Merge tag 'amd-drm-next-5.14-2021-06-02' of https://gitlab.freedesktop.org/agd5f...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48
49 #include <drm/amdgpu_drm.h>
50
51 #include "amdgpu.h"
52 #include "amdgpu_object.h"
53 #include "amdgpu_trace.h"
54 #include "amdgpu_amdkfd.h"
55 #include "amdgpu_sdma.h"
56 #include "amdgpu_ras.h"
57 #include "amdgpu_atomfirmware.h"
58 #include "amdgpu_res_cursor.h"
59 #include "bif/bif_4_1_d.h"
60
61 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
62
63 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
64                                    struct ttm_tt *ttm,
65                                    struct ttm_resource *bo_mem);
66 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
67                                       struct ttm_tt *ttm);
68
69 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
70                                     unsigned int type,
71                                     uint64_t size_in_page)
72 {
73         return ttm_range_man_init(&adev->mman.bdev, type,
74                                   false, size_in_page);
75 }
76
77 /**
78  * amdgpu_evict_flags - Compute placement flags
79  *
80  * @bo: The buffer object to evict
81  * @placement: Possible destination(s) for evicted BO
82  *
83  * Fill in placement data when ttm_bo_evict() is called
84  */
85 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
86                                 struct ttm_placement *placement)
87 {
88         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
89         struct amdgpu_bo *abo;
90         static const struct ttm_place placements = {
91                 .fpfn = 0,
92                 .lpfn = 0,
93                 .mem_type = TTM_PL_SYSTEM,
94                 .flags = 0
95         };
96
97         /* Don't handle scatter gather BOs */
98         if (bo->type == ttm_bo_type_sg) {
99                 placement->num_placement = 0;
100                 placement->num_busy_placement = 0;
101                 return;
102         }
103
104         /* Object isn't an AMDGPU object so ignore */
105         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
106                 placement->placement = &placements;
107                 placement->busy_placement = &placements;
108                 placement->num_placement = 1;
109                 placement->num_busy_placement = 1;
110                 return;
111         }
112
113         abo = ttm_to_amdgpu_bo(bo);
114         if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
115                 struct dma_fence *fence;
116                 struct dma_resv *resv = &bo->base._resv;
117
118                 rcu_read_lock();
119                 fence = rcu_dereference(resv->fence_excl);
120                 if (fence && !fence->ops->signaled)
121                         dma_fence_enable_sw_signaling(fence);
122
123                 placement->num_placement = 0;
124                 placement->num_busy_placement = 0;
125                 rcu_read_unlock();
126                 return;
127         }
128         switch (bo->mem.mem_type) {
129         case AMDGPU_PL_GDS:
130         case AMDGPU_PL_GWS:
131         case AMDGPU_PL_OA:
132                 placement->num_placement = 0;
133                 placement->num_busy_placement = 0;
134                 return;
135
136         case TTM_PL_VRAM:
137                 if (!adev->mman.buffer_funcs_enabled) {
138                         /* Move to system memory */
139                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
140                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
141                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
142                            amdgpu_bo_in_cpu_visible_vram(abo)) {
143
144                         /* Try evicting to the CPU inaccessible part of VRAM
145                          * first, but only set GTT as busy placement, so this
146                          * BO will be evicted to GTT rather than causing other
147                          * BOs to be evicted from VRAM
148                          */
149                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
150                                                          AMDGPU_GEM_DOMAIN_GTT);
151                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152                         abo->placements[0].lpfn = 0;
153                         abo->placement.busy_placement = &abo->placements[1];
154                         abo->placement.num_busy_placement = 1;
155                 } else {
156                         /* Move to GTT memory */
157                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @num_pages: number of pages to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned num_pages, unsigned window,
187                                  struct amdgpu_ring *ring, bool tmz,
188                                  uint64_t *addr)
189 {
190         struct amdgpu_device *adev = ring->adev;
191         struct amdgpu_job *job;
192         unsigned num_dw, num_bytes;
193         struct dma_fence *fence;
194         uint64_t src_addr, dst_addr;
195         void *cpu_addr;
196         uint64_t flags;
197         unsigned int i;
198         int r;
199
200         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
201                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
202         BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
203
204         /* Map only what can't be accessed directly */
205         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207                         mm_cur->start;
208                 return 0;
209         }
210
211         *addr = adev->gmc.gart_start;
212         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
213                 AMDGPU_GPU_PAGE_SIZE;
214         *addr += mm_cur->start & ~PAGE_MASK;
215
216         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
217         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
218
219         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
220                                      AMDGPU_IB_POOL_DELAYED, &job);
221         if (r)
222                 return r;
223
224         src_addr = num_dw * 4;
225         src_addr += job->ibs[0].gpu_addr;
226
227         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
228         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
229         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
230                                 dst_addr, num_bytes, false);
231
232         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
233         WARN_ON(job->ibs[0].length_dw > num_dw);
234
235         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
236         if (tmz)
237                 flags |= AMDGPU_PTE_TMZ;
238
239         cpu_addr = &job->ibs[0].ptr[num_dw];
240
241         if (mem->mem_type == TTM_PL_TT) {
242                 dma_addr_t *dma_addr;
243
244                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
245                 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
246                                     cpu_addr);
247                 if (r)
248                         goto error_free;
249         } else {
250                 dma_addr_t dma_address;
251
252                 dma_address = mm_cur->start;
253                 dma_address += adev->vm_manager.vram_base_offset;
254
255                 for (i = 0; i < num_pages; ++i) {
256                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
257                                             &dma_address, flags, cpu_addr);
258                         if (r)
259                                 goto error_free;
260
261                         dma_address += PAGE_SIZE;
262                 }
263         }
264
265         r = amdgpu_job_submit(job, &adev->mman.entity,
266                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
267         if (r)
268                 goto error_free;
269
270         dma_fence_put(fence);
271
272         return r;
273
274 error_free:
275         amdgpu_job_free(job);
276         return r;
277 }
278
279 /**
280  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
281  * @adev: amdgpu device
282  * @src: buffer/address where to read from
283  * @dst: buffer/address where to write to
284  * @size: number of bytes to copy
285  * @tmz: if a secure copy should be used
286  * @resv: resv object to sync to
287  * @f: Returns the last fence if multiple jobs are submitted.
288  *
289  * The function copies @size bytes from {src->mem + src->offset} to
290  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
291  * move and different for a BO to BO copy.
292  *
293  */
294 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
295                                const struct amdgpu_copy_mem *src,
296                                const struct amdgpu_copy_mem *dst,
297                                uint64_t size, bool tmz,
298                                struct dma_resv *resv,
299                                struct dma_fence **f)
300 {
301         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
302                                         AMDGPU_GPU_PAGE_SIZE);
303
304         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
305         struct amdgpu_res_cursor src_mm, dst_mm;
306         struct dma_fence *fence = NULL;
307         int r = 0;
308
309         if (!adev->mman.buffer_funcs_enabled) {
310                 DRM_ERROR("Trying to move memory with ring turned off.\n");
311                 return -EINVAL;
312         }
313
314         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
315         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
316
317         mutex_lock(&adev->mman.gtt_window_lock);
318         while (src_mm.remaining) {
319                 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
320                 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
321                 struct dma_fence *next;
322                 uint32_t cur_size;
323                 uint64_t from, to;
324
325                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
326                  * begins at an offset, then adjust the size accordingly
327                  */
328                 cur_size = max(src_page_offset, dst_page_offset);
329                 cur_size = min(min3(src_mm.size, dst_mm.size, size),
330                                (uint64_t)(GTT_MAX_BYTES - cur_size));
331
332                 /* Map src to window 0 and dst to window 1. */
333                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
334                                           PFN_UP(cur_size + src_page_offset),
335                                           0, ring, tmz, &from);
336                 if (r)
337                         goto error;
338
339                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
340                                           PFN_UP(cur_size + dst_page_offset),
341                                           1, ring, tmz, &to);
342                 if (r)
343                         goto error;
344
345                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
346                                        resv, &next, false, true, tmz);
347                 if (r)
348                         goto error;
349
350                 dma_fence_put(fence);
351                 fence = next;
352
353                 amdgpu_res_next(&src_mm, cur_size);
354                 amdgpu_res_next(&dst_mm, cur_size);
355         }
356 error:
357         mutex_unlock(&adev->mman.gtt_window_lock);
358         if (f)
359                 *f = dma_fence_get(fence);
360         dma_fence_put(fence);
361         return r;
362 }
363
364 /*
365  * amdgpu_move_blit - Copy an entire buffer to another buffer
366  *
367  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
368  * help move buffers to and from VRAM.
369  */
370 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
371                             bool evict,
372                             struct ttm_resource *new_mem,
373                             struct ttm_resource *old_mem)
374 {
375         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
376         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
377         struct amdgpu_copy_mem src, dst;
378         struct dma_fence *fence = NULL;
379         int r;
380
381         src.bo = bo;
382         dst.bo = bo;
383         src.mem = old_mem;
384         dst.mem = new_mem;
385         src.offset = 0;
386         dst.offset = 0;
387
388         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
389                                        new_mem->num_pages << PAGE_SHIFT,
390                                        amdgpu_bo_encrypted(abo),
391                                        bo->base.resv, &fence);
392         if (r)
393                 goto error;
394
395         /* clear the space being freed */
396         if (old_mem->mem_type == TTM_PL_VRAM &&
397             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
398                 struct dma_fence *wipe_fence = NULL;
399
400                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
401                                        NULL, &wipe_fence);
402                 if (r) {
403                         goto error;
404                 } else if (wipe_fence) {
405                         dma_fence_put(fence);
406                         fence = wipe_fence;
407                 }
408         }
409
410         /* Always block for VM page tables before committing the new location */
411         if (bo->type == ttm_bo_type_kernel)
412                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
413         else
414                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
415         dma_fence_put(fence);
416         return r;
417
418 error:
419         if (fence)
420                 dma_fence_wait(fence, false);
421         dma_fence_put(fence);
422         return r;
423 }
424
425 /*
426  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
427  *
428  * Called by amdgpu_bo_move()
429  */
430 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
431                                struct ttm_resource *mem)
432 {
433         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
434         struct amdgpu_res_cursor cursor;
435
436         if (mem->mem_type == TTM_PL_SYSTEM ||
437             mem->mem_type == TTM_PL_TT)
438                 return true;
439         if (mem->mem_type != TTM_PL_VRAM)
440                 return false;
441
442         amdgpu_res_first(mem, 0, mem_size, &cursor);
443
444         /* ttm_resource_ioremap only supports contiguous memory */
445         if (cursor.size != mem_size)
446                 return false;
447
448         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
449 }
450
451 /*
452  * amdgpu_bo_move - Move a buffer object to a new memory location
453  *
454  * Called by ttm_bo_handle_move_mem()
455  */
456 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
457                           struct ttm_operation_ctx *ctx,
458                           struct ttm_resource *new_mem,
459                           struct ttm_place *hop)
460 {
461         struct amdgpu_device *adev;
462         struct amdgpu_bo *abo;
463         struct ttm_resource *old_mem = &bo->mem;
464         int r;
465
466         if (new_mem->mem_type == TTM_PL_TT ||
467             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
468                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
469                 if (r)
470                         return r;
471         }
472
473         /* Can't move a pinned BO */
474         abo = ttm_to_amdgpu_bo(bo);
475         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
476                 return -EINVAL;
477
478         adev = amdgpu_ttm_adev(bo->bdev);
479
480         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
481                 ttm_bo_move_null(bo, new_mem);
482                 goto out;
483         }
484         if (old_mem->mem_type == TTM_PL_SYSTEM &&
485             (new_mem->mem_type == TTM_PL_TT ||
486              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
487                 ttm_bo_move_null(bo, new_mem);
488                 goto out;
489         }
490         if ((old_mem->mem_type == TTM_PL_TT ||
491              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
492             new_mem->mem_type == TTM_PL_SYSTEM) {
493                 r = ttm_bo_wait_ctx(bo, ctx);
494                 if (r)
495                         return r;
496
497                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
498                 ttm_resource_free(bo, &bo->mem);
499                 ttm_bo_assign_mem(bo, new_mem);
500                 goto out;
501         }
502
503         if (old_mem->mem_type == AMDGPU_PL_GDS ||
504             old_mem->mem_type == AMDGPU_PL_GWS ||
505             old_mem->mem_type == AMDGPU_PL_OA ||
506             new_mem->mem_type == AMDGPU_PL_GDS ||
507             new_mem->mem_type == AMDGPU_PL_GWS ||
508             new_mem->mem_type == AMDGPU_PL_OA) {
509                 /* Nothing to save here */
510                 ttm_bo_move_null(bo, new_mem);
511                 goto out;
512         }
513
514         if (adev->mman.buffer_funcs_enabled) {
515                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
516                       new_mem->mem_type == TTM_PL_VRAM) ||
517                      (old_mem->mem_type == TTM_PL_VRAM &&
518                       new_mem->mem_type == TTM_PL_SYSTEM))) {
519                         hop->fpfn = 0;
520                         hop->lpfn = 0;
521                         hop->mem_type = TTM_PL_TT;
522                         hop->flags = 0;
523                         return -EMULTIHOP;
524                 }
525
526                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
527         } else {
528                 r = -ENODEV;
529         }
530
531         if (r) {
532                 /* Check that all memory is CPU accessible */
533                 if (!amdgpu_mem_visible(adev, old_mem) ||
534                     !amdgpu_mem_visible(adev, new_mem)) {
535                         pr_err("Move buffer fallback to memcpy unavailable\n");
536                         return r;
537                 }
538
539                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
540                 if (r)
541                         return r;
542         }
543
544         if (bo->type == ttm_bo_type_device &&
545             new_mem->mem_type == TTM_PL_VRAM &&
546             old_mem->mem_type != TTM_PL_VRAM) {
547                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
548                  * accesses the BO after it's moved.
549                  */
550                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
551         }
552
553 out:
554         /* update statistics */
555         atomic64_add(bo->base.size, &adev->num_bytes_moved);
556         amdgpu_bo_move_notify(bo, evict, new_mem);
557         return 0;
558 }
559
560 /*
561  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
562  *
563  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
564  */
565 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
566                                      struct ttm_resource *mem)
567 {
568         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
569         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
570
571         switch (mem->mem_type) {
572         case TTM_PL_SYSTEM:
573                 /* system memory */
574                 return 0;
575         case TTM_PL_TT:
576         case AMDGPU_PL_PREEMPT:
577                 break;
578         case TTM_PL_VRAM:
579                 mem->bus.offset = mem->start << PAGE_SHIFT;
580                 /* check if it's visible */
581                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
582                         return -EINVAL;
583
584                 if (adev->mman.aper_base_kaddr &&
585                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
586                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
587                                         mem->bus.offset;
588
589                 mem->bus.offset += adev->gmc.aper_base;
590                 mem->bus.is_iomem = true;
591                 if (adev->gmc.xgmi.connected_to_cpu)
592                         mem->bus.caching = ttm_cached;
593                 else
594                         mem->bus.caching = ttm_write_combined;
595                 break;
596         default:
597                 return -EINVAL;
598         }
599         return 0;
600 }
601
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603                                            unsigned long page_offset)
604 {
605         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606         struct amdgpu_res_cursor cursor;
607
608         amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
609         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
610 }
611
612 /**
613  * amdgpu_ttm_domain_start - Returns GPU start address
614  * @adev: amdgpu device object
615  * @type: type of the memory
616  *
617  * Returns:
618  * GPU start address of a memory domain
619  */
620
621 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
622 {
623         switch (type) {
624         case TTM_PL_TT:
625                 return adev->gmc.gart_start;
626         case TTM_PL_VRAM:
627                 return adev->gmc.vram_start;
628         }
629
630         return 0;
631 }
632
633 /*
634  * TTM backend functions.
635  */
636 struct amdgpu_ttm_tt {
637         struct ttm_tt   ttm;
638         struct drm_gem_object   *gobj;
639         u64                     offset;
640         uint64_t                userptr;
641         struct task_struct      *usertask;
642         uint32_t                userflags;
643         bool                    bound;
644 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
645         struct hmm_range        *range;
646 #endif
647 };
648
649 #ifdef CONFIG_DRM_AMDGPU_USERPTR
650 /*
651  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
652  * memory and start HMM tracking CPU page table update
653  *
654  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
655  * once afterwards to stop HMM tracking
656  */
657 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
658 {
659         struct ttm_tt *ttm = bo->tbo.ttm;
660         struct amdgpu_ttm_tt *gtt = (void *)ttm;
661         unsigned long start = gtt->userptr;
662         struct vm_area_struct *vma;
663         struct mm_struct *mm;
664         bool readonly;
665         int r = 0;
666
667         mm = bo->notifier.mm;
668         if (unlikely(!mm)) {
669                 DRM_DEBUG_DRIVER("BO is not registered?\n");
670                 return -EFAULT;
671         }
672
673         /* Another get_user_pages is running at the same time?? */
674         if (WARN_ON(gtt->range))
675                 return -EFAULT;
676
677         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
678                 return -ESRCH;
679
680         mmap_read_lock(mm);
681         vma = find_vma(mm, start);
682         mmap_read_unlock(mm);
683         if (unlikely(!vma || start < vma->vm_start)) {
684                 r = -EFAULT;
685                 goto out_putmm;
686         }
687         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688                 vma->vm_file)) {
689                 r = -EPERM;
690                 goto out_putmm;
691         }
692
693         readonly = amdgpu_ttm_tt_is_readonly(ttm);
694         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695                                        ttm->num_pages, &gtt->range, readonly,
696                                        false);
697 out_putmm:
698         mmput(mm);
699
700         return r;
701 }
702
703 /*
704  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
705  * Check if the pages backing this ttm range have been invalidated
706  *
707  * Returns: true if pages are still valid
708  */
709 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
710 {
711         struct amdgpu_ttm_tt *gtt = (void *)ttm;
712         bool r = false;
713
714         if (!gtt || !gtt->userptr)
715                 return false;
716
717         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
718                 gtt->userptr, ttm->num_pages);
719
720         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
721                 "No user pages to check\n");
722
723         if (gtt->range) {
724                 /*
725                  * FIXME: Must always hold notifier_lock for this, and must
726                  * not ignore the return code.
727                  */
728                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
729                 gtt->range = NULL;
730         }
731
732         return !r;
733 }
734 #endif
735
736 /*
737  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
738  *
739  * Called by amdgpu_cs_list_validate(). This creates the page list
740  * that backs user memory and will ultimately be mapped into the device
741  * address space.
742  */
743 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
744 {
745         unsigned long i;
746
747         for (i = 0; i < ttm->num_pages; ++i)
748                 ttm->pages[i] = pages ? pages[i] : NULL;
749 }
750
751 /*
752  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
753  *
754  * Called by amdgpu_ttm_backend_bind()
755  **/
756 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
757                                      struct ttm_tt *ttm)
758 {
759         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
760         struct amdgpu_ttm_tt *gtt = (void *)ttm;
761         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
762         enum dma_data_direction direction = write ?
763                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
764         int r;
765
766         /* Allocate an SG array and squash pages into it */
767         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
768                                       (u64)ttm->num_pages << PAGE_SHIFT,
769                                       GFP_KERNEL);
770         if (r)
771                 goto release_sg;
772
773         /* Map SG to device */
774         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
775         if (r)
776                 goto release_sg;
777
778         /* convert SG to linear array of pages and dma addresses */
779         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
780                                        ttm->num_pages);
781
782         return 0;
783
784 release_sg:
785         kfree(ttm->sg);
786         ttm->sg = NULL;
787         return r;
788 }
789
790 /*
791  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
792  */
793 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
794                                         struct ttm_tt *ttm)
795 {
796         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
797         struct amdgpu_ttm_tt *gtt = (void *)ttm;
798         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
799         enum dma_data_direction direction = write ?
800                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
801
802         /* double check that we don't free the table twice */
803         if (!ttm->sg || !ttm->sg->sgl)
804                 return;
805
806         /* unmap the pages mapped to the device */
807         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
808         sg_free_table(ttm->sg);
809
810 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
811         if (gtt->range) {
812                 unsigned long i;
813
814                 for (i = 0; i < ttm->num_pages; i++) {
815                         if (ttm->pages[i] !=
816                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
817                                 break;
818                 }
819
820                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
821         }
822 #endif
823 }
824
825 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
826                                 struct ttm_buffer_object *tbo,
827                                 uint64_t flags)
828 {
829         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
830         struct ttm_tt *ttm = tbo->ttm;
831         struct amdgpu_ttm_tt *gtt = (void *)ttm;
832         int r;
833
834         if (amdgpu_bo_encrypted(abo))
835                 flags |= AMDGPU_PTE_TMZ;
836
837         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
838                 uint64_t page_idx = 1;
839
840                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
841                                 ttm->pages, gtt->ttm.dma_address, flags);
842                 if (r)
843                         goto gart_bind_fail;
844
845                 /* The memory type of the first page defaults to UC. Now
846                  * modify the memory type to NC from the second page of
847                  * the BO onward.
848                  */
849                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
850                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
851
852                 r = amdgpu_gart_bind(adev,
853                                 gtt->offset + (page_idx << PAGE_SHIFT),
854                                 ttm->num_pages - page_idx,
855                                 &ttm->pages[page_idx],
856                                 &(gtt->ttm.dma_address[page_idx]), flags);
857         } else {
858                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
859                                      ttm->pages, gtt->ttm.dma_address, flags);
860         }
861
862 gart_bind_fail:
863         if (r)
864                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
865                           ttm->num_pages, gtt->offset);
866
867         return r;
868 }
869
870 /*
871  * amdgpu_ttm_backend_bind - Bind GTT memory
872  *
873  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
874  * This handles binding GTT memory to the device address space.
875  */
876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877                                    struct ttm_tt *ttm,
878                                    struct ttm_resource *bo_mem)
879 {
880         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
881         struct amdgpu_ttm_tt *gtt = (void*)ttm;
882         uint64_t flags;
883         int r = 0;
884
885         if (!bo_mem)
886                 return -EINVAL;
887
888         if (gtt->bound)
889                 return 0;
890
891         if (gtt->userptr) {
892                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893                 if (r) {
894                         DRM_ERROR("failed to pin userptr\n");
895                         return r;
896                 }
897         } else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
898                 if (!ttm->sg) {
899                         struct dma_buf_attachment *attach;
900                         struct sg_table *sgt;
901
902                         attach = gtt->gobj->import_attach;
903                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
904                         if (IS_ERR(sgt))
905                                 return PTR_ERR(sgt);
906
907                         ttm->sg = sgt;
908                 }
909
910                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
911                                                ttm->num_pages);
912         }
913
914         if (!ttm->num_pages) {
915                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
916                      ttm->num_pages, bo_mem, ttm);
917         }
918
919         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
920             bo_mem->mem_type == AMDGPU_PL_GWS ||
921             bo_mem->mem_type == AMDGPU_PL_OA)
922                 return -EINVAL;
923
924         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926                 return 0;
927         }
928
929         /* compute PTE flags relevant to this BO memory */
930         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932         /* bind pages into GART page tables */
933         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935                 ttm->pages, gtt->ttm.dma_address, flags);
936
937         if (r)
938                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
939                           ttm->num_pages, gtt->offset);
940         gtt->bound = true;
941         return r;
942 }
943
944 /*
945  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
946  * through AGP or GART aperture.
947  *
948  * If bo is accessible through AGP aperture, then use AGP aperture
949  * to access bo; otherwise allocate logical space in GART aperture
950  * and map bo to GART aperture.
951  */
952 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
953 {
954         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
955         struct ttm_operation_ctx ctx = { false, false };
956         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
957         struct ttm_resource tmp;
958         struct ttm_placement placement;
959         struct ttm_place placements;
960         uint64_t addr, flags;
961         int r;
962
963         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
964                 return 0;
965
966         addr = amdgpu_gmc_agp_addr(bo);
967         if (addr != AMDGPU_BO_INVALID_OFFSET) {
968                 bo->mem.start = addr >> PAGE_SHIFT;
969         } else {
970
971                 /* allocate GART space */
972                 placement.num_placement = 1;
973                 placement.placement = &placements;
974                 placement.num_busy_placement = 1;
975                 placement.busy_placement = &placements;
976                 placements.fpfn = 0;
977                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
978                 placements.mem_type = TTM_PL_TT;
979                 placements.flags = bo->mem.placement;
980
981                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
982                 if (unlikely(r))
983                         return r;
984
985                 /* compute PTE flags for this buffer object */
986                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
987
988                 /* Bind pages */
989                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
990                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
991                 if (unlikely(r)) {
992                         ttm_resource_free(bo, &tmp);
993                         return r;
994                 }
995
996                 amdgpu_gart_invalidate_tlb(adev);
997                 ttm_resource_free(bo, &bo->mem);
998                 bo->mem = tmp;
999         }
1000
1001         return 0;
1002 }
1003
1004 /*
1005  * amdgpu_ttm_recover_gart - Rebind GTT pages
1006  *
1007  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1008  * rebind GTT pages during a GPU reset.
1009  */
1010 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1011 {
1012         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1013         uint64_t flags;
1014         int r;
1015
1016         if (!tbo->ttm)
1017                 return 0;
1018
1019         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1020         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1021
1022         return r;
1023 }
1024
1025 /*
1026  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1027  *
1028  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1029  * ttm_tt_destroy().
1030  */
1031 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1032                                       struct ttm_tt *ttm)
1033 {
1034         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1035         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1036         int r;
1037
1038         /* if the pages have userptr pinning then clear that first */
1039         if (gtt->userptr) {
1040                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1041         } else if (ttm->sg && gtt->gobj->import_attach) {
1042                 struct dma_buf_attachment *attach;
1043
1044                 attach = gtt->gobj->import_attach;
1045                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1046                 ttm->sg = NULL;
1047         }
1048
1049         if (!gtt->bound)
1050                 return;
1051
1052         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1053                 return;
1054
1055         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1056         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1057         if (r)
1058                 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1059                           gtt->ttm.num_pages, gtt->offset);
1060         gtt->bound = false;
1061 }
1062
1063 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1064                                        struct ttm_tt *ttm)
1065 {
1066         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1067
1068         amdgpu_ttm_backend_unbind(bdev, ttm);
1069         ttm_tt_destroy_common(bdev, ttm);
1070         if (gtt->usertask)
1071                 put_task_struct(gtt->usertask);
1072
1073         ttm_tt_fini(&gtt->ttm);
1074         kfree(gtt);
1075 }
1076
1077 /**
1078  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1079  *
1080  * @bo: The buffer object to create a GTT ttm_tt object around
1081  * @page_flags: Page flags to be added to the ttm_tt object
1082  *
1083  * Called by ttm_tt_create().
1084  */
1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1086                                            uint32_t page_flags)
1087 {
1088         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1089         struct amdgpu_ttm_tt *gtt;
1090         enum ttm_caching caching;
1091
1092         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1093         if (gtt == NULL) {
1094                 return NULL;
1095         }
1096         gtt->gobj = &bo->base;
1097
1098         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1099                 caching = ttm_write_combined;
1100         else
1101                 caching = ttm_cached;
1102
1103         /* allocate space for the uninitialized page entries */
1104         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1105                 kfree(gtt);
1106                 return NULL;
1107         }
1108         return &gtt->ttm;
1109 }
1110
1111 /*
1112  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1113  *
1114  * Map the pages of a ttm_tt object to an address space visible
1115  * to the underlying device.
1116  */
1117 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1118                                   struct ttm_tt *ttm,
1119                                   struct ttm_operation_ctx *ctx)
1120 {
1121         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1122         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1123
1124         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1125         if (gtt && gtt->userptr) {
1126                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1127                 if (!ttm->sg)
1128                         return -ENOMEM;
1129
1130                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1131                 return 0;
1132         }
1133
1134         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1135                 return 0;
1136
1137         return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1138 }
1139
1140 /*
1141  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1142  *
1143  * Unmaps pages of a ttm_tt object from the device address space and
1144  * unpopulates the page array backing it.
1145  */
1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1147                                      struct ttm_tt *ttm)
1148 {
1149         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1150         struct amdgpu_device *adev;
1151
1152         if (gtt && gtt->userptr) {
1153                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1154                 kfree(ttm->sg);
1155                 ttm->sg = NULL;
1156                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1157                 return;
1158         }
1159
1160         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1161                 return;
1162
1163         adev = amdgpu_ttm_adev(bdev);
1164         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1165 }
1166
1167 /**
1168  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1169  * task
1170  *
1171  * @bo: The ttm_buffer_object to bind this userptr to
1172  * @addr:  The address in the current tasks VM space to use
1173  * @flags: Requirements of userptr object.
1174  *
1175  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1176  * to current task
1177  */
1178 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1179                               uint64_t addr, uint32_t flags)
1180 {
1181         struct amdgpu_ttm_tt *gtt;
1182
1183         if (!bo->ttm) {
1184                 /* TODO: We want a separate TTM object type for userptrs */
1185                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1186                 if (bo->ttm == NULL)
1187                         return -ENOMEM;
1188         }
1189
1190         gtt = (void *)bo->ttm;
1191         gtt->userptr = addr;
1192         gtt->userflags = flags;
1193
1194         if (gtt->usertask)
1195                 put_task_struct(gtt->usertask);
1196         gtt->usertask = current->group_leader;
1197         get_task_struct(gtt->usertask);
1198
1199         return 0;
1200 }
1201
1202 /*
1203  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1204  */
1205 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1206 {
1207         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1208
1209         if (gtt == NULL)
1210                 return NULL;
1211
1212         if (gtt->usertask == NULL)
1213                 return NULL;
1214
1215         return gtt->usertask->mm;
1216 }
1217
1218 /*
1219  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1220  * address range for the current task.
1221  *
1222  */
1223 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1224                                   unsigned long end)
1225 {
1226         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1227         unsigned long size;
1228
1229         if (gtt == NULL || !gtt->userptr)
1230                 return false;
1231
1232         /* Return false if no part of the ttm_tt object lies within
1233          * the range
1234          */
1235         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1236         if (gtt->userptr > end || gtt->userptr + size <= start)
1237                 return false;
1238
1239         return true;
1240 }
1241
1242 /*
1243  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1244  */
1245 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1246 {
1247         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1248
1249         if (gtt == NULL || !gtt->userptr)
1250                 return false;
1251
1252         return true;
1253 }
1254
1255 /*
1256  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1257  */
1258 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1259 {
1260         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1261
1262         if (gtt == NULL)
1263                 return false;
1264
1265         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1266 }
1267
1268 /**
1269  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1270  *
1271  * @ttm: The ttm_tt object to compute the flags for
1272  * @mem: The memory registry backing this ttm_tt object
1273  *
1274  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1275  */
1276 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1277 {
1278         uint64_t flags = 0;
1279
1280         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1281                 flags |= AMDGPU_PTE_VALID;
1282
1283         if (mem && (mem->mem_type == TTM_PL_TT ||
1284                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1285                 flags |= AMDGPU_PTE_SYSTEM;
1286
1287                 if (ttm->caching == ttm_cached)
1288                         flags |= AMDGPU_PTE_SNOOPED;
1289         }
1290
1291         if (mem && mem->mem_type == TTM_PL_VRAM &&
1292                         mem->bus.caching == ttm_cached)
1293                 flags |= AMDGPU_PTE_SNOOPED;
1294
1295         return flags;
1296 }
1297
1298 /**
1299  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1300  *
1301  * @adev: amdgpu_device pointer
1302  * @ttm: The ttm_tt object to compute the flags for
1303  * @mem: The memory registry backing this ttm_tt object
1304  *
1305  * Figure out the flags to use for a VM PTE (Page Table Entry).
1306  */
1307 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1308                                  struct ttm_resource *mem)
1309 {
1310         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1311
1312         flags |= adev->gart.gart_pte_flags;
1313         flags |= AMDGPU_PTE_READABLE;
1314
1315         if (!amdgpu_ttm_tt_is_readonly(ttm))
1316                 flags |= AMDGPU_PTE_WRITEABLE;
1317
1318         return flags;
1319 }
1320
1321 /*
1322  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1323  * object.
1324  *
1325  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1326  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1327  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1328  * used to clean out a memory space.
1329  */
1330 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1331                                             const struct ttm_place *place)
1332 {
1333         unsigned long num_pages = bo->mem.num_pages;
1334         struct amdgpu_res_cursor cursor;
1335         struct dma_resv_list *flist;
1336         struct dma_fence *f;
1337         int i;
1338
1339         if (bo->type == ttm_bo_type_kernel &&
1340             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1341                 return false;
1342
1343         /* If bo is a KFD BO, check if the bo belongs to the current process.
1344          * If true, then return false as any KFD process needs all its BOs to
1345          * be resident to run successfully
1346          */
1347         flist = dma_resv_get_list(bo->base.resv);
1348         if (flist) {
1349                 for (i = 0; i < flist->shared_count; ++i) {
1350                         f = rcu_dereference_protected(flist->shared[i],
1351                                 dma_resv_held(bo->base.resv));
1352                         if (amdkfd_fence_check_mm(f, current->mm))
1353                                 return false;
1354                 }
1355         }
1356
1357         switch (bo->mem.mem_type) {
1358         case AMDGPU_PL_PREEMPT:
1359                 /* Preemptible BOs don't own system resources managed by the
1360                  * driver (pages, VRAM, GART space). They point to resources
1361                  * owned by someone else (e.g. pageable memory in user mode
1362                  * or a DMABuf). They are used in a preemptible context so we
1363                  * can guarantee no deadlocks and good QoS in case of MMU
1364                  * notifiers or DMABuf move notifiers from the resource owner.
1365                  */
1366                 return false;
1367         case TTM_PL_TT:
1368                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1369                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1370                         return false;
1371                 return true;
1372
1373         case TTM_PL_VRAM:
1374                 /* Check each drm MM node individually */
1375                 amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT,
1376                                  &cursor);
1377                 while (cursor.remaining) {
1378                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1379                             && !(place->lpfn &&
1380                                  place->lpfn <= PFN_DOWN(cursor.start)))
1381                                 return true;
1382
1383                         amdgpu_res_next(&cursor, cursor.size);
1384                 }
1385                 return false;
1386
1387         default:
1388                 break;
1389         }
1390
1391         return ttm_bo_eviction_valuable(bo, place);
1392 }
1393
1394 /**
1395  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1396  *
1397  * @bo:  The buffer object to read/write
1398  * @offset:  Offset into buffer object
1399  * @buf:  Secondary buffer to write/read from
1400  * @len: Length in bytes of access
1401  * @write:  true if writing
1402  *
1403  * This is used to access VRAM that backs a buffer object via MMIO
1404  * access for debugging purposes.
1405  */
1406 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1407                                     unsigned long offset, void *buf, int len,
1408                                     int write)
1409 {
1410         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1411         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1412         struct amdgpu_res_cursor cursor;
1413         unsigned long flags;
1414         uint32_t value = 0;
1415         int ret = 0;
1416
1417         if (bo->mem.mem_type != TTM_PL_VRAM)
1418                 return -EIO;
1419
1420         amdgpu_res_first(&bo->mem, offset, len, &cursor);
1421         while (cursor.remaining) {
1422                 uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1423                 uint64_t bytes = 4 - (cursor.start & 3);
1424                 uint32_t shift = (cursor.start & 3) * 8;
1425                 uint32_t mask = 0xffffffff << shift;
1426
1427                 if (cursor.size < bytes) {
1428                         mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1429                         bytes = cursor.size;
1430                 }
1431
1432                 if (mask != 0xffffffff) {
1433                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1434                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1435                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1436                         value = RREG32_NO_KIQ(mmMM_DATA);
1437                         if (write) {
1438                                 value &= ~mask;
1439                                 value |= (*(uint32_t *)buf << shift) & mask;
1440                                 WREG32_NO_KIQ(mmMM_DATA, value);
1441                         }
1442                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1443                         if (!write) {
1444                                 value = (value & mask) >> shift;
1445                                 memcpy(buf, &value, bytes);
1446                         }
1447                 } else {
1448                         bytes = cursor.size & ~0x3ULL;
1449                         amdgpu_device_vram_access(adev, cursor.start,
1450                                                   (uint32_t *)buf, bytes,
1451                                                   write);
1452                 }
1453
1454                 ret += bytes;
1455                 buf = (uint8_t *)buf + bytes;
1456                 amdgpu_res_next(&cursor, bytes);
1457         }
1458
1459         return ret;
1460 }
1461
1462 static void
1463 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1464 {
1465         amdgpu_bo_move_notify(bo, false, NULL);
1466 }
1467
1468 static struct ttm_device_funcs amdgpu_bo_driver = {
1469         .ttm_tt_create = &amdgpu_ttm_tt_create,
1470         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1471         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1472         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1473         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1474         .evict_flags = &amdgpu_evict_flags,
1475         .move = &amdgpu_bo_move,
1476         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1477         .release_notify = &amdgpu_bo_release_notify,
1478         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1479         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1480         .access_memory = &amdgpu_ttm_access_memory,
1481         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1482 };
1483
1484 /*
1485  * Firmware Reservation functions
1486  */
1487 /**
1488  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1489  *
1490  * @adev: amdgpu_device pointer
1491  *
1492  * free fw reserved vram if it has been reserved.
1493  */
1494 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1495 {
1496         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1497                 NULL, &adev->mman.fw_vram_usage_va);
1498 }
1499
1500 /**
1501  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1502  *
1503  * @adev: amdgpu_device pointer
1504  *
1505  * create bo vram reservation from fw.
1506  */
1507 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1508 {
1509         uint64_t vram_size = adev->gmc.visible_vram_size;
1510
1511         adev->mman.fw_vram_usage_va = NULL;
1512         adev->mman.fw_vram_usage_reserved_bo = NULL;
1513
1514         if (adev->mman.fw_vram_usage_size == 0 ||
1515             adev->mman.fw_vram_usage_size > vram_size)
1516                 return 0;
1517
1518         return amdgpu_bo_create_kernel_at(adev,
1519                                           adev->mman.fw_vram_usage_start_offset,
1520                                           adev->mman.fw_vram_usage_size,
1521                                           AMDGPU_GEM_DOMAIN_VRAM,
1522                                           &adev->mman.fw_vram_usage_reserved_bo,
1523                                           &adev->mman.fw_vram_usage_va);
1524 }
1525
1526 /*
1527  * Memoy training reservation functions
1528  */
1529
1530 /**
1531  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1532  *
1533  * @adev: amdgpu_device pointer
1534  *
1535  * free memory training reserved vram if it has been reserved.
1536  */
1537 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1538 {
1539         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1540
1541         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1542         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1543         ctx->c2p_bo = NULL;
1544
1545         return 0;
1546 }
1547
1548 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1549 {
1550         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1551
1552         memset(ctx, 0, sizeof(*ctx));
1553
1554         ctx->c2p_train_data_offset =
1555                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1556         ctx->p2c_train_data_offset =
1557                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1558         ctx->train_data_size =
1559                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1560
1561         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1562                         ctx->train_data_size,
1563                         ctx->p2c_train_data_offset,
1564                         ctx->c2p_train_data_offset);
1565 }
1566
1567 /*
1568  * reserve TMR memory at the top of VRAM which holds
1569  * IP Discovery data and is protected by PSP.
1570  */
1571 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1572 {
1573         int ret;
1574         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1575         bool mem_train_support = false;
1576
1577         if (!amdgpu_sriov_vf(adev)) {
1578                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1579                         mem_train_support = true;
1580                 else
1581                         DRM_DEBUG("memory training does not support!\n");
1582         }
1583
1584         /*
1585          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1586          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1587          *
1588          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1589          * discovery data and G6 memory training data respectively
1590          */
1591         adev->mman.discovery_tmr_size =
1592                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1593         if (!adev->mman.discovery_tmr_size)
1594                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1595
1596         if (mem_train_support) {
1597                 /* reserve vram for mem train according to TMR location */
1598                 amdgpu_ttm_training_data_block_init(adev);
1599                 ret = amdgpu_bo_create_kernel_at(adev,
1600                                          ctx->c2p_train_data_offset,
1601                                          ctx->train_data_size,
1602                                          AMDGPU_GEM_DOMAIN_VRAM,
1603                                          &ctx->c2p_bo,
1604                                          NULL);
1605                 if (ret) {
1606                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1607                         amdgpu_ttm_training_reserve_vram_fini(adev);
1608                         return ret;
1609                 }
1610                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1611         }
1612
1613         ret = amdgpu_bo_create_kernel_at(adev,
1614                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1615                                 adev->mman.discovery_tmr_size,
1616                                 AMDGPU_GEM_DOMAIN_VRAM,
1617                                 &adev->mman.discovery_memory,
1618                                 NULL);
1619         if (ret) {
1620                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1621                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1622                 return ret;
1623         }
1624
1625         return 0;
1626 }
1627
1628 /*
1629  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1630  * gtt/vram related fields.
1631  *
1632  * This initializes all of the memory space pools that the TTM layer
1633  * will need such as the GTT space (system memory mapped to the device),
1634  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1635  * can be mapped per VMID.
1636  */
1637 int amdgpu_ttm_init(struct amdgpu_device *adev)
1638 {
1639         uint64_t gtt_size;
1640         int r;
1641         u64 vis_vram_limit;
1642
1643         mutex_init(&adev->mman.gtt_window_lock);
1644
1645         /* No others user of address space so set it to 0 */
1646         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1647                                adev_to_drm(adev)->anon_inode->i_mapping,
1648                                adev_to_drm(adev)->vma_offset_manager,
1649                                adev->need_swiotlb,
1650                                dma_addressing_limited(adev->dev));
1651         if (r) {
1652                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1653                 return r;
1654         }
1655         adev->mman.initialized = true;
1656
1657         /* Initialize VRAM pool with all of VRAM divided into pages */
1658         r = amdgpu_vram_mgr_init(adev);
1659         if (r) {
1660                 DRM_ERROR("Failed initializing VRAM heap.\n");
1661                 return r;
1662         }
1663
1664         /* Reduce size of CPU-visible VRAM if requested */
1665         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1666         if (amdgpu_vis_vram_limit > 0 &&
1667             vis_vram_limit <= adev->gmc.visible_vram_size)
1668                 adev->gmc.visible_vram_size = vis_vram_limit;
1669
1670         /* Change the size here instead of the init above so only lpfn is affected */
1671         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1672 #ifdef CONFIG_64BIT
1673 #ifdef CONFIG_X86
1674         if (adev->gmc.xgmi.connected_to_cpu)
1675                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1676                                 adev->gmc.visible_vram_size);
1677
1678         else
1679 #endif
1680                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1681                                 adev->gmc.visible_vram_size);
1682 #endif
1683
1684         /*
1685          *The reserved vram for firmware must be pinned to the specified
1686          *place on the VRAM, so reserve it early.
1687          */
1688         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1689         if (r) {
1690                 return r;
1691         }
1692
1693         /*
1694          * only NAVI10 and onwards ASIC support for IP discovery.
1695          * If IP discovery enabled, a block of memory should be
1696          * reserved for IP discovey.
1697          */
1698         if (adev->mman.discovery_bin) {
1699                 r = amdgpu_ttm_reserve_tmr(adev);
1700                 if (r)
1701                         return r;
1702         }
1703
1704         /* allocate memory as required for VGA
1705          * This is used for VGA emulation and pre-OS scanout buffers to
1706          * avoid display artifacts while transitioning between pre-OS
1707          * and driver.  */
1708         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1709                                        AMDGPU_GEM_DOMAIN_VRAM,
1710                                        &adev->mman.stolen_vga_memory,
1711                                        NULL);
1712         if (r)
1713                 return r;
1714         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1715                                        adev->mman.stolen_extended_size,
1716                                        AMDGPU_GEM_DOMAIN_VRAM,
1717                                        &adev->mman.stolen_extended_memory,
1718                                        NULL);
1719         if (r)
1720                 return r;
1721
1722         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1723                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1724
1725         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1726          * or whatever the user passed on module init */
1727         if (amdgpu_gtt_size == -1) {
1728                 struct sysinfo si;
1729
1730                 si_meminfo(&si);
1731                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1732                                adev->gmc.mc_vram_size),
1733                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1734         }
1735         else
1736                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1737
1738         /* Initialize GTT memory pool */
1739         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1740         if (r) {
1741                 DRM_ERROR("Failed initializing GTT heap.\n");
1742                 return r;
1743         }
1744         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1745                  (unsigned)(gtt_size / (1024 * 1024)));
1746
1747         /* Initialize preemptible memory pool */
1748         r = amdgpu_preempt_mgr_init(adev);
1749         if (r) {
1750                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1751                 return r;
1752         }
1753
1754         /* Initialize various on-chip memory pools */
1755         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1756         if (r) {
1757                 DRM_ERROR("Failed initializing GDS heap.\n");
1758                 return r;
1759         }
1760
1761         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1762         if (r) {
1763                 DRM_ERROR("Failed initializing gws heap.\n");
1764                 return r;
1765         }
1766
1767         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1768         if (r) {
1769                 DRM_ERROR("Failed initializing oa heap.\n");
1770                 return r;
1771         }
1772
1773         return 0;
1774 }
1775
1776 /*
1777  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1778  */
1779 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1780 {
1781         if (!adev->mman.initialized)
1782                 return;
1783
1784         amdgpu_ttm_training_reserve_vram_fini(adev);
1785         /* return the stolen vga memory back to VRAM */
1786         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1787         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1788         /* return the IP Discovery TMR memory back to VRAM */
1789         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1790         amdgpu_ttm_fw_reserve_vram_fini(adev);
1791
1792         amdgpu_vram_mgr_fini(adev);
1793         amdgpu_gtt_mgr_fini(adev);
1794         amdgpu_preempt_mgr_fini(adev);
1795         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1796         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1797         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1798         ttm_device_fini(&adev->mman.bdev);
1799         adev->mman.initialized = false;
1800         DRM_INFO("amdgpu: ttm finalized\n");
1801 }
1802
1803 /**
1804  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1805  *
1806  * @adev: amdgpu_device pointer
1807  * @enable: true when we can use buffer functions.
1808  *
1809  * Enable/disable use of buffer functions during suspend/resume. This should
1810  * only be called at bootup or when userspace isn't running.
1811  */
1812 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1813 {
1814         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1815         uint64_t size;
1816         int r;
1817
1818         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1819             adev->mman.buffer_funcs_enabled == enable)
1820                 return;
1821
1822         if (enable) {
1823                 struct amdgpu_ring *ring;
1824                 struct drm_gpu_scheduler *sched;
1825
1826                 ring = adev->mman.buffer_funcs_ring;
1827                 sched = &ring->sched;
1828                 r = drm_sched_entity_init(&adev->mman.entity,
1829                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1830                                           1, NULL);
1831                 if (r) {
1832                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1833                                   r);
1834                         return;
1835                 }
1836         } else {
1837                 drm_sched_entity_destroy(&adev->mman.entity);
1838                 dma_fence_put(man->move);
1839                 man->move = NULL;
1840         }
1841
1842         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1843         if (enable)
1844                 size = adev->gmc.real_vram_size;
1845         else
1846                 size = adev->gmc.visible_vram_size;
1847         man->size = size >> PAGE_SHIFT;
1848         adev->mman.buffer_funcs_enabled = enable;
1849 }
1850
1851 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1852                        uint64_t dst_offset, uint32_t byte_count,
1853                        struct dma_resv *resv,
1854                        struct dma_fence **fence, bool direct_submit,
1855                        bool vm_needs_flush, bool tmz)
1856 {
1857         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1858                 AMDGPU_IB_POOL_DELAYED;
1859         struct amdgpu_device *adev = ring->adev;
1860         struct amdgpu_job *job;
1861
1862         uint32_t max_bytes;
1863         unsigned num_loops, num_dw;
1864         unsigned i;
1865         int r;
1866
1867         if (direct_submit && !ring->sched.ready) {
1868                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1869                 return -EINVAL;
1870         }
1871
1872         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1873         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1874         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1875
1876         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1877         if (r)
1878                 return r;
1879
1880         if (vm_needs_flush) {
1881                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1882                                         adev->gmc.pdb0_bo : adev->gart.bo);
1883                 job->vm_needs_flush = true;
1884         }
1885         if (resv) {
1886                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1887                                      AMDGPU_SYNC_ALWAYS,
1888                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1889                 if (r) {
1890                         DRM_ERROR("sync failed (%d).\n", r);
1891                         goto error_free;
1892                 }
1893         }
1894
1895         for (i = 0; i < num_loops; i++) {
1896                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1897
1898                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1899                                         dst_offset, cur_size_in_bytes, tmz);
1900
1901                 src_offset += cur_size_in_bytes;
1902                 dst_offset += cur_size_in_bytes;
1903                 byte_count -= cur_size_in_bytes;
1904         }
1905
1906         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1907         WARN_ON(job->ibs[0].length_dw > num_dw);
1908         if (direct_submit)
1909                 r = amdgpu_job_submit_direct(job, ring, fence);
1910         else
1911                 r = amdgpu_job_submit(job, &adev->mman.entity,
1912                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1913         if (r)
1914                 goto error_free;
1915
1916         return r;
1917
1918 error_free:
1919         amdgpu_job_free(job);
1920         DRM_ERROR("Error scheduling IBs (%d)\n", r);
1921         return r;
1922 }
1923
1924 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1925                        uint32_t src_data,
1926                        struct dma_resv *resv,
1927                        struct dma_fence **fence)
1928 {
1929         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1930         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1931         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1932
1933         struct amdgpu_res_cursor cursor;
1934         unsigned int num_loops, num_dw;
1935         uint64_t num_bytes;
1936
1937         struct amdgpu_job *job;
1938         int r;
1939
1940         if (!adev->mman.buffer_funcs_enabled) {
1941                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1942                 return -EINVAL;
1943         }
1944
1945         if (bo->tbo.mem.mem_type == AMDGPU_PL_PREEMPT) {
1946                 DRM_ERROR("Trying to clear preemptible memory.\n");
1947                 return -EINVAL;
1948         }
1949
1950         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
1951                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1952                 if (r)
1953                         return r;
1954         }
1955
1956         num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT;
1957         num_loops = 0;
1958
1959         amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
1960         while (cursor.remaining) {
1961                 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1962                 amdgpu_res_next(&cursor, cursor.size);
1963         }
1964         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1965
1966         /* for IB padding */
1967         num_dw += 64;
1968
1969         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1970                                      &job);
1971         if (r)
1972                 return r;
1973
1974         if (resv) {
1975                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1976                                      AMDGPU_SYNC_ALWAYS,
1977                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1978                 if (r) {
1979                         DRM_ERROR("sync failed (%d).\n", r);
1980                         goto error_free;
1981                 }
1982         }
1983
1984         amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
1985         while (cursor.remaining) {
1986                 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
1987                 uint64_t dst_addr = cursor.start;
1988
1989                 dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type);
1990                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
1991                                         cur_size);
1992
1993                 amdgpu_res_next(&cursor, cur_size);
1994         }
1995
1996         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1997         WARN_ON(job->ibs[0].length_dw > num_dw);
1998         r = amdgpu_job_submit(job, &adev->mman.entity,
1999                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2000         if (r)
2001                 goto error_free;
2002
2003         return 0;
2004
2005 error_free:
2006         amdgpu_job_free(job);
2007         return r;
2008 }
2009
2010 #if defined(CONFIG_DEBUG_FS)
2011
2012 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2013 {
2014         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2015         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2016                                                             TTM_PL_VRAM);
2017         struct drm_printer p = drm_seq_file_printer(m);
2018
2019         man->func->debug(man, &p);
2020         return 0;
2021 }
2022
2023 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2024 {
2025         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2026
2027         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2028 }
2029
2030 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2031 {
2032         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2033         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2034                                                             TTM_PL_TT);
2035         struct drm_printer p = drm_seq_file_printer(m);
2036
2037         man->func->debug(man, &p);
2038         return 0;
2039 }
2040
2041 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2042 {
2043         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2044         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2045                                                             AMDGPU_PL_GDS);
2046         struct drm_printer p = drm_seq_file_printer(m);
2047
2048         man->func->debug(man, &p);
2049         return 0;
2050 }
2051
2052 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2053 {
2054         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2055         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2056                                                             AMDGPU_PL_GWS);
2057         struct drm_printer p = drm_seq_file_printer(m);
2058
2059         man->func->debug(man, &p);
2060         return 0;
2061 }
2062
2063 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2064 {
2065         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2066         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2067                                                             AMDGPU_PL_OA);
2068         struct drm_printer p = drm_seq_file_printer(m);
2069
2070         man->func->debug(man, &p);
2071         return 0;
2072 }
2073
2074 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2075 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2076 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2077 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2078 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2079 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2080
2081 /*
2082  * amdgpu_ttm_vram_read - Linear read access to VRAM
2083  *
2084  * Accesses VRAM via MMIO for debugging purposes.
2085  */
2086 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2087                                     size_t size, loff_t *pos)
2088 {
2089         struct amdgpu_device *adev = file_inode(f)->i_private;
2090         ssize_t result = 0;
2091
2092         if (size & 0x3 || *pos & 0x3)
2093                 return -EINVAL;
2094
2095         if (*pos >= adev->gmc.mc_vram_size)
2096                 return -ENXIO;
2097
2098         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2099         while (size) {
2100                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2101                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2102
2103                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2104                 if (copy_to_user(buf, value, bytes))
2105                         return -EFAULT;
2106
2107                 result += bytes;
2108                 buf += bytes;
2109                 *pos += bytes;
2110                 size -= bytes;
2111         }
2112
2113         return result;
2114 }
2115
2116 /*
2117  * amdgpu_ttm_vram_write - Linear write access to VRAM
2118  *
2119  * Accesses VRAM via MMIO for debugging purposes.
2120  */
2121 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2122                                     size_t size, loff_t *pos)
2123 {
2124         struct amdgpu_device *adev = file_inode(f)->i_private;
2125         ssize_t result = 0;
2126         int r;
2127
2128         if (size & 0x3 || *pos & 0x3)
2129                 return -EINVAL;
2130
2131         if (*pos >= adev->gmc.mc_vram_size)
2132                 return -ENXIO;
2133
2134         while (size) {
2135                 unsigned long flags;
2136                 uint32_t value;
2137
2138                 if (*pos >= adev->gmc.mc_vram_size)
2139                         return result;
2140
2141                 r = get_user(value, (uint32_t *)buf);
2142                 if (r)
2143                         return r;
2144
2145                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2146                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2147                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2148                 WREG32_NO_KIQ(mmMM_DATA, value);
2149                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2150
2151                 result += 4;
2152                 buf += 4;
2153                 *pos += 4;
2154                 size -= 4;
2155         }
2156
2157         return result;
2158 }
2159
2160 static const struct file_operations amdgpu_ttm_vram_fops = {
2161         .owner = THIS_MODULE,
2162         .read = amdgpu_ttm_vram_read,
2163         .write = amdgpu_ttm_vram_write,
2164         .llseek = default_llseek,
2165 };
2166
2167 /*
2168  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2169  *
2170  * This function is used to read memory that has been mapped to the
2171  * GPU and the known addresses are not physical addresses but instead
2172  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2173  */
2174 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2175                                  size_t size, loff_t *pos)
2176 {
2177         struct amdgpu_device *adev = file_inode(f)->i_private;
2178         struct iommu_domain *dom;
2179         ssize_t result = 0;
2180         int r;
2181
2182         /* retrieve the IOMMU domain if any for this device */
2183         dom = iommu_get_domain_for_dev(adev->dev);
2184
2185         while (size) {
2186                 phys_addr_t addr = *pos & PAGE_MASK;
2187                 loff_t off = *pos & ~PAGE_MASK;
2188                 size_t bytes = PAGE_SIZE - off;
2189                 unsigned long pfn;
2190                 struct page *p;
2191                 void *ptr;
2192
2193                 bytes = bytes < size ? bytes : size;
2194
2195                 /* Translate the bus address to a physical address.  If
2196                  * the domain is NULL it means there is no IOMMU active
2197                  * and the address translation is the identity
2198                  */
2199                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2200
2201                 pfn = addr >> PAGE_SHIFT;
2202                 if (!pfn_valid(pfn))
2203                         return -EPERM;
2204
2205                 p = pfn_to_page(pfn);
2206                 if (p->mapping != adev->mman.bdev.dev_mapping)
2207                         return -EPERM;
2208
2209                 ptr = kmap(p);
2210                 r = copy_to_user(buf, ptr + off, bytes);
2211                 kunmap(p);
2212                 if (r)
2213                         return -EFAULT;
2214
2215                 size -= bytes;
2216                 *pos += bytes;
2217                 result += bytes;
2218         }
2219
2220         return result;
2221 }
2222
2223 /*
2224  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2225  *
2226  * This function is used to write memory that has been mapped to the
2227  * GPU and the known addresses are not physical addresses but instead
2228  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2229  */
2230 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2231                                  size_t size, loff_t *pos)
2232 {
2233         struct amdgpu_device *adev = file_inode(f)->i_private;
2234         struct iommu_domain *dom;
2235         ssize_t result = 0;
2236         int r;
2237
2238         dom = iommu_get_domain_for_dev(adev->dev);
2239
2240         while (size) {
2241                 phys_addr_t addr = *pos & PAGE_MASK;
2242                 loff_t off = *pos & ~PAGE_MASK;
2243                 size_t bytes = PAGE_SIZE - off;
2244                 unsigned long pfn;
2245                 struct page *p;
2246                 void *ptr;
2247
2248                 bytes = bytes < size ? bytes : size;
2249
2250                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2251
2252                 pfn = addr >> PAGE_SHIFT;
2253                 if (!pfn_valid(pfn))
2254                         return -EPERM;
2255
2256                 p = pfn_to_page(pfn);
2257                 if (p->mapping != adev->mman.bdev.dev_mapping)
2258                         return -EPERM;
2259
2260                 ptr = kmap(p);
2261                 r = copy_from_user(ptr + off, buf, bytes);
2262                 kunmap(p);
2263                 if (r)
2264                         return -EFAULT;
2265
2266                 size -= bytes;
2267                 *pos += bytes;
2268                 result += bytes;
2269         }
2270
2271         return result;
2272 }
2273
2274 static const struct file_operations amdgpu_ttm_iomem_fops = {
2275         .owner = THIS_MODULE,
2276         .read = amdgpu_iomem_read,
2277         .write = amdgpu_iomem_write,
2278         .llseek = default_llseek
2279 };
2280
2281 #endif
2282
2283 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2284 {
2285 #if defined(CONFIG_DEBUG_FS)
2286         struct drm_minor *minor = adev_to_drm(adev)->primary;
2287         struct dentry *root = minor->debugfs_root;
2288
2289         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2290                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2291         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2292                             &amdgpu_ttm_iomem_fops);
2293         debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2294                             &amdgpu_mm_vram_table_fops);
2295         debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2296                             &amdgpu_mm_tt_table_fops);
2297         debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2298                             &amdgpu_mm_gds_table_fops);
2299         debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2300                             &amdgpu_mm_gws_table_fops);
2301         debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2302                             &amdgpu_mm_oa_table_fops);
2303         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2304                             &amdgpu_ttm_page_pool_fops);
2305 #endif
2306 }