_nop,
2443         .pad_ib = sdma_v4_0_ring_pad_ib,
2444         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2445         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2446         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2447 };
2448
2449 /*
2450  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2451  * So create a individual constant ring_funcs for those instances.
2452  */
2453 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2454         .type = AMDGPU_RING_TYPE_SDMA,
2455         .align_mask = 0xf,
2456         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2457         .support_64bit_ptrs = true,
2458         .vmhub = AMDGPU_MMHUB_1,
2459         .get_rptr = sdma_v4_0_ring_get_rptr,
2460         .get_wptr = sdma_v4_0_ring_get_wptr,
2461         .set_wptr = sdma_v4_0_ring_set_wptr,
2462         .emit_frame_size =
2463                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2464                 3 + /* hdp invalidate */
2465                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2466                 /* sdma_v4_0_ring_emit_vm_flush */
2467                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2468                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2469                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2470         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2471         .emit_ib = sdma_v4_0_ring_emit_ib,
2472         .emit_fence = sdma_v4_0_ring_emit_fence,
2473         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2474         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2475         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2476         .test_ring = sdma_v4_0_ring_test_ring,
2477         .test_ib = sdma_v4_0_ring_test_ib,
2478         .insert_nop = sdma_v4_0_ring_insert_nop,
2479         .pad_ib = sdma_v4_0_ring_pad_ib,
2480         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2481         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2482         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2483 };
2484
2485 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2486         .type = AMDGPU_RING_TYPE_SDMA,
2487         .align_mask = 0xf,
2488         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2489         .support_64bit_ptrs = true,
2490         .vmhub = AMDGPU_MMHUB_0,
2491         .get_rptr = sdma_v4_0_ring_get_rptr,
2492         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2493         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2494         .emit_frame_size =
2495                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2496                 3 + /* hdp invalidate */
2497                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2498                 /* sdma_v4_0_ring_emit_vm_flush */
2499                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2500                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2501                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2502         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2503         .emit_ib = sdma_v4_0_ring_emit_ib,
2504         .emit_fence = sdma_v4_0_ring_emit_fence,
2505         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2506         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2507         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2508         .test_ring = sdma_v4_0_ring_test_ring,
2509         .test_ib = sdma_v4_0_ring_test_ib,
2510         .insert_nop = sdma_v4_0_ring_insert_nop,
2511         .pad_ib = sdma_v4_0_ring_pad_ib,
2512         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2513         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2514         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2515 };
2516
2517 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2518         .type = AMDGPU_RING_TYPE_SDMA,
2519         .align_mask = 0xf,
2520         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2521         .support_64bit_ptrs = true,
2522         .vmhub = AMDGPU_MMHUB_1,
2523         .get_rptr = sdma_v4_0_ring_get_rptr,
2524         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2525         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2526         .emit_frame_size =
2527                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2528                 3 + /* hdp invalidate */
2529                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2530                 /* sdma_v4_0_ring_emit_vm_flush */
2531                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2532                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2533                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2534         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2535         .emit_ib = sdma_v4_0_ring_emit_ib,
2536         .emit_fence = sdma_v4_0_ring_emit_fence,
2537         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2538         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2539         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2540         .test_ring = sdma_v4_0_ring_test_ring,
2541         .test_ib = sdma_v4_0_ring_test_ib,
2542         .insert_nop = sdma_v4_0_ring_insert_nop,
2543         .pad_ib = sdma_v4_0_ring_pad_ib,
2544         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2545         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2546         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2547 };
2548
2549 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2550 {
2551         int i;
2552
2553         for (i = 0; i < adev->sdma.num_instances; i++) {
2554                 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2555                         adev->sdma.instance[i].ring.funcs =
2556                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2557                 else
2558                         adev->sdma.instance[i].ring.funcs =
2559                                         &sdma_v4_0_ring_funcs;
2560                 adev->sdma.instance[i].ring.me = i;
2561                 if (adev->sdma.has_page_queue) {
2562                         if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2563                                 adev->sdma.instance[i].page.funcs =
2564                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2565                         else
2566                                 adev->sdma.instance[i].page.funcs =
2567                                         &sdma_v4_0_page_ring_funcs;
2568                         adev->sdma.instance[i].page.me = i;
2569                 }
2570         }
2571 }
2572
2573 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2574         .set = sdma_v4_0_set_trap_irq_state,
2575         .process = sdma_v4_0_process_trap_irq,
2576 };
2577
2578 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2579         .process = sdma_v4_0_process_illegal_inst_irq,
2580 };
2581
2582 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2583         .set = sdma_v4_0_set_ecc_irq_state,
2584         .process = amdgpu_sdma_process_ecc_irq,
2585 };
2586
2587 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2588         .process = sdma_v4_0_process_vm_hole_irq,
2589 };
2590
2591 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2592         .process = sdma_v4_0_process_doorbell_invalid_irq,
2593 };
2594
2595 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2596         .process = sdma_v4_0_process_pool_timeout_irq,
2597 };
2598
2599 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2600         .process = sdma_v4_0_process_srbm_write_irq,
2601 };
2602
2603 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2604 {
2605         adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2606         adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2607         /*For Arcturus and Aldebaran, add another 4 irq handler*/
2608         switch (adev->sdma.num_instances) {
2609         case 5:
2610         case 8:
2611                 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2612                 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2613                 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2614                 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2615                 break;
2616         default:
2617                 break;
2618         }
2619         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2620         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2621         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2622         adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2623         adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2624         adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2625         adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2626 }
2627
2628 /**
2629  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2630  *
2631  * @ib: indirect buffer to copy to
2632  * @src_offset: src GPU address
2633  * @dst_offset: dst GPU address
2634  * @byte_count: number of bytes to xfer
2635  * @tmz: if a secure copy should be used
2636  *
2637  * Copy GPU buffers using the DMA engine (VEGA10/12).
2638  * Used by the amdgpu ttm implementation to move pages if
2639  * registered as the asic copy callback.
2640  */
2641 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2642                                        uint64_t src_offset,
2643                                        uint64_t dst_offset,
2644                                        uint32_t byte_count,
2645                                        bool tmz)
2646 {
2647         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2648                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2649                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2650         ib->ptr[ib->length_dw++] = byte_count - 1;
2651         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2652         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2653         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2654         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2655         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2656 }
2657
2658 /**
2659  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2660  *
2661  * @ib: indirect buffer to copy to
2662  * @src_data: value to write to buffer
2663  * @dst_offset: dst GPU address
2664  * @byte_count: number of bytes to xfer
2665  *
2666  * Fill GPU buffers using the DMA engine (VEGA10/12).
2667  */
2668 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2669                                        uint32_t src_data,
2670                                        uint64_t dst_offset,
2671                                        uint32_t byte_count)
2672 {
2673         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2674         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2675         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2676         ib->ptr[ib->length_dw++] = src_data;
2677         ib->ptr[ib->length_dw++] = byte_count - 1;
2678 }
2679
2680 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2681         .copy_max_bytes = 0x400000,
2682         .copy_num_dw = 7,
2683         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2684
2685         .fill_max_bytes = 0x400000,
2686         .fill_num_dw = 5,
2687         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2688 };
2689
2690 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2691 {
2692         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2693         if (adev->sdma.has_page_queue)
2694                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2695         else
2696                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2697 }
2698
2699 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2700         .copy_pte_num_dw = 7,
2701         .copy_pte = sdma_v4_0_vm_copy_pte,
2702
2703         .write_pte = sdma_v4_0_vm_write_pte,
2704         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2705 };
2706
2707 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2708 {
2709         struct drm_gpu_scheduler *sched;
2710         unsigned i;
2711
2712         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2713         for (i = 0; i < adev->sdma.num_instances; i++) {
2714                 if (adev->sdma.has_page_queue)
2715                         sched = &adev->sdma.instance[i].page.sched;
2716                 else
2717                         sched = &adev->sdma.instance[i].ring.sched;
2718                 adev->vm_manager.vm_pte_scheds[i] = sched;
2719         }
2720         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2721 }
2722
2723 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2724                                         uint32_t instance,
2725                                         uint32_t *sec_count)
2726 {
2727         uint32_t i;
2728         uint32_t sec_cnt;
2729
2730         /* double bits error (multiple bits) error detection is not supported */
2731         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2732                 /* the SDMA_EDC_COUNTER register in each sdma instance
2733                  * shares the same sed shift_mask
2734                  * */
2735                 sec_cnt = (value &
2736                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2737                         sdma_v4_0_ras_fields[i].sec_count_shift;
2738                 if (sec_cnt) {
2739                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2740                                 sdma_v4_0_ras_fields[i].name,
2741                                 instance, sec_cnt);
2742                         *sec_count += sec_cnt;
2743                 }
2744         }
2745 }
2746
2747 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2748                         uint32_t instance, void *ras_error_status)
2749 {
2750         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2751         uint32_t sec_count = 0;
2752         uint32_t reg_value = 0;
2753
2754         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2755         /* double bit error is not supported */
2756         if (reg_value)
2757                 sdma_v4_0_get_ras_error_count(reg_value,
2758                                 instance, &sec_count);
2759         /* err_data->ce_count should be initialized to 0
2760          * before calling into this function */
2761         err_data->ce_count += sec_count;
2762         /* double bit error is not supported
2763          * set ue count to 0 */
2764         err_data->ue_count = 0;
2765
2766         return 0;
2767 };
2768
2769 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2770 {
2771         int i;
2772
2773         /* read back edc counter registers to clear the counters */
2774         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2775                 for (i = 0; i < adev->sdma.num_instances; i++)
2776                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2777         }
2778 }
2779
2780 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2781         .ras_late_init = amdgpu_sdma_ras_late_init,
2782         .ras_fini = amdgpu_sdma_ras_fini,
2783         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2784         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2785 };
2786
2787 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2788 {
2789         switch (adev->asic_type) {
2790         case CHIP_VEGA20:
2791         case CHIP_ARCTURUS:
2792                 adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2793                 break;
2794         case CHIP_ALDEBARAN:
2795                 adev->sdma.funcs = &sdma_v4_4_ras_funcs;
2796                 break;
2797         default:
2798                 break;
2799         }
2800 }
2801
2802 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2803         .type = AMD_IP_BLOCK_TYPE_SDMA,
2804         .major = 4,
2805         .minor = 0,
2806         .rev = 0,
2807         .funcs = &sdma_v4_0_ip_funcs,
2808 };