Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
64
65
66 /**
67  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68  * memory request.
69  *
70  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71  * @type: The type of memory requested
72  * @man: The memory type manager for each domain
73  *
74  * This is called by ttm_bo_init_mm() when a buffer object is being
75  * initialized.
76  */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78                                 struct ttm_mem_type_manager *man)
79 {
80         struct amdgpu_device *adev;
81
82         adev = amdgpu_ttm_adev(bdev);
83
84         switch (type) {
85         case TTM_PL_SYSTEM:
86                 /* System memory */
87                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88                 man->available_caching = TTM_PL_MASK_CACHING;
89                 man->default_caching = TTM_PL_FLAG_CACHED;
90                 break;
91         case TTM_PL_TT:
92                 /* GTT memory  */
93                 man->func = &amdgpu_gtt_mgr_func;
94                 man->gpu_offset = adev->gmc.gart_start;
95                 man->available_caching = TTM_PL_MASK_CACHING;
96                 man->default_caching = TTM_PL_FLAG_CACHED;
97                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
98                 break;
99         case TTM_PL_VRAM:
100                 /* "On-card" video ram */
101                 man->func = &amdgpu_vram_mgr_func;
102                 man->gpu_offset = adev->gmc.vram_start;
103                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
104                              TTM_MEMTYPE_FLAG_MAPPABLE;
105                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
106                 man->default_caching = TTM_PL_FLAG_WC;
107                 break;
108         case AMDGPU_PL_GDS:
109         case AMDGPU_PL_GWS:
110         case AMDGPU_PL_OA:
111                 /* On-chip GDS memory*/
112                 man->func = &ttm_bo_manager_func;
113                 man->gpu_offset = 0;
114                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
115                 man->available_caching = TTM_PL_FLAG_UNCACHED;
116                 man->default_caching = TTM_PL_FLAG_UNCACHED;
117                 break;
118         default:
119                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
120                 return -EINVAL;
121         }
122         return 0;
123 }
124
125 /**
126  * amdgpu_evict_flags - Compute placement flags
127  *
128  * @bo: The buffer object to evict
129  * @placement: Possible destination(s) for evicted BO
130  *
131  * Fill in placement data when ttm_bo_evict() is called
132  */
133 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
134                                 struct ttm_placement *placement)
135 {
136         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
137         struct amdgpu_bo *abo;
138         static const struct ttm_place placements = {
139                 .fpfn = 0,
140                 .lpfn = 0,
141                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
142         };
143
144         /* Don't handle scatter gather BOs */
145         if (bo->type == ttm_bo_type_sg) {
146                 placement->num_placement = 0;
147                 placement->num_busy_placement = 0;
148                 return;
149         }
150
151         /* Object isn't an AMDGPU object so ignore */
152         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
153                 placement->placement = &placements;
154                 placement->busy_placement = &placements;
155                 placement->num_placement = 1;
156                 placement->num_busy_placement = 1;
157                 return;
158         }
159
160         abo = ttm_to_amdgpu_bo(bo);
161         switch (bo->mem.mem_type) {
162         case AMDGPU_PL_GDS:
163         case AMDGPU_PL_GWS:
164         case AMDGPU_PL_OA:
165                 placement->num_placement = 0;
166                 placement->num_busy_placement = 0;
167                 return;
168
169         case TTM_PL_VRAM:
170                 if (!adev->mman.buffer_funcs_enabled) {
171                         /* Move to system memory */
172                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
173                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
174                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
175                            amdgpu_bo_in_cpu_visible_vram(abo)) {
176
177                         /* Try evicting to the CPU inaccessible part of VRAM
178                          * first, but only set GTT as busy placement, so this
179                          * BO will be evicted to GTT rather than causing other
180                          * BOs to be evicted from VRAM
181                          */
182                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
183                                                          AMDGPU_GEM_DOMAIN_GTT);
184                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
185                         abo->placements[0].lpfn = 0;
186                         abo->placement.busy_placement = &abo->placements[1];
187                         abo->placement.num_busy_placement = 1;
188                 } else {
189                         /* Move to GTT memory */
190                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
191                 }
192                 break;
193         case TTM_PL_TT:
194         default:
195                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
196                 break;
197         }
198         *placement = abo->placement;
199 }
200
201 /**
202  * amdgpu_verify_access - Verify access for a mmap call
203  *
204  * @bo: The buffer object to map
205  * @filp: The file pointer from the process performing the mmap
206  *
207  * This is called by ttm_bo_mmap() to verify whether a process
208  * has the right to mmap a BO to their process space.
209  */
210 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
211 {
212         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
213
214         /*
215          * Don't verify access for KFD BOs. They don't have a GEM
216          * object associated with them.
217          */
218         if (abo->kfd_bo)
219                 return 0;
220
221         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
222                 return -EPERM;
223         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
224                                           filp->private_data);
225 }
226
227 /**
228  * amdgpu_move_null - Register memory for a buffer object
229  *
230  * @bo: The bo to assign the memory to
231  * @new_mem: The memory to be assigned.
232  *
233  * Assign the memory from new_mem to the memory of the buffer object bo.
234  */
235 static void amdgpu_move_null(struct ttm_buffer_object *bo,
236                              struct ttm_mem_reg *new_mem)
237 {
238         struct ttm_mem_reg *old_mem = &bo->mem;
239
240         BUG_ON(old_mem->mm_node != NULL);
241         *old_mem = *new_mem;
242         new_mem->mm_node = NULL;
243 }
244
245 /**
246  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
247  *
248  * @bo: The bo to assign the memory to.
249  * @mm_node: Memory manager node for drm allocator.
250  * @mem: The region where the bo resides.
251  *
252  */
253 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
254                                     struct drm_mm_node *mm_node,
255                                     struct ttm_mem_reg *mem)
256 {
257         uint64_t addr = 0;
258
259         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
260                 addr = mm_node->start << PAGE_SHIFT;
261                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
262         }
263         return addr;
264 }
265
266 /**
267  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
268  * @offset. It also modifies the offset to be within the drm_mm_node returned
269  *
270  * @mem: The region where the bo resides.
271  * @offset: The offset that drm_mm_node is used for finding.
272  *
273  */
274 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
275                                                uint64_t *offset)
276 {
277         struct drm_mm_node *mm_node = mem->mm_node;
278
279         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
280                 *offset -= (mm_node->size << PAGE_SHIFT);
281                 ++mm_node;
282         }
283         return mm_node;
284 }
285
286 /**
287  * amdgpu_ttm_map_buffer - Map memory into the GART windows
288  * @bo: buffer object to map
289  * @mem: memory object to map
290  * @mm_node: drm_mm node object to map
291  * @num_pages: number of pages to map
292  * @offset: offset into @mm_node where to start
293  * @window: which GART window to use
294  * @ring: DMA ring to use for the copy
295  * @tmz: if we should setup a TMZ enabled mapping
296  * @addr: resulting address inside the MC address space
297  *
298  * Setup one of the GART windows to access a specific piece of memory or return
299  * the physical address for local memory.
300  */
301 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
302                                  struct ttm_mem_reg *mem,
303                                  struct drm_mm_node *mm_node,
304                                  unsigned num_pages, uint64_t offset,
305                                  unsigned window, struct amdgpu_ring *ring,
306                                  bool tmz, uint64_t *addr)
307 {
308         struct amdgpu_device *adev = ring->adev;
309         struct amdgpu_job *job;
310         unsigned num_dw, num_bytes;
311         struct dma_fence *fence;
312         uint64_t src_addr, dst_addr;
313         void *cpu_addr;
314         uint64_t flags;
315         unsigned int i;
316         int r;
317
318         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
319                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
320
321         /* Map only what can't be accessed directly */
322         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
323                 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
324                 return 0;
325         }
326
327         *addr = adev->gmc.gart_start;
328         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
329                 AMDGPU_GPU_PAGE_SIZE;
330         *addr += offset & ~PAGE_MASK;
331
332         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
333         num_bytes = num_pages * 8;
334
335         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
336                                      AMDGPU_IB_POOL_DELAYED, &job);
337         if (r)
338                 return r;
339
340         src_addr = num_dw * 4;
341         src_addr += job->ibs[0].gpu_addr;
342
343         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
344         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
345         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
346                                 dst_addr, num_bytes, false);
347
348         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
349         WARN_ON(job->ibs[0].length_dw > num_dw);
350
351         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
352         if (tmz)
353                 flags |= AMDGPU_PTE_TMZ;
354
355         cpu_addr = &job->ibs[0].ptr[num_dw];
356
357         if (mem->mem_type == TTM_PL_TT) {
358                 struct ttm_dma_tt *dma;
359                 dma_addr_t *dma_address;
360
361                 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
362                 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
363                 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
364                                     cpu_addr);
365                 if (r)
366                         goto error_free;
367         } else {
368                 dma_addr_t dma_address;
369
370                 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
371                 dma_address += adev->vm_manager.vram_base_offset;
372
373                 for (i = 0; i < num_pages; ++i) {
374                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
375                                             &dma_address, flags, cpu_addr);
376                         if (r)
377                                 goto error_free;
378
379                         dma_address += PAGE_SIZE;
380                 }
381         }
382
383         r = amdgpu_job_submit(job, &adev->mman.entity,
384                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
385         if (r)
386                 goto error_free;
387
388         dma_fence_put(fence);
389
390         return r;
391
392 error_free:
393         amdgpu_job_free(job);
394         return r;
395 }
396
397 /**
398  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
399  * @adev: amdgpu device
400  * @src: buffer/address where to read from
401  * @dst: buffer/address where to write to
402  * @size: number of bytes to copy
403  * @tmz: if a secure copy should be used
404  * @resv: resv object to sync to
405  * @f: Returns the last fence if multiple jobs are submitted.
406  *
407  * The function copies @size bytes from {src->mem + src->offset} to
408  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
409  * move and different for a BO to BO copy.
410  *
411  */
412 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
413                                const struct amdgpu_copy_mem *src,
414                                const struct amdgpu_copy_mem *dst,
415                                uint64_t size, bool tmz,
416                                struct dma_resv *resv,
417                                struct dma_fence **f)
418 {
419         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
420                                         AMDGPU_GPU_PAGE_SIZE);
421
422         uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
423         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
424         struct drm_mm_node *src_mm, *dst_mm;
425         struct dma_fence *fence = NULL;
426         int r = 0;
427
428         if (!adev->mman.buffer_funcs_enabled) {
429                 DRM_ERROR("Trying to move memory with ring turned off.\n");
430                 return -EINVAL;
431         }
432
433         src_offset = src->offset;
434         src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435         src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436
437         dst_offset = dst->offset;
438         dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
439         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
440
441         mutex_lock(&adev->mman.gtt_window_lock);
442
443         while (size) {
444                 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
445                 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
446                 struct dma_fence *next;
447                 uint32_t cur_size;
448                 uint64_t from, to;
449
450                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
451                  * begins at an offset, then adjust the size accordingly
452                  */
453                 cur_size = max(src_page_offset, dst_page_offset);
454                 cur_size = min(min3(src_node_size, dst_node_size, size),
455                                (uint64_t)(GTT_MAX_BYTES - cur_size));
456
457                 /* Map src to window 0 and dst to window 1. */
458                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
459                                           PFN_UP(cur_size + src_page_offset),
460                                           src_offset, 0, ring, tmz, &from);
461                 if (r)
462                         goto error;
463
464                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
465                                           PFN_UP(cur_size + dst_page_offset),
466                                           dst_offset, 1, ring, tmz, &to);
467                 if (r)
468                         goto error;
469
470                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
471                                        resv, &next, false, true, tmz);
472                 if (r)
473                         goto error;
474
475                 dma_fence_put(fence);
476                 fence = next;
477
478                 size -= cur_size;
479                 if (!size)
480                         break;
481
482                 src_node_size -= cur_size;
483                 if (!src_node_size) {
484                         ++src_mm;
485                         src_node_size = src_mm->size << PAGE_SHIFT;
486                         src_offset = 0;
487                 } else {
488                         src_offset += cur_size;
489                 }
490
491                 dst_node_size -= cur_size;
492                 if (!dst_node_size) {
493                         ++dst_mm;
494                         dst_node_size = dst_mm->size << PAGE_SHIFT;
495                         dst_offset = 0;
496                 } else {
497                         dst_offset += cur_size;
498                 }
499         }
500 error:
501         mutex_unlock(&adev->mman.gtt_window_lock);
502         if (f)
503                 *f = dma_fence_get(fence);
504         dma_fence_put(fence);
505         return r;
506 }
507
508 /**
509  * amdgpu_move_blit - Copy an entire buffer to another buffer
510  *
511  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
512  * help move buffers to and from VRAM.
513  */
514 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
515                             bool evict, bool no_wait_gpu,
516                             struct ttm_mem_reg *new_mem,
517                             struct ttm_mem_reg *old_mem)
518 {
519         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
520         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
521         struct amdgpu_copy_mem src, dst;
522         struct dma_fence *fence = NULL;
523         int r;
524
525         src.bo = bo;
526         dst.bo = bo;
527         src.mem = old_mem;
528         dst.mem = new_mem;
529         src.offset = 0;
530         dst.offset = 0;
531
532         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
533                                        new_mem->num_pages << PAGE_SHIFT,
534                                        amdgpu_bo_encrypted(abo),
535                                        bo->base.resv, &fence);
536         if (r)
537                 goto error;
538
539         /* clear the space being freed */
540         if (old_mem->mem_type == TTM_PL_VRAM &&
541             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
542                 struct dma_fence *wipe_fence = NULL;
543
544                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
545                                        NULL, &wipe_fence);
546                 if (r) {
547                         goto error;
548                 } else if (wipe_fence) {
549                         dma_fence_put(fence);
550                         fence = wipe_fence;
551                 }
552         }
553
554         /* Always block for VM page tables before committing the new location */
555         if (bo->type == ttm_bo_type_kernel)
556                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
557         else
558                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
559         dma_fence_put(fence);
560         return r;
561
562 error:
563         if (fence)
564                 dma_fence_wait(fence, false);
565         dma_fence_put(fence);
566         return r;
567 }
568
569 /**
570  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
571  *
572  * Called by amdgpu_bo_move().
573  */
574 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
575                                 struct ttm_operation_ctx *ctx,
576                                 struct ttm_mem_reg *new_mem)
577 {
578         struct ttm_mem_reg *old_mem = &bo->mem;
579         struct ttm_mem_reg tmp_mem;
580         struct ttm_place placements;
581         struct ttm_placement placement;
582         int r;
583
584         /* create space/pages for new_mem in GTT space */
585         tmp_mem = *new_mem;
586         tmp_mem.mm_node = NULL;
587         placement.num_placement = 1;
588         placement.placement = &placements;
589         placement.num_busy_placement = 1;
590         placement.busy_placement = &placements;
591         placements.fpfn = 0;
592         placements.lpfn = 0;
593         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
594         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
595         if (unlikely(r)) {
596                 pr_err("Failed to find GTT space for blit from VRAM\n");
597                 return r;
598         }
599
600         /* set caching flags */
601         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
602         if (unlikely(r)) {
603                 goto out_cleanup;
604         }
605
606         /* Bind the memory to the GTT space */
607         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
608         if (unlikely(r)) {
609                 goto out_cleanup;
610         }
611
612         /* blit VRAM to GTT */
613         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
614         if (unlikely(r)) {
615                 goto out_cleanup;
616         }
617
618         /* move BO (in tmp_mem) to new_mem */
619         r = ttm_bo_move_ttm(bo, ctx, new_mem);
620 out_cleanup:
621         ttm_bo_mem_put(bo, &tmp_mem);
622         return r;
623 }
624
625 /**
626  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
627  *
628  * Called by amdgpu_bo_move().
629  */
630 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
631                                 struct ttm_operation_ctx *ctx,
632                                 struct ttm_mem_reg *new_mem)
633 {
634         struct ttm_mem_reg *old_mem = &bo->mem;
635         struct ttm_mem_reg tmp_mem;
636         struct ttm_placement placement;
637         struct ttm_place placements;
638         int r;
639
640         /* make space in GTT for old_mem buffer */
641         tmp_mem = *new_mem;
642         tmp_mem.mm_node = NULL;
643         placement.num_placement = 1;
644         placement.placement = &placements;
645         placement.num_busy_placement = 1;
646         placement.busy_placement = &placements;
647         placements.fpfn = 0;
648         placements.lpfn = 0;
649         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
650         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
651         if (unlikely(r)) {
652                 pr_err("Failed to find GTT space for blit to VRAM\n");
653                 return r;
654         }
655
656         /* move/bind old memory to GTT space */
657         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
658         if (unlikely(r)) {
659                 goto out_cleanup;
660         }
661
662         /* copy to VRAM */
663         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
664         if (unlikely(r)) {
665                 goto out_cleanup;
666         }
667 out_cleanup:
668         ttm_bo_mem_put(bo, &tmp_mem);
669         return r;
670 }
671
672 /**
673  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
674  *
675  * Called by amdgpu_bo_move()
676  */
677 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
678                                struct ttm_mem_reg *mem)
679 {
680         struct drm_mm_node *nodes = mem->mm_node;
681
682         if (mem->mem_type == TTM_PL_SYSTEM ||
683             mem->mem_type == TTM_PL_TT)
684                 return true;
685         if (mem->mem_type != TTM_PL_VRAM)
686                 return false;
687
688         /* ttm_mem_reg_ioremap only supports contiguous memory */
689         if (nodes->size != mem->num_pages)
690                 return false;
691
692         return ((nodes->start + nodes->size) << PAGE_SHIFT)
693                 <= adev->gmc.visible_vram_size;
694 }
695
696 /**
697  * amdgpu_bo_move - Move a buffer object to a new memory location
698  *
699  * Called by ttm_bo_handle_move_mem()
700  */
701 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
702                           struct ttm_operation_ctx *ctx,
703                           struct ttm_mem_reg *new_mem)
704 {
705         struct amdgpu_device *adev;
706         struct amdgpu_bo *abo;
707         struct ttm_mem_reg *old_mem = &bo->mem;
708         int r;
709
710         /* Can't move a pinned BO */
711         abo = ttm_to_amdgpu_bo(bo);
712         if (WARN_ON_ONCE(abo->pin_count > 0))
713                 return -EINVAL;
714
715         adev = amdgpu_ttm_adev(bo->bdev);
716
717         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
718                 amdgpu_move_null(bo, new_mem);
719                 return 0;
720         }
721         if ((old_mem->mem_type == TTM_PL_TT &&
722              new_mem->mem_type == TTM_PL_SYSTEM) ||
723             (old_mem->mem_type == TTM_PL_SYSTEM &&
724              new_mem->mem_type == TTM_PL_TT)) {
725                 /* bind is enough */
726                 amdgpu_move_null(bo, new_mem);
727                 return 0;
728         }
729         if (old_mem->mem_type == AMDGPU_PL_GDS ||
730             old_mem->mem_type == AMDGPU_PL_GWS ||
731             old_mem->mem_type == AMDGPU_PL_OA ||
732             new_mem->mem_type == AMDGPU_PL_GDS ||
733             new_mem->mem_type == AMDGPU_PL_GWS ||
734             new_mem->mem_type == AMDGPU_PL_OA) {
735                 /* Nothing to save here */
736                 amdgpu_move_null(bo, new_mem);
737                 return 0;
738         }
739
740         if (!adev->mman.buffer_funcs_enabled) {
741                 r = -ENODEV;
742                 goto memcpy;
743         }
744
745         if (old_mem->mem_type == TTM_PL_VRAM &&
746             new_mem->mem_type == TTM_PL_SYSTEM) {
747                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
748         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
749                    new_mem->mem_type == TTM_PL_VRAM) {
750                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
751         } else {
752                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
753                                      new_mem, old_mem);
754         }
755
756         if (r) {
757 memcpy:
758                 /* Check that all memory is CPU accessible */
759                 if (!amdgpu_mem_visible(adev, old_mem) ||
760                     !amdgpu_mem_visible(adev, new_mem)) {
761                         pr_err("Move buffer fallback to memcpy unavailable\n");
762                         return r;
763                 }
764
765                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
766                 if (r)
767                         return r;
768         }
769
770         if (bo->type == ttm_bo_type_device &&
771             new_mem->mem_type == TTM_PL_VRAM &&
772             old_mem->mem_type != TTM_PL_VRAM) {
773                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
774                  * accesses the BO after it's moved.
775                  */
776                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
777         }
778
779         /* update statistics */
780         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
781         return 0;
782 }
783
784 /**
785  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
786  *
787  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
788  */
789 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
790 {
791         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
792         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793         struct drm_mm_node *mm_node = mem->mm_node;
794
795         mem->bus.addr = NULL;
796         mem->bus.offset = 0;
797         mem->bus.size = mem->num_pages << PAGE_SHIFT;
798         mem->bus.base = 0;
799         mem->bus.is_iomem = false;
800         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
801                 return -EINVAL;
802         switch (mem->mem_type) {
803         case TTM_PL_SYSTEM:
804                 /* system memory */
805                 return 0;
806         case TTM_PL_TT:
807                 break;
808         case TTM_PL_VRAM:
809                 mem->bus.offset = mem->start << PAGE_SHIFT;
810                 /* check if it's visible */
811                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
812                         return -EINVAL;
813                 /* Only physically contiguous buffers apply. In a contiguous
814                  * buffer, size of the first mm_node would match the number of
815                  * pages in ttm_mem_reg.
816                  */
817                 if (adev->mman.aper_base_kaddr &&
818                     (mm_node->size == mem->num_pages))
819                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
820                                         mem->bus.offset;
821
822                 mem->bus.base = adev->gmc.aper_base;
823                 mem->bus.is_iomem = true;
824                 break;
825         default:
826                 return -EINVAL;
827         }
828         return 0;
829 }
830
831 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
832 {
833 }
834
835 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
836                                            unsigned long page_offset)
837 {
838         uint64_t offset = (page_offset << PAGE_SHIFT);
839         struct drm_mm_node *mm;
840
841         mm = amdgpu_find_mm_node(&bo->mem, &offset);
842         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
843                 (offset >> PAGE_SHIFT);
844 }
845
846 /*
847  * TTM backend functions.
848  */
849 struct amdgpu_ttm_tt {
850         struct ttm_dma_tt       ttm;
851         struct drm_gem_object   *gobj;
852         u64                     offset;
853         uint64_t                userptr;
854         struct task_struct      *usertask;
855         uint32_t                userflags;
856 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
857         struct hmm_range        *range;
858 #endif
859 };
860
861 #ifdef CONFIG_DRM_AMDGPU_USERPTR
862 /**
863  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
864  * memory and start HMM tracking CPU page table update
865  *
866  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
867  * once afterwards to stop HMM tracking
868  */
869 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
870 {
871         struct ttm_tt *ttm = bo->tbo.ttm;
872         struct amdgpu_ttm_tt *gtt = (void *)ttm;
873         unsigned long start = gtt->userptr;
874         struct vm_area_struct *vma;
875         struct hmm_range *range;
876         unsigned long timeout;
877         struct mm_struct *mm;
878         unsigned long i;
879         int r = 0;
880
881         mm = bo->notifier.mm;
882         if (unlikely(!mm)) {
883                 DRM_DEBUG_DRIVER("BO is not registered?\n");
884                 return -EFAULT;
885         }
886
887         /* Another get_user_pages is running at the same time?? */
888         if (WARN_ON(gtt->range))
889                 return -EFAULT;
890
891         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
892                 return -ESRCH;
893
894         range = kzalloc(sizeof(*range), GFP_KERNEL);
895         if (unlikely(!range)) {
896                 r = -ENOMEM;
897                 goto out;
898         }
899         range->notifier = &bo->notifier;
900         range->start = bo->notifier.interval_tree.start;
901         range->end = bo->notifier.interval_tree.last + 1;
902         range->default_flags = HMM_PFN_REQ_FAULT;
903         if (!amdgpu_ttm_tt_is_readonly(ttm))
904                 range->default_flags |= HMM_PFN_REQ_WRITE;
905
906         range->hmm_pfns = kvmalloc_array(ttm->num_pages,
907                                          sizeof(*range->hmm_pfns), GFP_KERNEL);
908         if (unlikely(!range->hmm_pfns)) {
909                 r = -ENOMEM;
910                 goto out_free_ranges;
911         }
912
913         mmap_read_lock(mm);
914         vma = find_vma(mm, start);
915         if (unlikely(!vma || start < vma->vm_start)) {
916                 r = -EFAULT;
917                 goto out_unlock;
918         }
919         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
920                 vma->vm_file)) {
921                 r = -EPERM;
922                 goto out_unlock;
923         }
924         mmap_read_unlock(mm);
925         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
926
927 retry:
928         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
929
930         mmap_read_lock(mm);
931         r = hmm_range_fault(range);
932         mmap_read_unlock(mm);
933         if (unlikely(r)) {
934                 /*
935                  * FIXME: This timeout should encompass the retry from
936                  * mmu_interval_read_retry() as well.
937                  */
938                 if (r == -EBUSY && !time_after(jiffies, timeout))
939                         goto retry;
940                 goto out_free_pfns;
941         }
942
943         /*
944          * Due to default_flags, all pages are HMM_PFN_VALID or
945          * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
946          * the notifier_lock, and mmu_interval_read_retry() must be done first.
947          */
948         for (i = 0; i < ttm->num_pages; i++)
949                 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
950
951         gtt->range = range;
952         mmput(mm);
953
954         return 0;
955
956 out_unlock:
957         mmap_read_unlock(mm);
958 out_free_pfns:
959         kvfree(range->hmm_pfns);
960 out_free_ranges:
961         kfree(range);
962 out:
963         mmput(mm);
964         return r;
965 }
966
967 /**
968  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
969  * Check if the pages backing this ttm range have been invalidated
970  *
971  * Returns: true if pages are still valid
972  */
973 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
974 {
975         struct amdgpu_ttm_tt *gtt = (void *)ttm;
976         bool r = false;
977
978         if (!gtt || !gtt->userptr)
979                 return false;
980
981         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
982                 gtt->userptr, ttm->num_pages);
983
984         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
985                 "No user pages to check\n");
986
987         if (gtt->range) {
988                 /*
989                  * FIXME: Must always hold notifier_lock for this, and must
990                  * not ignore the return code.
991                  */
992                 r = mmu_interval_read_retry(gtt->range->notifier,
993                                          gtt->range->notifier_seq);
994                 kvfree(gtt->range->hmm_pfns);
995                 kfree(gtt->range);
996                 gtt->range = NULL;
997         }
998
999         return !r;
1000 }
1001 #endif
1002
1003 /**
1004  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1005  *
1006  * Called by amdgpu_cs_list_validate(). This creates the page list
1007  * that backs user memory and will ultimately be mapped into the device
1008  * address space.
1009  */
1010 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1011 {
1012         unsigned long i;
1013
1014         for (i = 0; i < ttm->num_pages; ++i)
1015                 ttm->pages[i] = pages ? pages[i] : NULL;
1016 }
1017
1018 /**
1019  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
1020  *
1021  * Called by amdgpu_ttm_backend_bind()
1022  **/
1023 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1024 {
1025         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1026         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1027         unsigned nents;
1028         int r;
1029
1030         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1031         enum dma_data_direction direction = write ?
1032                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1033
1034         /* Allocate an SG array and squash pages into it */
1035         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1036                                       ttm->num_pages << PAGE_SHIFT,
1037                                       GFP_KERNEL);
1038         if (r)
1039                 goto release_sg;
1040
1041         /* Map SG to device */
1042         r = -ENOMEM;
1043         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1044         if (nents == 0)
1045                 goto release_sg;
1046
1047         /* convert SG to linear array of pages and dma addresses */
1048         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1049                                          gtt->ttm.dma_address, ttm->num_pages);
1050
1051         return 0;
1052
1053 release_sg:
1054         kfree(ttm->sg);
1055         return r;
1056 }
1057
1058 /**
1059  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1060  */
1061 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1062 {
1063         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1064         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1065
1066         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1067         enum dma_data_direction direction = write ?
1068                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1069
1070         /* double check that we don't free the table twice */
1071         if (!ttm->sg->sgl)
1072                 return;
1073
1074         /* unmap the pages mapped to the device */
1075         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1076
1077         sg_free_table(ttm->sg);
1078
1079 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1080         if (gtt->range) {
1081                 unsigned long i;
1082
1083                 for (i = 0; i < ttm->num_pages; i++) {
1084                         if (ttm->pages[i] !=
1085                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1086                                 break;
1087                 }
1088
1089                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1090         }
1091 #endif
1092 }
1093
1094 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1095                                 struct ttm_buffer_object *tbo,
1096                                 uint64_t flags)
1097 {
1098         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1099         struct ttm_tt *ttm = tbo->ttm;
1100         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1101         int r;
1102
1103         if (amdgpu_bo_encrypted(abo))
1104                 flags |= AMDGPU_PTE_TMZ;
1105
1106         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1107                 uint64_t page_idx = 1;
1108
1109                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1110                                 ttm->pages, gtt->ttm.dma_address, flags);
1111                 if (r)
1112                         goto gart_bind_fail;
1113
1114                 /* The memory type of the first page defaults to UC. Now
1115                  * modify the memory type to NC from the second page of
1116                  * the BO onward.
1117                  */
1118                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1119                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1120
1121                 r = amdgpu_gart_bind(adev,
1122                                 gtt->offset + (page_idx << PAGE_SHIFT),
1123                                 ttm->num_pages - page_idx,
1124                                 &ttm->pages[page_idx],
1125                                 &(gtt->ttm.dma_address[page_idx]), flags);
1126         } else {
1127                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1128                                      ttm->pages, gtt->ttm.dma_address, flags);
1129         }
1130
1131 gart_bind_fail:
1132         if (r)
1133                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1134                           ttm->num_pages, gtt->offset);
1135
1136         return r;
1137 }
1138
1139 /**
1140  * amdgpu_ttm_backend_bind - Bind GTT memory
1141  *
1142  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1143  * This handles binding GTT memory to the device address space.
1144  */
1145 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1146                                    struct ttm_mem_reg *bo_mem)
1147 {
1148         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1149         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1150         uint64_t flags;
1151         int r = 0;
1152
1153         if (gtt->userptr) {
1154                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1155                 if (r) {
1156                         DRM_ERROR("failed to pin userptr\n");
1157                         return r;
1158                 }
1159         }
1160         if (!ttm->num_pages) {
1161                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1162                      ttm->num_pages, bo_mem, ttm);
1163         }
1164
1165         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1166             bo_mem->mem_type == AMDGPU_PL_GWS ||
1167             bo_mem->mem_type == AMDGPU_PL_OA)
1168                 return -EINVAL;
1169
1170         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1171                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1172                 return 0;
1173         }
1174
1175         /* compute PTE flags relevant to this BO memory */
1176         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1177
1178         /* bind pages into GART page tables */
1179         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1180         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1181                 ttm->pages, gtt->ttm.dma_address, flags);
1182
1183         if (r)
1184                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1185                           ttm->num_pages, gtt->offset);
1186         return r;
1187 }
1188
1189 /**
1190  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1191  */
1192 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1193 {
1194         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1195         struct ttm_operation_ctx ctx = { false, false };
1196         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1197         struct ttm_mem_reg tmp;
1198         struct ttm_placement placement;
1199         struct ttm_place placements;
1200         uint64_t addr, flags;
1201         int r;
1202
1203         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1204                 return 0;
1205
1206         addr = amdgpu_gmc_agp_addr(bo);
1207         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1208                 bo->mem.start = addr >> PAGE_SHIFT;
1209         } else {
1210
1211                 /* allocate GART space */
1212                 tmp = bo->mem;
1213                 tmp.mm_node = NULL;
1214                 placement.num_placement = 1;
1215                 placement.placement = &placements;
1216                 placement.num_busy_placement = 1;
1217                 placement.busy_placement = &placements;
1218                 placements.fpfn = 0;
1219                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1220                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1221                         TTM_PL_FLAG_TT;
1222
1223                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1224                 if (unlikely(r))
1225                         return r;
1226
1227                 /* compute PTE flags for this buffer object */
1228                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1229
1230                 /* Bind pages */
1231                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1232                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1233                 if (unlikely(r)) {
1234                         ttm_bo_mem_put(bo, &tmp);
1235                         return r;
1236                 }
1237
1238                 ttm_bo_mem_put(bo, &bo->mem);
1239                 bo->mem = tmp;
1240         }
1241
1242         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1243                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1244
1245         return 0;
1246 }
1247
1248 /**
1249  * amdgpu_ttm_recover_gart - Rebind GTT pages
1250  *
1251  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1252  * rebind GTT pages during a GPU reset.
1253  */
1254 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1255 {
1256         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1257         uint64_t flags;
1258         int r;
1259
1260         if (!tbo->ttm)
1261                 return 0;
1262
1263         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1264         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1265
1266         return r;
1267 }
1268
1269 /**
1270  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1271  *
1272  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1273  * ttm_tt_destroy().
1274  */
1275 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1276 {
1277         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1278         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279         int r;
1280
1281         /* if the pages have userptr pinning then clear that first */
1282         if (gtt->userptr)
1283                 amdgpu_ttm_tt_unpin_userptr(ttm);
1284
1285         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1286                 return 0;
1287
1288         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1289         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1290         if (r)
1291                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1292                           gtt->ttm.ttm.num_pages, gtt->offset);
1293         return r;
1294 }
1295
1296 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1297 {
1298         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299
1300         if (gtt->usertask)
1301                 put_task_struct(gtt->usertask);
1302
1303         ttm_dma_tt_fini(&gtt->ttm);
1304         kfree(gtt);
1305 }
1306
1307 static struct ttm_backend_func amdgpu_backend_func = {
1308         .bind = &amdgpu_ttm_backend_bind,
1309         .unbind = &amdgpu_ttm_backend_unbind,
1310         .destroy = &amdgpu_ttm_backend_destroy,
1311 };
1312
1313 /**
1314  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1315  *
1316  * @bo: The buffer object to create a GTT ttm_tt object around
1317  *
1318  * Called by ttm_tt_create().
1319  */
1320 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1321                                            uint32_t page_flags)
1322 {
1323         struct amdgpu_ttm_tt *gtt;
1324
1325         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1326         if (gtt == NULL) {
1327                 return NULL;
1328         }
1329         gtt->ttm.ttm.func = &amdgpu_backend_func;
1330         gtt->gobj = &bo->base;
1331
1332         /* allocate space for the uninitialized page entries */
1333         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1334                 kfree(gtt);
1335                 return NULL;
1336         }
1337         return &gtt->ttm.ttm;
1338 }
1339
1340 /**
1341  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1342  *
1343  * Map the pages of a ttm_tt object to an address space visible
1344  * to the underlying device.
1345  */
1346 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1347                         struct ttm_operation_ctx *ctx)
1348 {
1349         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1350         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1351
1352         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1353         if (gtt && gtt->userptr) {
1354                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1355                 if (!ttm->sg)
1356                         return -ENOMEM;
1357
1358                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1359                 ttm->state = tt_unbound;
1360                 return 0;
1361         }
1362
1363         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1364                 if (!ttm->sg) {
1365                         struct dma_buf_attachment *attach;
1366                         struct sg_table *sgt;
1367
1368                         attach = gtt->gobj->import_attach;
1369                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1370                         if (IS_ERR(sgt))
1371                                 return PTR_ERR(sgt);
1372
1373                         ttm->sg = sgt;
1374                 }
1375
1376                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1377                                                  gtt->ttm.dma_address,
1378                                                  ttm->num_pages);
1379                 ttm->state = tt_unbound;
1380                 return 0;
1381         }
1382
1383 #ifdef CONFIG_SWIOTLB
1384         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1385                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1386         }
1387 #endif
1388
1389         /* fall back to generic helper to populate the page array
1390          * and map them to the device */
1391         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1392 }
1393
1394 /**
1395  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1396  *
1397  * Unmaps pages of a ttm_tt object from the device address space and
1398  * unpopulates the page array backing it.
1399  */
1400 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1401 {
1402         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1403         struct amdgpu_device *adev;
1404
1405         if (gtt && gtt->userptr) {
1406                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1407                 kfree(ttm->sg);
1408                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1409                 return;
1410         }
1411
1412         if (ttm->sg && gtt->gobj->import_attach) {
1413                 struct dma_buf_attachment *attach;
1414
1415                 attach = gtt->gobj->import_attach;
1416                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1417                 ttm->sg = NULL;
1418                 return;
1419         }
1420
1421         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1422                 return;
1423
1424         adev = amdgpu_ttm_adev(ttm->bdev);
1425
1426 #ifdef CONFIG_SWIOTLB
1427         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1428                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1429                 return;
1430         }
1431 #endif
1432
1433         /* fall back to generic helper to unmap and unpopulate array */
1434         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1435 }
1436
1437 /**
1438  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1439  * task
1440  *
1441  * @ttm: The ttm_tt object to bind this userptr object to
1442  * @addr:  The address in the current tasks VM space to use
1443  * @flags: Requirements of userptr object.
1444  *
1445  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1446  * to current task
1447  */
1448 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1449                               uint32_t flags)
1450 {
1451         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1452
1453         if (gtt == NULL)
1454                 return -EINVAL;
1455
1456         gtt->userptr = addr;
1457         gtt->userflags = flags;
1458
1459         if (gtt->usertask)
1460                 put_task_struct(gtt->usertask);
1461         gtt->usertask = current->group_leader;
1462         get_task_struct(gtt->usertask);
1463
1464         return 0;
1465 }
1466
1467 /**
1468  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1469  */
1470 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1471 {
1472         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1473
1474         if (gtt == NULL)
1475                 return NULL;
1476
1477         if (gtt->usertask == NULL)
1478                 return NULL;
1479
1480         return gtt->usertask->mm;
1481 }
1482
1483 /**
1484  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1485  * address range for the current task.
1486  *
1487  */
1488 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1489                                   unsigned long end)
1490 {
1491         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1492         unsigned long size;
1493
1494         if (gtt == NULL || !gtt->userptr)
1495                 return false;
1496
1497         /* Return false if no part of the ttm_tt object lies within
1498          * the range
1499          */
1500         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1501         if (gtt->userptr > end || gtt->userptr + size <= start)
1502                 return false;
1503
1504         return true;
1505 }
1506
1507 /**
1508  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1509  */
1510 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1511 {
1512         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1513
1514         if (gtt == NULL || !gtt->userptr)
1515                 return false;
1516
1517         return true;
1518 }
1519
1520 /**
1521  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1522  */
1523 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1524 {
1525         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1526
1527         if (gtt == NULL)
1528                 return false;
1529
1530         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1531 }
1532
1533 /**
1534  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1535  *
1536  * @ttm: The ttm_tt object to compute the flags for
1537  * @mem: The memory registry backing this ttm_tt object
1538  *
1539  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1540  */
1541 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1542 {
1543         uint64_t flags = 0;
1544
1545         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1546                 flags |= AMDGPU_PTE_VALID;
1547
1548         if (mem && mem->mem_type == TTM_PL_TT) {
1549                 flags |= AMDGPU_PTE_SYSTEM;
1550
1551                 if (ttm->caching_state == tt_cached)
1552                         flags |= AMDGPU_PTE_SNOOPED;
1553         }
1554
1555         return flags;
1556 }
1557
1558 /**
1559  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1560  *
1561  * @ttm: The ttm_tt object to compute the flags for
1562  * @mem: The memory registry backing this ttm_tt object
1563
1564  * Figure out the flags to use for a VM PTE (Page Table Entry).
1565  */
1566 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1567                                  struct ttm_mem_reg *mem)
1568 {
1569         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1570
1571         flags |= adev->gart.gart_pte_flags;
1572         flags |= AMDGPU_PTE_READABLE;
1573
1574         if (!amdgpu_ttm_tt_is_readonly(ttm))
1575                 flags |= AMDGPU_PTE_WRITEABLE;
1576
1577         return flags;
1578 }
1579
1580 /**
1581  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1582  * object.
1583  *
1584  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1585  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1586  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1587  * used to clean out a memory space.
1588  */
1589 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1590                                             const struct ttm_place *place)
1591 {
1592         unsigned long num_pages = bo->mem.num_pages;
1593         struct drm_mm_node *node = bo->mem.mm_node;
1594         struct dma_resv_list *flist;
1595         struct dma_fence *f;
1596         int i;
1597
1598         if (bo->type == ttm_bo_type_kernel &&
1599             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1600                 return false;
1601
1602         /* If bo is a KFD BO, check if the bo belongs to the current process.
1603          * If true, then return false as any KFD process needs all its BOs to
1604          * be resident to run successfully
1605          */
1606         flist = dma_resv_get_list(bo->base.resv);
1607         if (flist) {
1608                 for (i = 0; i < flist->shared_count; ++i) {
1609                         f = rcu_dereference_protected(flist->shared[i],
1610                                 dma_resv_held(bo->base.resv));
1611                         if (amdkfd_fence_check_mm(f, current->mm))
1612                                 return false;
1613                 }
1614         }
1615
1616         switch (bo->mem.mem_type) {
1617         case TTM_PL_TT:
1618                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1619                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1620                         return false;
1621                 return true;
1622
1623         case TTM_PL_VRAM:
1624                 /* Check each drm MM node individually */
1625                 while (num_pages) {
1626                         if (place->fpfn < (node->start + node->size) &&
1627                             !(place->lpfn && place->lpfn <= node->start))
1628                                 return true;
1629
1630                         num_pages -= node->size;
1631                         ++node;
1632                 }
1633                 return false;
1634
1635         default:
1636                 break;
1637         }
1638
1639         return ttm_bo_eviction_valuable(bo, place);
1640 }
1641
1642 /**
1643  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1644  *
1645  * @bo:  The buffer object to read/write
1646  * @offset:  Offset into buffer object
1647  * @buf:  Secondary buffer to write/read from
1648  * @len: Length in bytes of access
1649  * @write:  true if writing
1650  *
1651  * This is used to access VRAM that backs a buffer object via MMIO
1652  * access for debugging purposes.
1653  */
1654 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1655                                     unsigned long offset,
1656                                     void *buf, int len, int write)
1657 {
1658         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1659         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1660         struct drm_mm_node *nodes;
1661         uint32_t value = 0;
1662         int ret = 0;
1663         uint64_t pos;
1664         unsigned long flags;
1665
1666         if (bo->mem.mem_type != TTM_PL_VRAM)
1667                 return -EIO;
1668
1669         pos = offset;
1670         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1671         pos += (nodes->start << PAGE_SHIFT);
1672
1673         while (len && pos < adev->gmc.mc_vram_size) {
1674                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1675                 uint64_t bytes = 4 - (pos & 3);
1676                 uint32_t shift = (pos & 3) * 8;
1677                 uint32_t mask = 0xffffffff << shift;
1678
1679                 if (len < bytes) {
1680                         mask &= 0xffffffff >> (bytes - len) * 8;
1681                         bytes = len;
1682                 }
1683
1684                 if (mask != 0xffffffff) {
1685                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1686                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1687                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1688                         if (!write || mask != 0xffffffff)
1689                                 value = RREG32_NO_KIQ(mmMM_DATA);
1690                         if (write) {
1691                                 value &= ~mask;
1692                                 value |= (*(uint32_t *)buf << shift) & mask;
1693                                 WREG32_NO_KIQ(mmMM_DATA, value);
1694                         }
1695                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1696                         if (!write) {
1697                                 value = (value & mask) >> shift;
1698                                 memcpy(buf, &value, bytes);
1699                         }
1700                 } else {
1701                         bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1702                         bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1703
1704                         amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1705                                                   bytes, write);
1706                 }
1707
1708                 ret += bytes;
1709                 buf = (uint8_t *)buf + bytes;
1710                 pos += bytes;
1711                 len -= bytes;
1712                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1713                         ++nodes;
1714                         pos = (nodes->start << PAGE_SHIFT);
1715                 }
1716         }
1717
1718         return ret;
1719 }
1720
1721 static struct ttm_bo_driver amdgpu_bo_driver = {
1722         .ttm_tt_create = &amdgpu_ttm_tt_create,
1723         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1724         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1725         .init_mem_type = &amdgpu_init_mem_type,
1726         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1727         .evict_flags = &amdgpu_evict_flags,
1728         .move = &amdgpu_bo_move,
1729         .verify_access = &amdgpu_verify_access,
1730         .move_notify = &amdgpu_bo_move_notify,
1731         .release_notify = &amdgpu_bo_release_notify,
1732         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1733         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1734         .io_mem_free = &amdgpu_ttm_io_mem_free,
1735         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1736         .access_memory = &amdgpu_ttm_access_memory,
1737         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1738 };
1739
1740 /*
1741  * Firmware Reservation functions
1742  */
1743 /**
1744  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1745  *
1746  * @adev: amdgpu_device pointer
1747  *
1748  * free fw reserved vram if it has been reserved.
1749  */
1750 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1751 {
1752         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1753                 NULL, &adev->fw_vram_usage.va);
1754 }
1755
1756 /**
1757  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1758  *
1759  * @adev: amdgpu_device pointer
1760  *
1761  * create bo vram reservation from fw.
1762  */
1763 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1764 {
1765         uint64_t vram_size = adev->gmc.visible_vram_size;
1766
1767         adev->fw_vram_usage.va = NULL;
1768         adev->fw_vram_usage.reserved_bo = NULL;
1769
1770         if (adev->fw_vram_usage.size == 0 ||
1771             adev->fw_vram_usage.size > vram_size)
1772                 return 0;
1773
1774         return amdgpu_bo_create_kernel_at(adev,
1775                                           adev->fw_vram_usage.start_offset,
1776                                           adev->fw_vram_usage.size,
1777                                           AMDGPU_GEM_DOMAIN_VRAM,
1778                                           &adev->fw_vram_usage.reserved_bo,
1779                                           &adev->fw_vram_usage.va);
1780 }
1781
1782 /*
1783  * Memoy training reservation functions
1784  */
1785
1786 /**
1787  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1788  *
1789  * @adev: amdgpu_device pointer
1790  *
1791  * free memory training reserved vram if it has been reserved.
1792  */
1793 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1794 {
1795         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1796
1797         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1798         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1799         ctx->c2p_bo = NULL;
1800
1801         return 0;
1802 }
1803
1804 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1805 {
1806        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1807                vram_size -= SZ_1M;
1808
1809        return ALIGN(vram_size, SZ_1M);
1810 }
1811
1812 /**
1813  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1814  *
1815  * @adev: amdgpu_device pointer
1816  *
1817  * create bo vram reservation from memory training.
1818  */
1819 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1820 {
1821         int ret;
1822         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1823
1824         memset(ctx, 0, sizeof(*ctx));
1825         if (!adev->fw_vram_usage.mem_train_support) {
1826                 DRM_DEBUG("memory training does not support!\n");
1827                 return 0;
1828         }
1829
1830         ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1831         ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1832         ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1833
1834         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1835                   ctx->train_data_size,
1836                   ctx->p2c_train_data_offset,
1837                   ctx->c2p_train_data_offset);
1838
1839         ret = amdgpu_bo_create_kernel_at(adev,
1840                                          ctx->c2p_train_data_offset,
1841                                          ctx->train_data_size,
1842                                          AMDGPU_GEM_DOMAIN_VRAM,
1843                                          &ctx->c2p_bo,
1844                                          NULL);
1845         if (ret) {
1846                 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1847                 amdgpu_ttm_training_reserve_vram_fini(adev);
1848                 return ret;
1849         }
1850
1851         ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1852         return 0;
1853 }
1854
1855 /**
1856  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1857  * gtt/vram related fields.
1858  *
1859  * This initializes all of the memory space pools that the TTM layer
1860  * will need such as the GTT space (system memory mapped to the device),
1861  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1862  * can be mapped per VMID.
1863  */
1864 int amdgpu_ttm_init(struct amdgpu_device *adev)
1865 {
1866         uint64_t gtt_size;
1867         int r;
1868         u64 vis_vram_limit;
1869         void *stolen_vga_buf;
1870
1871         mutex_init(&adev->mman.gtt_window_lock);
1872
1873         /* No others user of address space so set it to 0 */
1874         r = ttm_bo_device_init(&adev->mman.bdev,
1875                                &amdgpu_bo_driver,
1876                                adev->ddev->anon_inode->i_mapping,
1877                                adev->ddev->vma_offset_manager,
1878                                dma_addressing_limited(adev->dev));
1879         if (r) {
1880                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1881                 return r;
1882         }
1883         adev->mman.initialized = true;
1884
1885         /* We opt to avoid OOM on system pages allocations */
1886         adev->mman.bdev.no_retry = true;
1887
1888         /* Initialize VRAM pool with all of VRAM divided into pages */
1889         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1890                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1891         if (r) {
1892                 DRM_ERROR("Failed initializing VRAM heap.\n");
1893                 return r;
1894         }
1895
1896         /* Reduce size of CPU-visible VRAM if requested */
1897         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1898         if (amdgpu_vis_vram_limit > 0 &&
1899             vis_vram_limit <= adev->gmc.visible_vram_size)
1900                 adev->gmc.visible_vram_size = vis_vram_limit;
1901
1902         /* Change the size here instead of the init above so only lpfn is affected */
1903         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1904 #ifdef CONFIG_64BIT
1905         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1906                                                 adev->gmc.visible_vram_size);
1907 #endif
1908
1909         /*
1910          *The reserved vram for firmware must be pinned to the specified
1911          *place on the VRAM, so reserve it early.
1912          */
1913         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1914         if (r) {
1915                 return r;
1916         }
1917
1918         /*
1919          *The reserved vram for memory training must be pinned to the specified
1920          *place on the VRAM, so reserve it early.
1921          */
1922         if (!amdgpu_sriov_vf(adev)) {
1923                 r = amdgpu_ttm_training_reserve_vram_init(adev);
1924                 if (r)
1925                         return r;
1926         }
1927
1928         /* allocate memory as required for VGA
1929          * This is used for VGA emulation and pre-OS scanout buffers to
1930          * avoid display artifacts while transitioning between pre-OS
1931          * and driver.  */
1932         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1933                                     AMDGPU_GEM_DOMAIN_VRAM,
1934                                     &adev->stolen_vga_memory,
1935                                     NULL, &stolen_vga_buf);
1936         if (r)
1937                 return r;
1938
1939         /*
1940          * reserve TMR memory at the top of VRAM which holds
1941          * IP Discovery data and is protected by PSP.
1942          */
1943         if (adev->discovery_tmr_size > 0) {
1944                 r = amdgpu_bo_create_kernel_at(adev,
1945                         adev->gmc.real_vram_size - adev->discovery_tmr_size,
1946                         adev->discovery_tmr_size,
1947                         AMDGPU_GEM_DOMAIN_VRAM,
1948                         &adev->discovery_memory,
1949                         NULL);
1950                 if (r)
1951                         return r;
1952         }
1953
1954         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1955                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1956
1957         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1958          * or whatever the user passed on module init */
1959         if (amdgpu_gtt_size == -1) {
1960                 struct sysinfo si;
1961
1962                 si_meminfo(&si);
1963                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1964                                adev->gmc.mc_vram_size),
1965                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1966         }
1967         else
1968                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1969
1970         /* Initialize GTT memory pool */
1971         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1972         if (r) {
1973                 DRM_ERROR("Failed initializing GTT heap.\n");
1974                 return r;
1975         }
1976         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1977                  (unsigned)(gtt_size / (1024 * 1024)));
1978
1979         /* Initialize various on-chip memory pools */
1980         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1981                            adev->gds.gds_size);
1982         if (r) {
1983                 DRM_ERROR("Failed initializing GDS heap.\n");
1984                 return r;
1985         }
1986
1987         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1988                            adev->gds.gws_size);
1989         if (r) {
1990                 DRM_ERROR("Failed initializing gws heap.\n");
1991                 return r;
1992         }
1993
1994         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1995                            adev->gds.oa_size);
1996         if (r) {
1997                 DRM_ERROR("Failed initializing oa heap.\n");
1998                 return r;
1999         }
2000
2001         return 0;
2002 }
2003
2004 /**
2005  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2006  */
2007 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2008 {
2009         void *stolen_vga_buf;
2010         /* return the VGA stolen memory (if any) back to VRAM */
2011         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2012 }
2013
2014 /**
2015  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2016  */
2017 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2018 {
2019         if (!adev->mman.initialized)
2020                 return;
2021
2022         amdgpu_ttm_training_reserve_vram_fini(adev);
2023         /* return the IP Discovery TMR memory back to VRAM */
2024         amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2025         amdgpu_ttm_fw_reserve_vram_fini(adev);
2026
2027         if (adev->mman.aper_base_kaddr)
2028                 iounmap(adev->mman.aper_base_kaddr);
2029         adev->mman.aper_base_kaddr = NULL;
2030
2031         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2032         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2033         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2034         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2035         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2036         ttm_bo_device_release(&adev->mman.bdev);
2037         adev->mman.initialized = false;
2038         DRM_INFO("amdgpu: ttm finalized\n");
2039 }
2040
2041 /**
2042  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2043  *
2044  * @adev: amdgpu_device pointer
2045  * @enable: true when we can use buffer functions.
2046  *
2047  * Enable/disable use of buffer functions during suspend/resume. This should
2048  * only be called at bootup or when userspace isn't running.
2049  */
2050 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2051 {
2052         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2053         uint64_t size;
2054         int r;
2055
2056         if (!adev->mman.initialized || adev->in_gpu_reset ||
2057             adev->mman.buffer_funcs_enabled == enable)
2058                 return;
2059
2060         if (enable) {
2061                 struct amdgpu_ring *ring;
2062                 struct drm_gpu_scheduler *sched;
2063
2064                 ring = adev->mman.buffer_funcs_ring;
2065                 sched = &ring->sched;
2066                 r = drm_sched_entity_init(&adev->mman.entity,
2067                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2068                                           1, NULL);
2069                 if (r) {
2070                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2071                                   r);
2072                         return;
2073                 }
2074         } else {
2075                 drm_sched_entity_destroy(&adev->mman.entity);
2076                 dma_fence_put(man->move);
2077                 man->move = NULL;
2078         }
2079
2080         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081         if (enable)
2082                 size = adev->gmc.real_vram_size;
2083         else
2084                 size = adev->gmc.visible_vram_size;
2085         man->size = size >> PAGE_SHIFT;
2086         adev->mman.buffer_funcs_enabled = enable;
2087 }
2088
2089 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2090 {
2091         struct drm_file *file_priv = filp->private_data;
2092         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2093
2094         if (adev == NULL)
2095                 return -EINVAL;
2096
2097         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2098 }
2099
2100 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2101                        uint64_t dst_offset, uint32_t byte_count,
2102                        struct dma_resv *resv,
2103                        struct dma_fence **fence, bool direct_submit,
2104                        bool vm_needs_flush, bool tmz)
2105 {
2106         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2107                 AMDGPU_IB_POOL_DELAYED;
2108         struct amdgpu_device *adev = ring->adev;
2109         struct amdgpu_job *job;
2110
2111         uint32_t max_bytes;
2112         unsigned num_loops, num_dw;
2113         unsigned i;
2114         int r;
2115
2116         if (direct_submit && !ring->sched.ready) {
2117                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2118                 return -EINVAL;
2119         }
2120
2121         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2122         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2123         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2124
2125         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2126         if (r)
2127                 return r;
2128
2129         if (vm_needs_flush) {
2130                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2131                 job->vm_needs_flush = true;
2132         }
2133         if (resv) {
2134                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2135                                      AMDGPU_SYNC_ALWAYS,
2136                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2137                 if (r) {
2138                         DRM_ERROR("sync failed (%d).\n", r);
2139                         goto error_free;
2140                 }
2141         }
2142
2143         for (i = 0; i < num_loops; i++) {
2144                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2145
2146                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2147                                         dst_offset, cur_size_in_bytes, tmz);
2148
2149                 src_offset += cur_size_in_bytes;
2150                 dst_offset += cur_size_in_bytes;
2151                 byte_count -= cur_size_in_bytes;
2152         }
2153
2154         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2155         WARN_ON(job->ibs[0].length_dw > num_dw);
2156         if (direct_submit)
2157                 r = amdgpu_job_submit_direct(job, ring, fence);
2158         else
2159                 r = amdgpu_job_submit(job, &adev->mman.entity,
2160                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2161         if (r)
2162                 goto error_free;
2163
2164         return r;
2165
2166 error_free:
2167         amdgpu_job_free(job);
2168         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2169         return r;
2170 }
2171
2172 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2173                        uint32_t src_data,
2174                        struct dma_resv *resv,
2175                        struct dma_fence **fence)
2176 {
2177         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2178         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2179         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2180
2181         struct drm_mm_node *mm_node;
2182         unsigned long num_pages;
2183         unsigned int num_loops, num_dw;
2184
2185         struct amdgpu_job *job;
2186         int r;
2187
2188         if (!adev->mman.buffer_funcs_enabled) {
2189                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2190                 return -EINVAL;
2191         }
2192
2193         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2194                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2195                 if (r)
2196                         return r;
2197         }
2198
2199         num_pages = bo->tbo.num_pages;
2200         mm_node = bo->tbo.mem.mm_node;
2201         num_loops = 0;
2202         while (num_pages) {
2203                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2204
2205                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2206                 num_pages -= mm_node->size;
2207                 ++mm_node;
2208         }
2209         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2210
2211         /* for IB padding */
2212         num_dw += 64;
2213
2214         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2215                                      &job);
2216         if (r)
2217                 return r;
2218
2219         if (resv) {
2220                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2221                                      AMDGPU_SYNC_ALWAYS,
2222                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2223                 if (r) {
2224                         DRM_ERROR("sync failed (%d).\n", r);
2225                         goto error_free;
2226                 }
2227         }
2228
2229         num_pages = bo->tbo.num_pages;
2230         mm_node = bo->tbo.mem.mm_node;
2231
2232         while (num_pages) {
2233                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2234                 uint64_t dst_addr;
2235
2236                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2237                 while (byte_count) {
2238                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2239                                                            max_bytes);
2240
2241                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2242                                                 dst_addr, cur_size_in_bytes);
2243
2244                         dst_addr += cur_size_in_bytes;
2245                         byte_count -= cur_size_in_bytes;
2246                 }
2247
2248                 num_pages -= mm_node->size;
2249                 ++mm_node;
2250         }
2251
2252         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2253         WARN_ON(job->ibs[0].length_dw > num_dw);
2254         r = amdgpu_job_submit(job, &adev->mman.entity,
2255                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2256         if (r)
2257                 goto error_free;
2258
2259         return 0;
2260
2261 error_free:
2262         amdgpu_job_free(job);
2263         return r;
2264 }
2265
2266 #if defined(CONFIG_DEBUG_FS)
2267
2268 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2269 {
2270         struct drm_info_node *node = (struct drm_info_node *)m->private;
2271         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2272         struct drm_device *dev = node->minor->dev;
2273         struct amdgpu_device *adev = dev->dev_private;
2274         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2275         struct drm_printer p = drm_seq_file_printer(m);
2276
2277         man->func->debug(man, &p);
2278         return 0;
2279 }
2280
2281 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2282         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2283         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2284         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2285         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2286         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2287         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2288 #ifdef CONFIG_SWIOTLB
2289         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2290 #endif
2291 };
2292
2293 /**
2294  * amdgpu_ttm_vram_read - Linear read access to VRAM
2295  *
2296  * Accesses VRAM via MMIO for debugging purposes.
2297  */
2298 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2299                                     size_t size, loff_t *pos)
2300 {
2301         struct amdgpu_device *adev = file_inode(f)->i_private;
2302         ssize_t result = 0;
2303
2304         if (size & 0x3 || *pos & 0x3)
2305                 return -EINVAL;
2306
2307         if (*pos >= adev->gmc.mc_vram_size)
2308                 return -ENXIO;
2309
2310         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2311         while (size) {
2312                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2313                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2314
2315                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2316                 if (copy_to_user(buf, value, bytes))
2317                         return -EFAULT;
2318
2319                 result += bytes;
2320                 buf += bytes;
2321                 *pos += bytes;
2322                 size -= bytes;
2323         }
2324
2325         return result;
2326 }
2327
2328 /**
2329  * amdgpu_ttm_vram_write - Linear write access to VRAM
2330  *
2331  * Accesses VRAM via MMIO for debugging purposes.
2332  */
2333 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2334                                     size_t size, loff_t *pos)
2335 {
2336         struct amdgpu_device *adev = file_inode(f)->i_private;
2337         ssize_t result = 0;
2338         int r;
2339
2340         if (size & 0x3 || *pos & 0x3)
2341                 return -EINVAL;
2342
2343         if (*pos >= adev->gmc.mc_vram_size)
2344                 return -ENXIO;
2345
2346         while (size) {
2347                 unsigned long flags;
2348                 uint32_t value;
2349
2350                 if (*pos >= adev->gmc.mc_vram_size)
2351                         return result;
2352
2353                 r = get_user(value, (uint32_t *)buf);
2354                 if (r)
2355                         return r;
2356
2357                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2358                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2359                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2360                 WREG32_NO_KIQ(mmMM_DATA, value);
2361                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2362
2363                 result += 4;
2364                 buf += 4;
2365                 *pos += 4;
2366                 size -= 4;
2367         }
2368
2369         return result;
2370 }
2371
2372 static const struct file_operations amdgpu_ttm_vram_fops = {
2373         .owner = THIS_MODULE,
2374         .read = amdgpu_ttm_vram_read,
2375         .write = amdgpu_ttm_vram_write,
2376         .llseek = default_llseek,
2377 };
2378
2379 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2380
2381 /**
2382  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2383  */
2384 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2385                                    size_t size, loff_t *pos)
2386 {
2387         struct amdgpu_device *adev = file_inode(f)->i_private;
2388         ssize_t result = 0;
2389         int r;
2390
2391         while (size) {
2392                 loff_t p = *pos / PAGE_SIZE;
2393                 unsigned off = *pos & ~PAGE_MASK;
2394                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2395                 struct page *page;
2396                 void *ptr;
2397
2398                 if (p >= adev->gart.num_cpu_pages)
2399                         return result;
2400
2401                 page = adev->gart.pages[p];
2402                 if (page) {
2403                         ptr = kmap(page);
2404                         ptr += off;
2405
2406                         r = copy_to_user(buf, ptr, cur_size);
2407                         kunmap(adev->gart.pages[p]);
2408                 } else
2409                         r = clear_user(buf, cur_size);
2410
2411                 if (r)
2412                         return -EFAULT;
2413
2414                 result += cur_size;
2415                 buf += cur_size;
2416                 *pos += cur_size;
2417                 size -= cur_size;
2418         }
2419
2420         return result;
2421 }
2422
2423 static const struct file_operations amdgpu_ttm_gtt_fops = {
2424         .owner = THIS_MODULE,
2425         .read = amdgpu_ttm_gtt_read,
2426         .llseek = default_llseek
2427 };
2428
2429 #endif
2430
2431 /**
2432  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2433  *
2434  * This function is used to read memory that has been mapped to the
2435  * GPU and the known addresses are not physical addresses but instead
2436  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2437  */
2438 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2439                                  size_t size, loff_t *pos)
2440 {
2441         struct amdgpu_device *adev = file_inode(f)->i_private;
2442         struct iommu_domain *dom;
2443         ssize_t result = 0;
2444         int r;
2445
2446         /* retrieve the IOMMU domain if any for this device */
2447         dom = iommu_get_domain_for_dev(adev->dev);
2448
2449         while (size) {
2450                 phys_addr_t addr = *pos & PAGE_MASK;
2451                 loff_t off = *pos & ~PAGE_MASK;
2452                 size_t bytes = PAGE_SIZE - off;
2453                 unsigned long pfn;
2454                 struct page *p;
2455                 void *ptr;
2456
2457                 bytes = bytes < size ? bytes : size;
2458
2459                 /* Translate the bus address to a physical address.  If
2460                  * the domain is NULL it means there is no IOMMU active
2461                  * and the address translation is the identity
2462                  */
2463                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2464
2465                 pfn = addr >> PAGE_SHIFT;
2466                 if (!pfn_valid(pfn))
2467                         return -EPERM;
2468
2469                 p = pfn_to_page(pfn);
2470                 if (p->mapping != adev->mman.bdev.dev_mapping)
2471                         return -EPERM;
2472
2473                 ptr = kmap(p);
2474                 r = copy_to_user(buf, ptr + off, bytes);
2475                 kunmap(p);
2476                 if (r)
2477                         return -EFAULT;
2478
2479                 size -= bytes;
2480                 *pos += bytes;
2481                 result += bytes;
2482         }
2483
2484         return result;
2485 }
2486
2487 /**
2488  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2489  *
2490  * This function is used to write memory that has been mapped to the
2491  * GPU and the known addresses are not physical addresses but instead
2492  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2493  */
2494 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2495                                  size_t size, loff_t *pos)
2496 {
2497         struct amdgpu_device *adev = file_inode(f)->i_private;
2498         struct iommu_domain *dom;
2499         ssize_t result = 0;
2500         int r;
2501
2502         dom = iommu_get_domain_for_dev(adev->dev);
2503
2504         while (size) {
2505                 phys_addr_t addr = *pos & PAGE_MASK;
2506                 loff_t off = *pos & ~PAGE_MASK;
2507                 size_t bytes = PAGE_SIZE - off;
2508                 unsigned long pfn;
2509                 struct page *p;
2510                 void *ptr;
2511
2512                 bytes = bytes < size ? bytes : size;
2513
2514                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2515
2516                 pfn = addr >> PAGE_SHIFT;
2517                 if (!pfn_valid(pfn))
2518                         return -EPERM;
2519
2520                 p = pfn_to_page(pfn);
2521                 if (p->mapping != adev->mman.bdev.dev_mapping)
2522                         return -EPERM;
2523
2524                 ptr = kmap(p);
2525                 r = copy_from_user(ptr + off, buf, bytes);
2526                 kunmap(p);
2527                 if (r)
2528                         return -EFAULT;
2529
2530                 size -= bytes;
2531                 *pos += bytes;
2532                 result += bytes;
2533         }
2534
2535         return result;
2536 }
2537
2538 static const struct file_operations amdgpu_ttm_iomem_fops = {
2539         .owner = THIS_MODULE,
2540         .read = amdgpu_iomem_read,
2541         .write = amdgpu_iomem_write,
2542         .llseek = default_llseek
2543 };
2544
2545 static const struct {
2546         char *name;
2547         const struct file_operations *fops;
2548         int domain;
2549 } ttm_debugfs_entries[] = {
2550         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2551 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2552         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2553 #endif
2554         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2555 };
2556
2557 #endif
2558
2559 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2560 {
2561 #if defined(CONFIG_DEBUG_FS)
2562         unsigned count;
2563
2564         struct drm_minor *minor = adev->ddev->primary;
2565         struct dentry *ent, *root = minor->debugfs_root;
2566
2567         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2568                 ent = debugfs_create_file(
2569                                 ttm_debugfs_entries[count].name,
2570                                 S_IFREG | S_IRUGO, root,
2571                                 adev,
2572                                 ttm_debugfs_entries[count].fops);
2573                 if (IS_ERR(ent))
2574                         return PTR_ERR(ent);
2575                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2576                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2577                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2578                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2579                 adev->mman.debugfs_entries[count] = ent;
2580         }
2581
2582         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2583
2584 #ifdef CONFIG_SWIOTLB
2585         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2586                 --count;
2587 #endif
2588
2589         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2590 #else
2591         return 0;
2592 #endif
2593 }