Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62
63 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
64                              struct ttm_mem_reg *mem, unsigned num_pages,
65                              uint64_t offset, unsigned window,
66                              struct amdgpu_ring *ring,
67                              uint64_t *addr);
68
69 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
70 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
71
72 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
73 {
74         return 0;
75 }
76
77 /**
78  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
79  * memory request.
80  *
81  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
82  * @type: The type of memory requested
83  * @man: The memory type manager for each domain
84  *
85  * This is called by ttm_bo_init_mm() when a buffer object is being
86  * initialized.
87  */
88 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
89                                 struct ttm_mem_type_manager *man)
90 {
91         struct amdgpu_device *adev;
92
93         adev = amdgpu_ttm_adev(bdev);
94
95         switch (type) {
96         case TTM_PL_SYSTEM:
97                 /* System memory */
98                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
99                 man->available_caching = TTM_PL_MASK_CACHING;
100                 man->default_caching = TTM_PL_FLAG_CACHED;
101                 break;
102         case TTM_PL_TT:
103                 /* GTT memory  */
104                 man->func = &amdgpu_gtt_mgr_func;
105                 man->gpu_offset = adev->gmc.gart_start;
106                 man->available_caching = TTM_PL_MASK_CACHING;
107                 man->default_caching = TTM_PL_FLAG_CACHED;
108                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
109                 break;
110         case TTM_PL_VRAM:
111                 /* "On-card" video ram */
112                 man->func = &amdgpu_vram_mgr_func;
113                 man->gpu_offset = adev->gmc.vram_start;
114                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
115                              TTM_MEMTYPE_FLAG_MAPPABLE;
116                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
117                 man->default_caching = TTM_PL_FLAG_WC;
118                 break;
119         case AMDGPU_PL_GDS:
120         case AMDGPU_PL_GWS:
121         case AMDGPU_PL_OA:
122                 /* On-chip GDS memory*/
123                 man->func = &ttm_bo_manager_func;
124                 man->gpu_offset = 0;
125                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
126                 man->available_caching = TTM_PL_FLAG_UNCACHED;
127                 man->default_caching = TTM_PL_FLAG_UNCACHED;
128                 break;
129         default:
130                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
131                 return -EINVAL;
132         }
133         return 0;
134 }
135
136 /**
137  * amdgpu_evict_flags - Compute placement flags
138  *
139  * @bo: The buffer object to evict
140  * @placement: Possible destination(s) for evicted BO
141  *
142  * Fill in placement data when ttm_bo_evict() is called
143  */
144 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
145                                 struct ttm_placement *placement)
146 {
147         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
148         struct amdgpu_bo *abo;
149         static const struct ttm_place placements = {
150                 .fpfn = 0,
151                 .lpfn = 0,
152                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
153         };
154
155         /* Don't handle scatter gather BOs */
156         if (bo->type == ttm_bo_type_sg) {
157                 placement->num_placement = 0;
158                 placement->num_busy_placement = 0;
159                 return;
160         }
161
162         /* Object isn't an AMDGPU object so ignore */
163         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
164                 placement->placement = &placements;
165                 placement->busy_placement = &placements;
166                 placement->num_placement = 1;
167                 placement->num_busy_placement = 1;
168                 return;
169         }
170
171         abo = ttm_to_amdgpu_bo(bo);
172         switch (bo->mem.mem_type) {
173         case AMDGPU_PL_GDS:
174         case AMDGPU_PL_GWS:
175         case AMDGPU_PL_OA:
176                 placement->num_placement = 0;
177                 placement->num_busy_placement = 0;
178                 return;
179
180         case TTM_PL_VRAM:
181                 if (!adev->mman.buffer_funcs_enabled) {
182                         /* Move to system memory */
183                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
184                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
185                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
186                            amdgpu_bo_in_cpu_visible_vram(abo)) {
187
188                         /* Try evicting to the CPU inaccessible part of VRAM
189                          * first, but only set GTT as busy placement, so this
190                          * BO will be evicted to GTT rather than causing other
191                          * BOs to be evicted from VRAM
192                          */
193                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
194                                                          AMDGPU_GEM_DOMAIN_GTT);
195                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
196                         abo->placements[0].lpfn = 0;
197                         abo->placement.busy_placement = &abo->placements[1];
198                         abo->placement.num_busy_placement = 1;
199                 } else {
200                         /* Move to GTT memory */
201                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
202                 }
203                 break;
204         case TTM_PL_TT:
205         default:
206                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
207                 break;
208         }
209         *placement = abo->placement;
210 }
211
212 /**
213  * amdgpu_verify_access - Verify access for a mmap call
214  *
215  * @bo: The buffer object to map
216  * @filp: The file pointer from the process performing the mmap
217  *
218  * This is called by ttm_bo_mmap() to verify whether a process
219  * has the right to mmap a BO to their process space.
220  */
221 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
222 {
223         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
224
225         /*
226          * Don't verify access for KFD BOs. They don't have a GEM
227          * object associated with them.
228          */
229         if (abo->kfd_bo)
230                 return 0;
231
232         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
233                 return -EPERM;
234         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
235                                           filp->private_data);
236 }
237
238 /**
239  * amdgpu_move_null - Register memory for a buffer object
240  *
241  * @bo: The bo to assign the memory to
242  * @new_mem: The memory to be assigned.
243  *
244  * Assign the memory from new_mem to the memory of the buffer object bo.
245  */
246 static void amdgpu_move_null(struct ttm_buffer_object *bo,
247                              struct ttm_mem_reg *new_mem)
248 {
249         struct ttm_mem_reg *old_mem = &bo->mem;
250
251         BUG_ON(old_mem->mm_node != NULL);
252         *old_mem = *new_mem;
253         new_mem->mm_node = NULL;
254 }
255
256 /**
257  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
258  *
259  * @bo: The bo to assign the memory to.
260  * @mm_node: Memory manager node for drm allocator.
261  * @mem: The region where the bo resides.
262  *
263  */
264 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
265                                     struct drm_mm_node *mm_node,
266                                     struct ttm_mem_reg *mem)
267 {
268         uint64_t addr = 0;
269
270         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
271                 addr = mm_node->start << PAGE_SHIFT;
272                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
273         }
274         return addr;
275 }
276
277 /**
278  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
279  * @offset. It also modifies the offset to be within the drm_mm_node returned
280  *
281  * @mem: The region where the bo resides.
282  * @offset: The offset that drm_mm_node is used for finding.
283  *
284  */
285 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
286                                                unsigned long *offset)
287 {
288         struct drm_mm_node *mm_node = mem->mm_node;
289
290         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
291                 *offset -= (mm_node->size << PAGE_SHIFT);
292                 ++mm_node;
293         }
294         return mm_node;
295 }
296
297 /**
298  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
299  *
300  * The function copies @size bytes from {src->mem + src->offset} to
301  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
302  * move and different for a BO to BO copy.
303  *
304  * @f: Returns the last fence if multiple jobs are submitted.
305  */
306 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
307                                struct amdgpu_copy_mem *src,
308                                struct amdgpu_copy_mem *dst,
309                                uint64_t size,
310                                struct dma_resv *resv,
311                                struct dma_fence **f)
312 {
313         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
314         struct drm_mm_node *src_mm, *dst_mm;
315         uint64_t src_node_start, dst_node_start, src_node_size,
316                  dst_node_size, src_page_offset, dst_page_offset;
317         struct dma_fence *fence = NULL;
318         int r = 0;
319         const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
320                                         AMDGPU_GPU_PAGE_SIZE);
321
322         if (!adev->mman.buffer_funcs_enabled) {
323                 DRM_ERROR("Trying to move memory with ring turned off.\n");
324                 return -EINVAL;
325         }
326
327         src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
328         src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
329                                              src->offset;
330         src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
331         src_page_offset = src_node_start & (PAGE_SIZE - 1);
332
333         dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
334         dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
335                                              dst->offset;
336         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
337         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
338
339         mutex_lock(&adev->mman.gtt_window_lock);
340
341         while (size) {
342                 unsigned long cur_size;
343                 uint64_t from = src_node_start, to = dst_node_start;
344                 struct dma_fence *next;
345
346                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
347                  * begins at an offset, then adjust the size accordingly
348                  */
349                 cur_size = min3(min(src_node_size, dst_node_size), size,
350                                 GTT_MAX_BYTES);
351                 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
352                     cur_size + dst_page_offset > GTT_MAX_BYTES)
353                         cur_size -= max(src_page_offset, dst_page_offset);
354
355                 /* Map only what needs to be accessed. Map src to window 0 and
356                  * dst to window 1
357                  */
358                 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
359                         r = amdgpu_map_buffer(src->bo, src->mem,
360                                         PFN_UP(cur_size + src_page_offset),
361                                         src_node_start, 0, ring,
362                                         &from);
363                         if (r)
364                                 goto error;
365                         /* Adjust the offset because amdgpu_map_buffer returns
366                          * start of mapped page
367                          */
368                         from += src_page_offset;
369                 }
370
371                 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
372                         r = amdgpu_map_buffer(dst->bo, dst->mem,
373                                         PFN_UP(cur_size + dst_page_offset),
374                                         dst_node_start, 1, ring,
375                                         &to);
376                         if (r)
377                                 goto error;
378                         to += dst_page_offset;
379                 }
380
381                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
382                                        resv, &next, false, true);
383                 if (r)
384                         goto error;
385
386                 dma_fence_put(fence);
387                 fence = next;
388
389                 size -= cur_size;
390                 if (!size)
391                         break;
392
393                 src_node_size -= cur_size;
394                 if (!src_node_size) {
395                         src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
396                                                              src->mem);
397                         src_node_size = (src_mm->size << PAGE_SHIFT);
398                         src_page_offset = 0;
399                 } else {
400                         src_node_start += cur_size;
401                         src_page_offset = src_node_start & (PAGE_SIZE - 1);
402                 }
403                 dst_node_size -= cur_size;
404                 if (!dst_node_size) {
405                         dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
406                                                              dst->mem);
407                         dst_node_size = (dst_mm->size << PAGE_SHIFT);
408                         dst_page_offset = 0;
409                 } else {
410                         dst_node_start += cur_size;
411                         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
412                 }
413         }
414 error:
415         mutex_unlock(&adev->mman.gtt_window_lock);
416         if (f)
417                 *f = dma_fence_get(fence);
418         dma_fence_put(fence);
419         return r;
420 }
421
422 /**
423  * amdgpu_move_blit - Copy an entire buffer to another buffer
424  *
425  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
426  * help move buffers to and from VRAM.
427  */
428 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
429                             bool evict, bool no_wait_gpu,
430                             struct ttm_mem_reg *new_mem,
431                             struct ttm_mem_reg *old_mem)
432 {
433         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
434         struct amdgpu_copy_mem src, dst;
435         struct dma_fence *fence = NULL;
436         int r;
437
438         src.bo = bo;
439         dst.bo = bo;
440         src.mem = old_mem;
441         dst.mem = new_mem;
442         src.offset = 0;
443         dst.offset = 0;
444
445         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
446                                        new_mem->num_pages << PAGE_SHIFT,
447                                        bo->base.resv, &fence);
448         if (r)
449                 goto error;
450
451         /* clear the space being freed */
452         if (old_mem->mem_type == TTM_PL_VRAM &&
453             (ttm_to_amdgpu_bo(bo)->flags &
454              AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
455                 struct dma_fence *wipe_fence = NULL;
456
457                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
458                                        NULL, &wipe_fence);
459                 if (r) {
460                         goto error;
461                 } else if (wipe_fence) {
462                         dma_fence_put(fence);
463                         fence = wipe_fence;
464                 }
465         }
466
467         /* Always block for VM page tables before committing the new location */
468         if (bo->type == ttm_bo_type_kernel)
469                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
470         else
471                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
472         dma_fence_put(fence);
473         return r;
474
475 error:
476         if (fence)
477                 dma_fence_wait(fence, false);
478         dma_fence_put(fence);
479         return r;
480 }
481
482 /**
483  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
484  *
485  * Called by amdgpu_bo_move().
486  */
487 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
488                                 struct ttm_operation_ctx *ctx,
489                                 struct ttm_mem_reg *new_mem)
490 {
491         struct ttm_mem_reg *old_mem = &bo->mem;
492         struct ttm_mem_reg tmp_mem;
493         struct ttm_place placements;
494         struct ttm_placement placement;
495         int r;
496
497         /* create space/pages for new_mem in GTT space */
498         tmp_mem = *new_mem;
499         tmp_mem.mm_node = NULL;
500         placement.num_placement = 1;
501         placement.placement = &placements;
502         placement.num_busy_placement = 1;
503         placement.busy_placement = &placements;
504         placements.fpfn = 0;
505         placements.lpfn = 0;
506         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
507         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
508         if (unlikely(r)) {
509                 pr_err("Failed to find GTT space for blit from VRAM\n");
510                 return r;
511         }
512
513         /* set caching flags */
514         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
515         if (unlikely(r)) {
516                 goto out_cleanup;
517         }
518
519         /* Bind the memory to the GTT space */
520         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
521         if (unlikely(r)) {
522                 goto out_cleanup;
523         }
524
525         /* blit VRAM to GTT */
526         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
527         if (unlikely(r)) {
528                 goto out_cleanup;
529         }
530
531         /* move BO (in tmp_mem) to new_mem */
532         r = ttm_bo_move_ttm(bo, ctx, new_mem);
533 out_cleanup:
534         ttm_bo_mem_put(bo, &tmp_mem);
535         return r;
536 }
537
538 /**
539  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
540  *
541  * Called by amdgpu_bo_move().
542  */
543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
544                                 struct ttm_operation_ctx *ctx,
545                                 struct ttm_mem_reg *new_mem)
546 {
547         struct ttm_mem_reg *old_mem = &bo->mem;
548         struct ttm_mem_reg tmp_mem;
549         struct ttm_placement placement;
550         struct ttm_place placements;
551         int r;
552
553         /* make space in GTT for old_mem buffer */
554         tmp_mem = *new_mem;
555         tmp_mem.mm_node = NULL;
556         placement.num_placement = 1;
557         placement.placement = &placements;
558         placement.num_busy_placement = 1;
559         placement.busy_placement = &placements;
560         placements.fpfn = 0;
561         placements.lpfn = 0;
562         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
563         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
564         if (unlikely(r)) {
565                 pr_err("Failed to find GTT space for blit to VRAM\n");
566                 return r;
567         }
568
569         /* move/bind old memory to GTT space */
570         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
571         if (unlikely(r)) {
572                 goto out_cleanup;
573         }
574
575         /* copy to VRAM */
576         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
577         if (unlikely(r)) {
578                 goto out_cleanup;
579         }
580 out_cleanup:
581         ttm_bo_mem_put(bo, &tmp_mem);
582         return r;
583 }
584
585 /**
586  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
587  *
588  * Called by amdgpu_bo_move()
589  */
590 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
591                                struct ttm_mem_reg *mem)
592 {
593         struct drm_mm_node *nodes = mem->mm_node;
594
595         if (mem->mem_type == TTM_PL_SYSTEM ||
596             mem->mem_type == TTM_PL_TT)
597                 return true;
598         if (mem->mem_type != TTM_PL_VRAM)
599                 return false;
600
601         /* ttm_mem_reg_ioremap only supports contiguous memory */
602         if (nodes->size != mem->num_pages)
603                 return false;
604
605         return ((nodes->start + nodes->size) << PAGE_SHIFT)
606                 <= adev->gmc.visible_vram_size;
607 }
608
609 /**
610  * amdgpu_bo_move - Move a buffer object to a new memory location
611  *
612  * Called by ttm_bo_handle_move_mem()
613  */
614 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
615                           struct ttm_operation_ctx *ctx,
616                           struct ttm_mem_reg *new_mem)
617 {
618         struct amdgpu_device *adev;
619         struct amdgpu_bo *abo;
620         struct ttm_mem_reg *old_mem = &bo->mem;
621         int r;
622
623         /* Can't move a pinned BO */
624         abo = ttm_to_amdgpu_bo(bo);
625         if (WARN_ON_ONCE(abo->pin_count > 0))
626                 return -EINVAL;
627
628         adev = amdgpu_ttm_adev(bo->bdev);
629
630         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
631                 amdgpu_move_null(bo, new_mem);
632                 return 0;
633         }
634         if ((old_mem->mem_type == TTM_PL_TT &&
635              new_mem->mem_type == TTM_PL_SYSTEM) ||
636             (old_mem->mem_type == TTM_PL_SYSTEM &&
637              new_mem->mem_type == TTM_PL_TT)) {
638                 /* bind is enough */
639                 amdgpu_move_null(bo, new_mem);
640                 return 0;
641         }
642         if (old_mem->mem_type == AMDGPU_PL_GDS ||
643             old_mem->mem_type == AMDGPU_PL_GWS ||
644             old_mem->mem_type == AMDGPU_PL_OA ||
645             new_mem->mem_type == AMDGPU_PL_GDS ||
646             new_mem->mem_type == AMDGPU_PL_GWS ||
647             new_mem->mem_type == AMDGPU_PL_OA) {
648                 /* Nothing to save here */
649                 amdgpu_move_null(bo, new_mem);
650                 return 0;
651         }
652
653         if (!adev->mman.buffer_funcs_enabled) {
654                 r = -ENODEV;
655                 goto memcpy;
656         }
657
658         if (old_mem->mem_type == TTM_PL_VRAM &&
659             new_mem->mem_type == TTM_PL_SYSTEM) {
660                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
661         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
662                    new_mem->mem_type == TTM_PL_VRAM) {
663                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
664         } else {
665                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
666                                      new_mem, old_mem);
667         }
668
669         if (r) {
670 memcpy:
671                 /* Check that all memory is CPU accessible */
672                 if (!amdgpu_mem_visible(adev, old_mem) ||
673                     !amdgpu_mem_visible(adev, new_mem)) {
674                         pr_err("Move buffer fallback to memcpy unavailable\n");
675                         return r;
676                 }
677
678                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
679                 if (r)
680                         return r;
681         }
682
683         if (bo->type == ttm_bo_type_device &&
684             new_mem->mem_type == TTM_PL_VRAM &&
685             old_mem->mem_type != TTM_PL_VRAM) {
686                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
687                  * accesses the BO after it's moved.
688                  */
689                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
690         }
691
692         /* update statistics */
693         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
694         return 0;
695 }
696
697 /**
698  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
699  *
700  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
701  */
702 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
703 {
704         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
705         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
706         struct drm_mm_node *mm_node = mem->mm_node;
707
708         mem->bus.addr = NULL;
709         mem->bus.offset = 0;
710         mem->bus.size = mem->num_pages << PAGE_SHIFT;
711         mem->bus.base = 0;
712         mem->bus.is_iomem = false;
713         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
714                 return -EINVAL;
715         switch (mem->mem_type) {
716         case TTM_PL_SYSTEM:
717                 /* system memory */
718                 return 0;
719         case TTM_PL_TT:
720                 break;
721         case TTM_PL_VRAM:
722                 mem->bus.offset = mem->start << PAGE_SHIFT;
723                 /* check if it's visible */
724                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
725                         return -EINVAL;
726                 /* Only physically contiguous buffers apply. In a contiguous
727                  * buffer, size of the first mm_node would match the number of
728                  * pages in ttm_mem_reg.
729                  */
730                 if (adev->mman.aper_base_kaddr &&
731                     (mm_node->size == mem->num_pages))
732                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
733                                         mem->bus.offset;
734
735                 mem->bus.base = adev->gmc.aper_base;
736                 mem->bus.is_iomem = true;
737                 break;
738         default:
739                 return -EINVAL;
740         }
741         return 0;
742 }
743
744 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
745 {
746 }
747
748 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
749                                            unsigned long page_offset)
750 {
751         struct drm_mm_node *mm;
752         unsigned long offset = (page_offset << PAGE_SHIFT);
753
754         mm = amdgpu_find_mm_node(&bo->mem, &offset);
755         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
756                 (offset >> PAGE_SHIFT);
757 }
758
759 /*
760  * TTM backend functions.
761  */
762 struct amdgpu_ttm_tt {
763         struct ttm_dma_tt       ttm;
764         struct drm_gem_object   *gobj;
765         u64                     offset;
766         uint64_t                userptr;
767         struct task_struct      *usertask;
768         uint32_t                userflags;
769 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
770         struct hmm_range        *range;
771 #endif
772 };
773
774 #ifdef CONFIG_DRM_AMDGPU_USERPTR
775 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
776 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
777         (1 << 0), /* HMM_PFN_VALID */
778         (1 << 1), /* HMM_PFN_WRITE */
779         0 /* HMM_PFN_DEVICE_PRIVATE */
780 };
781
782 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
783         0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
784         0, /* HMM_PFN_NONE */
785         0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
786 };
787
788 /**
789  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
790  * memory and start HMM tracking CPU page table update
791  *
792  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
793  * once afterwards to stop HMM tracking
794  */
795 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
796 {
797         struct ttm_tt *ttm = bo->tbo.ttm;
798         struct amdgpu_ttm_tt *gtt = (void *)ttm;
799         unsigned long start = gtt->userptr;
800         struct vm_area_struct *vma;
801         struct hmm_range *range;
802         unsigned long timeout;
803         struct mm_struct *mm;
804         unsigned long i;
805         int r = 0;
806
807         mm = bo->notifier.mm;
808         if (unlikely(!mm)) {
809                 DRM_DEBUG_DRIVER("BO is not registered?\n");
810                 return -EFAULT;
811         }
812
813         /* Another get_user_pages is running at the same time?? */
814         if (WARN_ON(gtt->range))
815                 return -EFAULT;
816
817         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
818                 return -ESRCH;
819
820         range = kzalloc(sizeof(*range), GFP_KERNEL);
821         if (unlikely(!range)) {
822                 r = -ENOMEM;
823                 goto out;
824         }
825         range->notifier = &bo->notifier;
826         range->flags = hmm_range_flags;
827         range->values = hmm_range_values;
828         range->pfn_shift = PAGE_SHIFT;
829         range->start = bo->notifier.interval_tree.start;
830         range->end = bo->notifier.interval_tree.last + 1;
831         range->default_flags = hmm_range_flags[HMM_PFN_VALID];
832         if (!amdgpu_ttm_tt_is_readonly(ttm))
833                 range->default_flags |= range->flags[HMM_PFN_WRITE];
834
835         range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
836                                      GFP_KERNEL);
837         if (unlikely(!range->pfns)) {
838                 r = -ENOMEM;
839                 goto out_free_ranges;
840         }
841
842         down_read(&mm->mmap_sem);
843         vma = find_vma(mm, start);
844         if (unlikely(!vma || start < vma->vm_start)) {
845                 r = -EFAULT;
846                 goto out_unlock;
847         }
848         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
849                 vma->vm_file)) {
850                 r = -EPERM;
851                 goto out_unlock;
852         }
853         up_read(&mm->mmap_sem);
854         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
855
856 retry:
857         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
858
859         down_read(&mm->mmap_sem);
860         r = hmm_range_fault(range, 0);
861         up_read(&mm->mmap_sem);
862         if (unlikely(r <= 0)) {
863                 /*
864                  * FIXME: This timeout should encompass the retry from
865                  * mmu_interval_read_retry() as well.
866                  */
867                 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
868                         goto retry;
869                 goto out_free_pfns;
870         }
871
872         for (i = 0; i < ttm->num_pages; i++) {
873                 /* FIXME: The pages cannot be touched outside the notifier_lock */
874                 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
875                 if (unlikely(!pages[i])) {
876                         pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
877                                i, range->pfns[i]);
878                         r = -ENOMEM;
879
880                         goto out_free_pfns;
881                 }
882         }
883
884         gtt->range = range;
885         mmput(mm);
886
887         return 0;
888
889 out_unlock:
890         up_read(&mm->mmap_sem);
891 out_free_pfns:
892         kvfree(range->pfns);
893 out_free_ranges:
894         kfree(range);
895 out:
896         mmput(mm);
897         return r;
898 }
899
900 /**
901  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
902  * Check if the pages backing this ttm range have been invalidated
903  *
904  * Returns: true if pages are still valid
905  */
906 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
907 {
908         struct amdgpu_ttm_tt *gtt = (void *)ttm;
909         bool r = false;
910
911         if (!gtt || !gtt->userptr)
912                 return false;
913
914         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
915                 gtt->userptr, ttm->num_pages);
916
917         WARN_ONCE(!gtt->range || !gtt->range->pfns,
918                 "No user pages to check\n");
919
920         if (gtt->range) {
921                 /*
922                  * FIXME: Must always hold notifier_lock for this, and must
923                  * not ignore the return code.
924                  */
925                 r = mmu_interval_read_retry(gtt->range->notifier,
926                                          gtt->range->notifier_seq);
927                 kvfree(gtt->range->pfns);
928                 kfree(gtt->range);
929                 gtt->range = NULL;
930         }
931
932         return !r;
933 }
934 #endif
935
936 /**
937  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
938  *
939  * Called by amdgpu_cs_list_validate(). This creates the page list
940  * that backs user memory and will ultimately be mapped into the device
941  * address space.
942  */
943 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
944 {
945         unsigned long i;
946
947         for (i = 0; i < ttm->num_pages; ++i)
948                 ttm->pages[i] = pages ? pages[i] : NULL;
949 }
950
951 /**
952  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
953  *
954  * Called by amdgpu_ttm_backend_bind()
955  **/
956 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
957 {
958         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
959         struct amdgpu_ttm_tt *gtt = (void *)ttm;
960         unsigned nents;
961         int r;
962
963         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
964         enum dma_data_direction direction = write ?
965                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
966
967         /* Allocate an SG array and squash pages into it */
968         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
969                                       ttm->num_pages << PAGE_SHIFT,
970                                       GFP_KERNEL);
971         if (r)
972                 goto release_sg;
973
974         /* Map SG to device */
975         r = -ENOMEM;
976         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
977         if (nents == 0)
978                 goto release_sg;
979
980         /* convert SG to linear array of pages and dma addresses */
981         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
982                                          gtt->ttm.dma_address, ttm->num_pages);
983
984         return 0;
985
986 release_sg:
987         kfree(ttm->sg);
988         return r;
989 }
990
991 /**
992  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
993  */
994 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
995 {
996         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
997         struct amdgpu_ttm_tt *gtt = (void *)ttm;
998
999         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1000         enum dma_data_direction direction = write ?
1001                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1002
1003         /* double check that we don't free the table twice */
1004         if (!ttm->sg->sgl)
1005                 return;
1006
1007         /* unmap the pages mapped to the device */
1008         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1009
1010         sg_free_table(ttm->sg);
1011
1012 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1013         if (gtt->range) {
1014                 unsigned long i;
1015
1016                 for (i = 0; i < ttm->num_pages; i++) {
1017                         if (ttm->pages[i] !=
1018                                 hmm_device_entry_to_page(gtt->range,
1019                                               gtt->range->pfns[i]))
1020                                 break;
1021                 }
1022
1023                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1024         }
1025 #endif
1026 }
1027
1028 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1029                                 struct ttm_buffer_object *tbo,
1030                                 uint64_t flags)
1031 {
1032         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1033         struct ttm_tt *ttm = tbo->ttm;
1034         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035         int r;
1036
1037         if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1038                 uint64_t page_idx = 1;
1039
1040                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1041                                 ttm->pages, gtt->ttm.dma_address, flags);
1042                 if (r)
1043                         goto gart_bind_fail;
1044
1045                 /* Patch mtype of the second part BO */
1046                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1047                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1048
1049                 r = amdgpu_gart_bind(adev,
1050                                 gtt->offset + (page_idx << PAGE_SHIFT),
1051                                 ttm->num_pages - page_idx,
1052                                 &ttm->pages[page_idx],
1053                                 &(gtt->ttm.dma_address[page_idx]), flags);
1054         } else {
1055                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1056                                      ttm->pages, gtt->ttm.dma_address, flags);
1057         }
1058
1059 gart_bind_fail:
1060         if (r)
1061                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1062                           ttm->num_pages, gtt->offset);
1063
1064         return r;
1065 }
1066
1067 /**
1068  * amdgpu_ttm_backend_bind - Bind GTT memory
1069  *
1070  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1071  * This handles binding GTT memory to the device address space.
1072  */
1073 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1074                                    struct ttm_mem_reg *bo_mem)
1075 {
1076         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1077         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1078         uint64_t flags;
1079         int r = 0;
1080
1081         if (gtt->userptr) {
1082                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1083                 if (r) {
1084                         DRM_ERROR("failed to pin userptr\n");
1085                         return r;
1086                 }
1087         }
1088         if (!ttm->num_pages) {
1089                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1090                      ttm->num_pages, bo_mem, ttm);
1091         }
1092
1093         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1094             bo_mem->mem_type == AMDGPU_PL_GWS ||
1095             bo_mem->mem_type == AMDGPU_PL_OA)
1096                 return -EINVAL;
1097
1098         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1099                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1100                 return 0;
1101         }
1102
1103         /* compute PTE flags relevant to this BO memory */
1104         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1105
1106         /* bind pages into GART page tables */
1107         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1108         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1109                 ttm->pages, gtt->ttm.dma_address, flags);
1110
1111         if (r)
1112                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1113                           ttm->num_pages, gtt->offset);
1114         return r;
1115 }
1116
1117 /**
1118  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1119  */
1120 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1121 {
1122         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1123         struct ttm_operation_ctx ctx = { false, false };
1124         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1125         struct ttm_mem_reg tmp;
1126         struct ttm_placement placement;
1127         struct ttm_place placements;
1128         uint64_t addr, flags;
1129         int r;
1130
1131         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1132                 return 0;
1133
1134         addr = amdgpu_gmc_agp_addr(bo);
1135         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1136                 bo->mem.start = addr >> PAGE_SHIFT;
1137         } else {
1138
1139                 /* allocate GART space */
1140                 tmp = bo->mem;
1141                 tmp.mm_node = NULL;
1142                 placement.num_placement = 1;
1143                 placement.placement = &placements;
1144                 placement.num_busy_placement = 1;
1145                 placement.busy_placement = &placements;
1146                 placements.fpfn = 0;
1147                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1148                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1149                         TTM_PL_FLAG_TT;
1150
1151                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1152                 if (unlikely(r))
1153                         return r;
1154
1155                 /* compute PTE flags for this buffer object */
1156                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1157
1158                 /* Bind pages */
1159                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1160                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1161                 if (unlikely(r)) {
1162                         ttm_bo_mem_put(bo, &tmp);
1163                         return r;
1164                 }
1165
1166                 ttm_bo_mem_put(bo, &bo->mem);
1167                 bo->mem = tmp;
1168         }
1169
1170         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1171                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1172
1173         return 0;
1174 }
1175
1176 /**
1177  * amdgpu_ttm_recover_gart - Rebind GTT pages
1178  *
1179  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1180  * rebind GTT pages during a GPU reset.
1181  */
1182 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1183 {
1184         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1185         uint64_t flags;
1186         int r;
1187
1188         if (!tbo->ttm)
1189                 return 0;
1190
1191         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1192         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1193
1194         return r;
1195 }
1196
1197 /**
1198  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1199  *
1200  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1201  * ttm_tt_destroy().
1202  */
1203 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1204 {
1205         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1206         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207         int r;
1208
1209         /* if the pages have userptr pinning then clear that first */
1210         if (gtt->userptr)
1211                 amdgpu_ttm_tt_unpin_userptr(ttm);
1212
1213         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1214                 return 0;
1215
1216         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1217         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1218         if (r)
1219                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1220                           gtt->ttm.ttm.num_pages, gtt->offset);
1221         return r;
1222 }
1223
1224 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1225 {
1226         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1227
1228         if (gtt->usertask)
1229                 put_task_struct(gtt->usertask);
1230
1231         ttm_dma_tt_fini(&gtt->ttm);
1232         kfree(gtt);
1233 }
1234
1235 static struct ttm_backend_func amdgpu_backend_func = {
1236         .bind = &amdgpu_ttm_backend_bind,
1237         .unbind = &amdgpu_ttm_backend_unbind,
1238         .destroy = &amdgpu_ttm_backend_destroy,
1239 };
1240
1241 /**
1242  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1243  *
1244  * @bo: The buffer object to create a GTT ttm_tt object around
1245  *
1246  * Called by ttm_tt_create().
1247  */
1248 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1249                                            uint32_t page_flags)
1250 {
1251         struct amdgpu_ttm_tt *gtt;
1252
1253         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1254         if (gtt == NULL) {
1255                 return NULL;
1256         }
1257         gtt->ttm.ttm.func = &amdgpu_backend_func;
1258         gtt->gobj = &bo->base;
1259
1260         /* allocate space for the uninitialized page entries */
1261         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1262                 kfree(gtt);
1263                 return NULL;
1264         }
1265         return &gtt->ttm.ttm;
1266 }
1267
1268 /**
1269  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1270  *
1271  * Map the pages of a ttm_tt object to an address space visible
1272  * to the underlying device.
1273  */
1274 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1275                         struct ttm_operation_ctx *ctx)
1276 {
1277         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1278         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279
1280         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1281         if (gtt && gtt->userptr) {
1282                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1283                 if (!ttm->sg)
1284                         return -ENOMEM;
1285
1286                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1287                 ttm->state = tt_unbound;
1288                 return 0;
1289         }
1290
1291         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1292                 if (!ttm->sg) {
1293                         struct dma_buf_attachment *attach;
1294                         struct sg_table *sgt;
1295
1296                         attach = gtt->gobj->import_attach;
1297                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1298                         if (IS_ERR(sgt))
1299                                 return PTR_ERR(sgt);
1300
1301                         ttm->sg = sgt;
1302                 }
1303
1304                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1305                                                  gtt->ttm.dma_address,
1306                                                  ttm->num_pages);
1307                 ttm->state = tt_unbound;
1308                 return 0;
1309         }
1310
1311 #ifdef CONFIG_SWIOTLB
1312         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1313                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1314         }
1315 #endif
1316
1317         /* fall back to generic helper to populate the page array
1318          * and map them to the device */
1319         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1320 }
1321
1322 /**
1323  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1324  *
1325  * Unmaps pages of a ttm_tt object from the device address space and
1326  * unpopulates the page array backing it.
1327  */
1328 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1329 {
1330         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1331         struct amdgpu_device *adev;
1332
1333         if (gtt && gtt->userptr) {
1334                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1335                 kfree(ttm->sg);
1336                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1337                 return;
1338         }
1339
1340         if (ttm->sg && gtt->gobj->import_attach) {
1341                 struct dma_buf_attachment *attach;
1342
1343                 attach = gtt->gobj->import_attach;
1344                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1345                 ttm->sg = NULL;
1346                 return;
1347         }
1348
1349         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1350                 return;
1351
1352         adev = amdgpu_ttm_adev(ttm->bdev);
1353
1354 #ifdef CONFIG_SWIOTLB
1355         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1356                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1357                 return;
1358         }
1359 #endif
1360
1361         /* fall back to generic helper to unmap and unpopulate array */
1362         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1363 }
1364
1365 /**
1366  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1367  * task
1368  *
1369  * @ttm: The ttm_tt object to bind this userptr object to
1370  * @addr:  The address in the current tasks VM space to use
1371  * @flags: Requirements of userptr object.
1372  *
1373  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1374  * to current task
1375  */
1376 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1377                               uint32_t flags)
1378 {
1379         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1380
1381         if (gtt == NULL)
1382                 return -EINVAL;
1383
1384         gtt->userptr = addr;
1385         gtt->userflags = flags;
1386
1387         if (gtt->usertask)
1388                 put_task_struct(gtt->usertask);
1389         gtt->usertask = current->group_leader;
1390         get_task_struct(gtt->usertask);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1397  */
1398 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1399 {
1400         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1401
1402         if (gtt == NULL)
1403                 return NULL;
1404
1405         if (gtt->usertask == NULL)
1406                 return NULL;
1407
1408         return gtt->usertask->mm;
1409 }
1410
1411 /**
1412  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1413  * address range for the current task.
1414  *
1415  */
1416 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1417                                   unsigned long end)
1418 {
1419         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1420         unsigned long size;
1421
1422         if (gtt == NULL || !gtt->userptr)
1423                 return false;
1424
1425         /* Return false if no part of the ttm_tt object lies within
1426          * the range
1427          */
1428         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1429         if (gtt->userptr > end || gtt->userptr + size <= start)
1430                 return false;
1431
1432         return true;
1433 }
1434
1435 /**
1436  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1437  */
1438 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1439 {
1440         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1441
1442         if (gtt == NULL || !gtt->userptr)
1443                 return false;
1444
1445         return true;
1446 }
1447
1448 /**
1449  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1450  */
1451 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1452 {
1453         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1454
1455         if (gtt == NULL)
1456                 return false;
1457
1458         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1459 }
1460
1461 /**
1462  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1463  *
1464  * @ttm: The ttm_tt object to compute the flags for
1465  * @mem: The memory registry backing this ttm_tt object
1466  *
1467  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1468  */
1469 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1470 {
1471         uint64_t flags = 0;
1472
1473         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1474                 flags |= AMDGPU_PTE_VALID;
1475
1476         if (mem && mem->mem_type == TTM_PL_TT) {
1477                 flags |= AMDGPU_PTE_SYSTEM;
1478
1479                 if (ttm->caching_state == tt_cached)
1480                         flags |= AMDGPU_PTE_SNOOPED;
1481         }
1482
1483         return flags;
1484 }
1485
1486 /**
1487  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1488  *
1489  * @ttm: The ttm_tt object to compute the flags for
1490  * @mem: The memory registry backing this ttm_tt object
1491
1492  * Figure out the flags to use for a VM PTE (Page Table Entry).
1493  */
1494 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1495                                  struct ttm_mem_reg *mem)
1496 {
1497         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1498
1499         flags |= adev->gart.gart_pte_flags;
1500         flags |= AMDGPU_PTE_READABLE;
1501
1502         if (!amdgpu_ttm_tt_is_readonly(ttm))
1503                 flags |= AMDGPU_PTE_WRITEABLE;
1504
1505         return flags;
1506 }
1507
1508 /**
1509  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1510  * object.
1511  *
1512  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1513  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1514  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1515  * used to clean out a memory space.
1516  */
1517 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1518                                             const struct ttm_place *place)
1519 {
1520         unsigned long num_pages = bo->mem.num_pages;
1521         struct drm_mm_node *node = bo->mem.mm_node;
1522         struct dma_resv_list *flist;
1523         struct dma_fence *f;
1524         int i;
1525
1526         if (bo->type == ttm_bo_type_kernel &&
1527             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1528                 return false;
1529
1530         /* If bo is a KFD BO, check if the bo belongs to the current process.
1531          * If true, then return false as any KFD process needs all its BOs to
1532          * be resident to run successfully
1533          */
1534         flist = dma_resv_get_list(bo->base.resv);
1535         if (flist) {
1536                 for (i = 0; i < flist->shared_count; ++i) {
1537                         f = rcu_dereference_protected(flist->shared[i],
1538                                 dma_resv_held(bo->base.resv));
1539                         if (amdkfd_fence_check_mm(f, current->mm))
1540                                 return false;
1541                 }
1542         }
1543
1544         switch (bo->mem.mem_type) {
1545         case TTM_PL_TT:
1546                 return true;
1547
1548         case TTM_PL_VRAM:
1549                 /* Check each drm MM node individually */
1550                 while (num_pages) {
1551                         if (place->fpfn < (node->start + node->size) &&
1552                             !(place->lpfn && place->lpfn <= node->start))
1553                                 return true;
1554
1555                         num_pages -= node->size;
1556                         ++node;
1557                 }
1558                 return false;
1559
1560         default:
1561                 break;
1562         }
1563
1564         return ttm_bo_eviction_valuable(bo, place);
1565 }
1566
1567 /**
1568  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1569  *
1570  * @bo:  The buffer object to read/write
1571  * @offset:  Offset into buffer object
1572  * @buf:  Secondary buffer to write/read from
1573  * @len: Length in bytes of access
1574  * @write:  true if writing
1575  *
1576  * This is used to access VRAM that backs a buffer object via MMIO
1577  * access for debugging purposes.
1578  */
1579 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1580                                     unsigned long offset,
1581                                     void *buf, int len, int write)
1582 {
1583         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1584         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1585         struct drm_mm_node *nodes;
1586         uint32_t value = 0;
1587         int ret = 0;
1588         uint64_t pos;
1589         unsigned long flags;
1590
1591         if (bo->mem.mem_type != TTM_PL_VRAM)
1592                 return -EIO;
1593
1594         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1595         pos = (nodes->start << PAGE_SHIFT) + offset;
1596
1597         while (len && pos < adev->gmc.mc_vram_size) {
1598                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1599                 uint32_t bytes = 4 - (pos & 3);
1600                 uint32_t shift = (pos & 3) * 8;
1601                 uint32_t mask = 0xffffffff << shift;
1602
1603                 if (len < bytes) {
1604                         mask &= 0xffffffff >> (bytes - len) * 8;
1605                         bytes = len;
1606                 }
1607
1608                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1609                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1610                 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1611                 if (!write || mask != 0xffffffff)
1612                         value = RREG32_NO_KIQ(mmMM_DATA);
1613                 if (write) {
1614                         value &= ~mask;
1615                         value |= (*(uint32_t *)buf << shift) & mask;
1616                         WREG32_NO_KIQ(mmMM_DATA, value);
1617                 }
1618                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1619                 if (!write) {
1620                         value = (value & mask) >> shift;
1621                         memcpy(buf, &value, bytes);
1622                 }
1623
1624                 ret += bytes;
1625                 buf = (uint8_t *)buf + bytes;
1626                 pos += bytes;
1627                 len -= bytes;
1628                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1629                         ++nodes;
1630                         pos = (nodes->start << PAGE_SHIFT);
1631                 }
1632         }
1633
1634         return ret;
1635 }
1636
1637 static struct ttm_bo_driver amdgpu_bo_driver = {
1638         .ttm_tt_create = &amdgpu_ttm_tt_create,
1639         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1640         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1641         .invalidate_caches = &amdgpu_invalidate_caches,
1642         .init_mem_type = &amdgpu_init_mem_type,
1643         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1644         .evict_flags = &amdgpu_evict_flags,
1645         .move = &amdgpu_bo_move,
1646         .verify_access = &amdgpu_verify_access,
1647         .move_notify = &amdgpu_bo_move_notify,
1648         .release_notify = &amdgpu_bo_release_notify,
1649         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1650         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1651         .io_mem_free = &amdgpu_ttm_io_mem_free,
1652         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1653         .access_memory = &amdgpu_ttm_access_memory,
1654         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1655 };
1656
1657 /*
1658  * Firmware Reservation functions
1659  */
1660 /**
1661  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1662  *
1663  * @adev: amdgpu_device pointer
1664  *
1665  * free fw reserved vram if it has been reserved.
1666  */
1667 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1668 {
1669         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1670                 NULL, &adev->fw_vram_usage.va);
1671 }
1672
1673 /**
1674  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1675  *
1676  * @adev: amdgpu_device pointer
1677  *
1678  * create bo vram reservation from fw.
1679  */
1680 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1681 {
1682         uint64_t vram_size = adev->gmc.visible_vram_size;
1683
1684         adev->fw_vram_usage.va = NULL;
1685         adev->fw_vram_usage.reserved_bo = NULL;
1686
1687         if (adev->fw_vram_usage.size == 0 ||
1688             adev->fw_vram_usage.size > vram_size)
1689                 return 0;
1690
1691         return amdgpu_bo_create_kernel_at(adev,
1692                                           adev->fw_vram_usage.start_offset,
1693                                           adev->fw_vram_usage.size,
1694                                           AMDGPU_GEM_DOMAIN_VRAM,
1695                                           &adev->fw_vram_usage.reserved_bo,
1696                                           &adev->fw_vram_usage.va);
1697 }
1698
1699 /*
1700  * Memoy training reservation functions
1701  */
1702
1703 /**
1704  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1705  *
1706  * @adev: amdgpu_device pointer
1707  *
1708  * free memory training reserved vram if it has been reserved.
1709  */
1710 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1711 {
1712         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1713
1714         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1715         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1716         ctx->c2p_bo = NULL;
1717
1718         return 0;
1719 }
1720
1721 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1722 {
1723        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1724                vram_size -= SZ_1M;
1725
1726        return ALIGN(vram_size, SZ_1M);
1727 }
1728
1729 /**
1730  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1731  *
1732  * @adev: amdgpu_device pointer
1733  *
1734  * create bo vram reservation from memory training.
1735  */
1736 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1737 {
1738         int ret;
1739         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1740
1741         memset(ctx, 0, sizeof(*ctx));
1742         if (!adev->fw_vram_usage.mem_train_support) {
1743                 DRM_DEBUG("memory training does not support!\n");
1744                 return 0;
1745         }
1746
1747         ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1748         ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1749         ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1750
1751         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1752                   ctx->train_data_size,
1753                   ctx->p2c_train_data_offset,
1754                   ctx->c2p_train_data_offset);
1755
1756         ret = amdgpu_bo_create_kernel_at(adev,
1757                                          ctx->c2p_train_data_offset,
1758                                          ctx->train_data_size,
1759                                          AMDGPU_GEM_DOMAIN_VRAM,
1760                                          &ctx->c2p_bo,
1761                                          NULL);
1762         if (ret) {
1763                 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1764                 amdgpu_ttm_training_reserve_vram_fini(adev);
1765                 return ret;
1766         }
1767
1768         ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1769         return 0;
1770 }
1771
1772 /**
1773  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1774  * gtt/vram related fields.
1775  *
1776  * This initializes all of the memory space pools that the TTM layer
1777  * will need such as the GTT space (system memory mapped to the device),
1778  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1779  * can be mapped per VMID.
1780  */
1781 int amdgpu_ttm_init(struct amdgpu_device *adev)
1782 {
1783         uint64_t gtt_size;
1784         int r;
1785         u64 vis_vram_limit;
1786         void *stolen_vga_buf;
1787
1788         mutex_init(&adev->mman.gtt_window_lock);
1789
1790         /* No others user of address space so set it to 0 */
1791         r = ttm_bo_device_init(&adev->mman.bdev,
1792                                &amdgpu_bo_driver,
1793                                adev->ddev->anon_inode->i_mapping,
1794                                adev->ddev->vma_offset_manager,
1795                                dma_addressing_limited(adev->dev));
1796         if (r) {
1797                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1798                 return r;
1799         }
1800         adev->mman.initialized = true;
1801
1802         /* We opt to avoid OOM on system pages allocations */
1803         adev->mman.bdev.no_retry = true;
1804
1805         /* Initialize VRAM pool with all of VRAM divided into pages */
1806         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1807                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1808         if (r) {
1809                 DRM_ERROR("Failed initializing VRAM heap.\n");
1810                 return r;
1811         }
1812
1813         /* Reduce size of CPU-visible VRAM if requested */
1814         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1815         if (amdgpu_vis_vram_limit > 0 &&
1816             vis_vram_limit <= adev->gmc.visible_vram_size)
1817                 adev->gmc.visible_vram_size = vis_vram_limit;
1818
1819         /* Change the size here instead of the init above so only lpfn is affected */
1820         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1821 #ifdef CONFIG_64BIT
1822         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1823                                                 adev->gmc.visible_vram_size);
1824 #endif
1825
1826         /*
1827          *The reserved vram for firmware must be pinned to the specified
1828          *place on the VRAM, so reserve it early.
1829          */
1830         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1831         if (r) {
1832                 return r;
1833         }
1834
1835         /*
1836          *The reserved vram for memory training must be pinned to the specified
1837          *place on the VRAM, so reserve it early.
1838          */
1839         r = amdgpu_ttm_training_reserve_vram_init(adev);
1840         if (r)
1841                 return r;
1842
1843         /* allocate memory as required for VGA
1844          * This is used for VGA emulation and pre-OS scanout buffers to
1845          * avoid display artifacts while transitioning between pre-OS
1846          * and driver.  */
1847         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1848                                     AMDGPU_GEM_DOMAIN_VRAM,
1849                                     &adev->stolen_vga_memory,
1850                                     NULL, &stolen_vga_buf);
1851         if (r)
1852                 return r;
1853
1854         /*
1855          * reserve one TMR (64K) memory at the top of VRAM which holds
1856          * IP Discovery data and is protected by PSP.
1857          */
1858         r = amdgpu_bo_create_kernel_at(adev,
1859                                        adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1860                                        DISCOVERY_TMR_SIZE,
1861                                        AMDGPU_GEM_DOMAIN_VRAM,
1862                                        &adev->discovery_memory,
1863                                        NULL);
1864         if (r)
1865                 return r;
1866
1867         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1868                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1869
1870         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1871          * or whatever the user passed on module init */
1872         if (amdgpu_gtt_size == -1) {
1873                 struct sysinfo si;
1874
1875                 si_meminfo(&si);
1876                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1877                                adev->gmc.mc_vram_size),
1878                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1879         }
1880         else
1881                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1882
1883         /* Initialize GTT memory pool */
1884         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1885         if (r) {
1886                 DRM_ERROR("Failed initializing GTT heap.\n");
1887                 return r;
1888         }
1889         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1890                  (unsigned)(gtt_size / (1024 * 1024)));
1891
1892         /* Initialize various on-chip memory pools */
1893         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1894                            adev->gds.gds_size);
1895         if (r) {
1896                 DRM_ERROR("Failed initializing GDS heap.\n");
1897                 return r;
1898         }
1899
1900         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1901                            adev->gds.gws_size);
1902         if (r) {
1903                 DRM_ERROR("Failed initializing gws heap.\n");
1904                 return r;
1905         }
1906
1907         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1908                            adev->gds.oa_size);
1909         if (r) {
1910                 DRM_ERROR("Failed initializing oa heap.\n");
1911                 return r;
1912         }
1913
1914         /* Register debugfs entries for amdgpu_ttm */
1915         r = amdgpu_ttm_debugfs_init(adev);
1916         if (r) {
1917                 DRM_ERROR("Failed to init debugfs\n");
1918                 return r;
1919         }
1920         return 0;
1921 }
1922
1923 /**
1924  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1925  */
1926 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1927 {
1928         void *stolen_vga_buf;
1929         /* return the VGA stolen memory (if any) back to VRAM */
1930         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1931 }
1932
1933 /**
1934  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1935  */
1936 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1937 {
1938         if (!adev->mman.initialized)
1939                 return;
1940
1941         amdgpu_ttm_debugfs_fini(adev);
1942         amdgpu_ttm_training_reserve_vram_fini(adev);
1943         /* return the IP Discovery TMR memory back to VRAM */
1944         amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1945         amdgpu_ttm_fw_reserve_vram_fini(adev);
1946
1947         if (adev->mman.aper_base_kaddr)
1948                 iounmap(adev->mman.aper_base_kaddr);
1949         adev->mman.aper_base_kaddr = NULL;
1950
1951         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1952         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1953         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1954         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1955         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1956         ttm_bo_device_release(&adev->mman.bdev);
1957         adev->mman.initialized = false;
1958         DRM_INFO("amdgpu: ttm finalized\n");
1959 }
1960
1961 /**
1962  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1963  *
1964  * @adev: amdgpu_device pointer
1965  * @enable: true when we can use buffer functions.
1966  *
1967  * Enable/disable use of buffer functions during suspend/resume. This should
1968  * only be called at bootup or when userspace isn't running.
1969  */
1970 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1971 {
1972         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1973         uint64_t size;
1974         int r;
1975
1976         if (!adev->mman.initialized || adev->in_gpu_reset ||
1977             adev->mman.buffer_funcs_enabled == enable)
1978                 return;
1979
1980         if (enable) {
1981                 struct amdgpu_ring *ring;
1982                 struct drm_gpu_scheduler *sched;
1983
1984                 ring = adev->mman.buffer_funcs_ring;
1985                 sched = &ring->sched;
1986                 r = drm_sched_entity_init(&adev->mman.entity,
1987                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1988                                           1, NULL);
1989                 if (r) {
1990                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1991                                   r);
1992                         return;
1993                 }
1994         } else {
1995                 drm_sched_entity_destroy(&adev->mman.entity);
1996                 dma_fence_put(man->move);
1997                 man->move = NULL;
1998         }
1999
2000         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2001         if (enable)
2002                 size = adev->gmc.real_vram_size;
2003         else
2004                 size = adev->gmc.visible_vram_size;
2005         man->size = size >> PAGE_SHIFT;
2006         adev->mman.buffer_funcs_enabled = enable;
2007 }
2008
2009 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2010 {
2011         struct drm_file *file_priv = filp->private_data;
2012         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2013
2014         if (adev == NULL)
2015                 return -EINVAL;
2016
2017         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2018 }
2019
2020 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2021                              struct ttm_mem_reg *mem, unsigned num_pages,
2022                              uint64_t offset, unsigned window,
2023                              struct amdgpu_ring *ring,
2024                              uint64_t *addr)
2025 {
2026         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2027         struct amdgpu_device *adev = ring->adev;
2028         struct ttm_tt *ttm = bo->ttm;
2029         struct amdgpu_job *job;
2030         unsigned num_dw, num_bytes;
2031         dma_addr_t *dma_address;
2032         struct dma_fence *fence;
2033         uint64_t src_addr, dst_addr;
2034         uint64_t flags;
2035         int r;
2036
2037         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2038                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2039
2040         *addr = adev->gmc.gart_start;
2041         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2042                 AMDGPU_GPU_PAGE_SIZE;
2043
2044         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2045         num_bytes = num_pages * 8;
2046
2047         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2048         if (r)
2049                 return r;
2050
2051         src_addr = num_dw * 4;
2052         src_addr += job->ibs[0].gpu_addr;
2053
2054         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2055         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2056         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2057                                 dst_addr, num_bytes);
2058
2059         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2060         WARN_ON(job->ibs[0].length_dw > num_dw);
2061
2062         dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2063         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2064         r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2065                             &job->ibs[0].ptr[num_dw]);
2066         if (r)
2067                 goto error_free;
2068
2069         r = amdgpu_job_submit(job, &adev->mman.entity,
2070                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2071         if (r)
2072                 goto error_free;
2073
2074         dma_fence_put(fence);
2075
2076         return r;
2077
2078 error_free:
2079         amdgpu_job_free(job);
2080         return r;
2081 }
2082
2083 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2084                        uint64_t dst_offset, uint32_t byte_count,
2085                        struct dma_resv *resv,
2086                        struct dma_fence **fence, bool direct_submit,
2087                        bool vm_needs_flush)
2088 {
2089         struct amdgpu_device *adev = ring->adev;
2090         struct amdgpu_job *job;
2091
2092         uint32_t max_bytes;
2093         unsigned num_loops, num_dw;
2094         unsigned i;
2095         int r;
2096
2097         if (direct_submit && !ring->sched.ready) {
2098                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2099                 return -EINVAL;
2100         }
2101
2102         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2103         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2104         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2105
2106         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2107         if (r)
2108                 return r;
2109
2110         if (vm_needs_flush) {
2111                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2112                 job->vm_needs_flush = true;
2113         }
2114         if (resv) {
2115                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2116                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2117                                      false);
2118                 if (r) {
2119                         DRM_ERROR("sync failed (%d).\n", r);
2120                         goto error_free;
2121                 }
2122         }
2123
2124         for (i = 0; i < num_loops; i++) {
2125                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2126
2127                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2128                                         dst_offset, cur_size_in_bytes);
2129
2130                 src_offset += cur_size_in_bytes;
2131                 dst_offset += cur_size_in_bytes;
2132                 byte_count -= cur_size_in_bytes;
2133         }
2134
2135         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2136         WARN_ON(job->ibs[0].length_dw > num_dw);
2137         if (direct_submit)
2138                 r = amdgpu_job_submit_direct(job, ring, fence);
2139         else
2140                 r = amdgpu_job_submit(job, &adev->mman.entity,
2141                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2142         if (r)
2143                 goto error_free;
2144
2145         return r;
2146
2147 error_free:
2148         amdgpu_job_free(job);
2149         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2150         return r;
2151 }
2152
2153 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2154                        uint32_t src_data,
2155                        struct dma_resv *resv,
2156                        struct dma_fence **fence)
2157 {
2158         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2159         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2160         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2161
2162         struct drm_mm_node *mm_node;
2163         unsigned long num_pages;
2164         unsigned int num_loops, num_dw;
2165
2166         struct amdgpu_job *job;
2167         int r;
2168
2169         if (!adev->mman.buffer_funcs_enabled) {
2170                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2171                 return -EINVAL;
2172         }
2173
2174         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2175                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2176                 if (r)
2177                         return r;
2178         }
2179
2180         num_pages = bo->tbo.num_pages;
2181         mm_node = bo->tbo.mem.mm_node;
2182         num_loops = 0;
2183         while (num_pages) {
2184                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2185
2186                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2187                 num_pages -= mm_node->size;
2188                 ++mm_node;
2189         }
2190         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2191
2192         /* for IB padding */
2193         num_dw += 64;
2194
2195         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2196         if (r)
2197                 return r;
2198
2199         if (resv) {
2200                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2201                                      AMDGPU_FENCE_OWNER_UNDEFINED, false);
2202                 if (r) {
2203                         DRM_ERROR("sync failed (%d).\n", r);
2204                         goto error_free;
2205                 }
2206         }
2207
2208         num_pages = bo->tbo.num_pages;
2209         mm_node = bo->tbo.mem.mm_node;
2210
2211         while (num_pages) {
2212                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2213                 uint64_t dst_addr;
2214
2215                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2216                 while (byte_count) {
2217                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2218                                                            max_bytes);
2219
2220                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2221                                                 dst_addr, cur_size_in_bytes);
2222
2223                         dst_addr += cur_size_in_bytes;
2224                         byte_count -= cur_size_in_bytes;
2225                 }
2226
2227                 num_pages -= mm_node->size;
2228                 ++mm_node;
2229         }
2230
2231         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2232         WARN_ON(job->ibs[0].length_dw > num_dw);
2233         r = amdgpu_job_submit(job, &adev->mman.entity,
2234                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2235         if (r)
2236                 goto error_free;
2237
2238         return 0;
2239
2240 error_free:
2241         amdgpu_job_free(job);
2242         return r;
2243 }
2244
2245 #if defined(CONFIG_DEBUG_FS)
2246
2247 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2248 {
2249         struct drm_info_node *node = (struct drm_info_node *)m->private;
2250         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2251         struct drm_device *dev = node->minor->dev;
2252         struct amdgpu_device *adev = dev->dev_private;
2253         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2254         struct drm_printer p = drm_seq_file_printer(m);
2255
2256         man->func->debug(man, &p);
2257         return 0;
2258 }
2259
2260 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2261         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2262         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2263         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2264         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2265         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2266         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2267 #ifdef CONFIG_SWIOTLB
2268         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2269 #endif
2270 };
2271
2272 /**
2273  * amdgpu_ttm_vram_read - Linear read access to VRAM
2274  *
2275  * Accesses VRAM via MMIO for debugging purposes.
2276  */
2277 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2278                                     size_t size, loff_t *pos)
2279 {
2280         struct amdgpu_device *adev = file_inode(f)->i_private;
2281         ssize_t result = 0;
2282         int r;
2283
2284         if (size & 0x3 || *pos & 0x3)
2285                 return -EINVAL;
2286
2287         if (*pos >= adev->gmc.mc_vram_size)
2288                 return -ENXIO;
2289
2290         while (size) {
2291                 unsigned long flags;
2292                 uint32_t value;
2293
2294                 if (*pos >= adev->gmc.mc_vram_size)
2295                         return result;
2296
2297                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2298                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2299                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2300                 value = RREG32_NO_KIQ(mmMM_DATA);
2301                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2302
2303                 r = put_user(value, (uint32_t *)buf);
2304                 if (r)
2305                         return r;
2306
2307                 result += 4;
2308                 buf += 4;
2309                 *pos += 4;
2310                 size -= 4;
2311         }
2312
2313         return result;
2314 }
2315
2316 /**
2317  * amdgpu_ttm_vram_write - Linear write access to VRAM
2318  *
2319  * Accesses VRAM via MMIO for debugging purposes.
2320  */
2321 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2322                                     size_t size, loff_t *pos)
2323 {
2324         struct amdgpu_device *adev = file_inode(f)->i_private;
2325         ssize_t result = 0;
2326         int r;
2327
2328         if (size & 0x3 || *pos & 0x3)
2329                 return -EINVAL;
2330
2331         if (*pos >= adev->gmc.mc_vram_size)
2332                 return -ENXIO;
2333
2334         while (size) {
2335                 unsigned long flags;
2336                 uint32_t value;
2337
2338                 if (*pos >= adev->gmc.mc_vram_size)
2339                         return result;
2340
2341                 r = get_user(value, (uint32_t *)buf);
2342                 if (r)
2343                         return r;
2344
2345                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2346                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2347                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2348                 WREG32_NO_KIQ(mmMM_DATA, value);
2349                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2350
2351                 result += 4;
2352                 buf += 4;
2353                 *pos += 4;
2354                 size -= 4;
2355         }
2356
2357         return result;
2358 }
2359
2360 static const struct file_operations amdgpu_ttm_vram_fops = {
2361         .owner = THIS_MODULE,
2362         .read = amdgpu_ttm_vram_read,
2363         .write = amdgpu_ttm_vram_write,
2364         .llseek = default_llseek,
2365 };
2366
2367 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2368
2369 /**
2370  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2371  */
2372 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2373                                    size_t size, loff_t *pos)
2374 {
2375         struct amdgpu_device *adev = file_inode(f)->i_private;
2376         ssize_t result = 0;
2377         int r;
2378
2379         while (size) {
2380                 loff_t p = *pos / PAGE_SIZE;
2381                 unsigned off = *pos & ~PAGE_MASK;
2382                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2383                 struct page *page;
2384                 void *ptr;
2385
2386                 if (p >= adev->gart.num_cpu_pages)
2387                         return result;
2388
2389                 page = adev->gart.pages[p];
2390                 if (page) {
2391                         ptr = kmap(page);
2392                         ptr += off;
2393
2394                         r = copy_to_user(buf, ptr, cur_size);
2395                         kunmap(adev->gart.pages[p]);
2396                 } else
2397                         r = clear_user(buf, cur_size);
2398
2399                 if (r)
2400                         return -EFAULT;
2401
2402                 result += cur_size;
2403                 buf += cur_size;
2404                 *pos += cur_size;
2405                 size -= cur_size;
2406         }
2407
2408         return result;
2409 }
2410
2411 static const struct file_operations amdgpu_ttm_gtt_fops = {
2412         .owner = THIS_MODULE,
2413         .read = amdgpu_ttm_gtt_read,
2414         .llseek = default_llseek
2415 };
2416
2417 #endif
2418
2419 /**
2420  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2421  *
2422  * This function is used to read memory that has been mapped to the
2423  * GPU and the known addresses are not physical addresses but instead
2424  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2425  */
2426 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2427                                  size_t size, loff_t *pos)
2428 {
2429         struct amdgpu_device *adev = file_inode(f)->i_private;
2430         struct iommu_domain *dom;
2431         ssize_t result = 0;
2432         int r;
2433
2434         /* retrieve the IOMMU domain if any for this device */
2435         dom = iommu_get_domain_for_dev(adev->dev);
2436
2437         while (size) {
2438                 phys_addr_t addr = *pos & PAGE_MASK;
2439                 loff_t off = *pos & ~PAGE_MASK;
2440                 size_t bytes = PAGE_SIZE - off;
2441                 unsigned long pfn;
2442                 struct page *p;
2443                 void *ptr;
2444
2445                 bytes = bytes < size ? bytes : size;
2446
2447                 /* Translate the bus address to a physical address.  If
2448                  * the domain is NULL it means there is no IOMMU active
2449                  * and the address translation is the identity
2450                  */
2451                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2452
2453                 pfn = addr >> PAGE_SHIFT;
2454                 if (!pfn_valid(pfn))
2455                         return -EPERM;
2456
2457                 p = pfn_to_page(pfn);
2458                 if (p->mapping != adev->mman.bdev.dev_mapping)
2459                         return -EPERM;
2460
2461                 ptr = kmap(p);
2462                 r = copy_to_user(buf, ptr + off, bytes);
2463                 kunmap(p);
2464                 if (r)
2465                         return -EFAULT;
2466
2467                 size -= bytes;
2468                 *pos += bytes;
2469                 result += bytes;
2470         }
2471
2472         return result;
2473 }
2474
2475 /**
2476  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2477  *
2478  * This function is used to write memory that has been mapped to the
2479  * GPU and the known addresses are not physical addresses but instead
2480  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2481  */
2482 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2483                                  size_t size, loff_t *pos)
2484 {
2485         struct amdgpu_device *adev = file_inode(f)->i_private;
2486         struct iommu_domain *dom;
2487         ssize_t result = 0;
2488         int r;
2489
2490         dom = iommu_get_domain_for_dev(adev->dev);
2491
2492         while (size) {
2493                 phys_addr_t addr = *pos & PAGE_MASK;
2494                 loff_t off = *pos & ~PAGE_MASK;
2495                 size_t bytes = PAGE_SIZE - off;
2496                 unsigned long pfn;
2497                 struct page *p;
2498                 void *ptr;
2499
2500                 bytes = bytes < size ? bytes : size;
2501
2502                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2503
2504                 pfn = addr >> PAGE_SHIFT;
2505                 if (!pfn_valid(pfn))
2506                         return -EPERM;
2507
2508                 p = pfn_to_page(pfn);
2509                 if (p->mapping != adev->mman.bdev.dev_mapping)
2510                         return -EPERM;
2511
2512                 ptr = kmap(p);
2513                 r = copy_from_user(ptr + off, buf, bytes);
2514                 kunmap(p);
2515                 if (r)
2516                         return -EFAULT;
2517
2518                 size -= bytes;
2519                 *pos += bytes;
2520                 result += bytes;
2521         }
2522
2523         return result;
2524 }
2525
2526 static const struct file_operations amdgpu_ttm_iomem_fops = {
2527         .owner = THIS_MODULE,
2528         .read = amdgpu_iomem_read,
2529         .write = amdgpu_iomem_write,
2530         .llseek = default_llseek
2531 };
2532
2533 static const struct {
2534         char *name;
2535         const struct file_operations *fops;
2536         int domain;
2537 } ttm_debugfs_entries[] = {
2538         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2539 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2540         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2541 #endif
2542         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2543 };
2544
2545 #endif
2546
2547 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2548 {
2549 #if defined(CONFIG_DEBUG_FS)
2550         unsigned count;
2551
2552         struct drm_minor *minor = adev->ddev->primary;
2553         struct dentry *ent, *root = minor->debugfs_root;
2554
2555         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2556                 ent = debugfs_create_file(
2557                                 ttm_debugfs_entries[count].name,
2558                                 S_IFREG | S_IRUGO, root,
2559                                 adev,
2560                                 ttm_debugfs_entries[count].fops);
2561                 if (IS_ERR(ent))
2562                         return PTR_ERR(ent);
2563                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2564                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2565                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2566                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2567                 adev->mman.debugfs_entries[count] = ent;
2568         }
2569
2570         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2571
2572 #ifdef CONFIG_SWIOTLB
2573         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2574                 --count;
2575 #endif
2576
2577         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2578 #else
2579         return 0;
2580 #endif
2581 }
2582
2583 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2584 {
2585 #if defined(CONFIG_DEBUG_FS)
2586         unsigned i;
2587
2588         for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2589                 debugfs_remove(adev->mman.debugfs_entries[i]);
2590 #endif
2591 }