3e8376891ec8230623523f1c14ecc8043919b59b
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
65
66 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
67                                     unsigned int type,
68                                     uint64_t size)
69 {
70         return ttm_range_man_init(&adev->mman.bdev, type,
71                                   false, size >> PAGE_SHIFT);
72 }
73
74 /**
75  * amdgpu_evict_flags - Compute placement flags
76  *
77  * @bo: The buffer object to evict
78  * @placement: Possible destination(s) for evicted BO
79  *
80  * Fill in placement data when ttm_bo_evict() is called
81  */
82 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
83                                 struct ttm_placement *placement)
84 {
85         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
86         struct amdgpu_bo *abo;
87         static const struct ttm_place placements = {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .mem_type = TTM_PL_SYSTEM,
91                 .flags = TTM_PL_MASK_CACHING
92         };
93
94         /* Don't handle scatter gather BOs */
95         if (bo->type == ttm_bo_type_sg) {
96                 placement->num_placement = 0;
97                 placement->num_busy_placement = 0;
98                 return;
99         }
100
101         /* Object isn't an AMDGPU object so ignore */
102         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
103                 placement->placement = &placements;
104                 placement->busy_placement = &placements;
105                 placement->num_placement = 1;
106                 placement->num_busy_placement = 1;
107                 return;
108         }
109
110         abo = ttm_to_amdgpu_bo(bo);
111         switch (bo->mem.mem_type) {
112         case AMDGPU_PL_GDS:
113         case AMDGPU_PL_GWS:
114         case AMDGPU_PL_OA:
115                 placement->num_placement = 0;
116                 placement->num_busy_placement = 0;
117                 return;
118
119         case TTM_PL_VRAM:
120                 if (!adev->mman.buffer_funcs_enabled) {
121                         /* Move to system memory */
122                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
123                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
124                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
125                            amdgpu_bo_in_cpu_visible_vram(abo)) {
126
127                         /* Try evicting to the CPU inaccessible part of VRAM
128                          * first, but only set GTT as busy placement, so this
129                          * BO will be evicted to GTT rather than causing other
130                          * BOs to be evicted from VRAM
131                          */
132                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
133                                                          AMDGPU_GEM_DOMAIN_GTT);
134                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
135                         abo->placements[0].lpfn = 0;
136                         abo->placement.busy_placement = &abo->placements[1];
137                         abo->placement.num_busy_placement = 1;
138                 } else {
139                         /* Move to GTT memory */
140                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
141                 }
142                 break;
143         case TTM_PL_TT:
144         default:
145                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
146                 break;
147         }
148         *placement = abo->placement;
149 }
150
151 /**
152  * amdgpu_verify_access - Verify access for a mmap call
153  *
154  * @bo: The buffer object to map
155  * @filp: The file pointer from the process performing the mmap
156  *
157  * This is called by ttm_bo_mmap() to verify whether a process
158  * has the right to mmap a BO to their process space.
159  */
160 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
161 {
162         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
163
164         /*
165          * Don't verify access for KFD BOs. They don't have a GEM
166          * object associated with them.
167          */
168         if (abo->kfd_bo)
169                 return 0;
170
171         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
172                 return -EPERM;
173         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
174                                           filp->private_data);
175 }
176
177 /**
178  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
179  *
180  * @bo: The bo to assign the memory to.
181  * @mm_node: Memory manager node for drm allocator.
182  * @mem: The region where the bo resides.
183  *
184  */
185 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
186                                     struct drm_mm_node *mm_node,
187                                     struct ttm_resource *mem)
188 {
189         uint64_t addr = 0;
190
191         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
192                 addr = mm_node->start << PAGE_SHIFT;
193                 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
194                                                 mem->mem_type);
195         }
196         return addr;
197 }
198
199 /**
200  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
201  * @offset. It also modifies the offset to be within the drm_mm_node returned
202  *
203  * @mem: The region where the bo resides.
204  * @offset: The offset that drm_mm_node is used for finding.
205  *
206  */
207 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
208                                                uint64_t *offset)
209 {
210         struct drm_mm_node *mm_node = mem->mm_node;
211
212         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
213                 *offset -= (mm_node->size << PAGE_SHIFT);
214                 ++mm_node;
215         }
216         return mm_node;
217 }
218
219 /**
220  * amdgpu_ttm_map_buffer - Map memory into the GART windows
221  * @bo: buffer object to map
222  * @mem: memory object to map
223  * @mm_node: drm_mm node object to map
224  * @num_pages: number of pages to map
225  * @offset: offset into @mm_node where to start
226  * @window: which GART window to use
227  * @ring: DMA ring to use for the copy
228  * @tmz: if we should setup a TMZ enabled mapping
229  * @addr: resulting address inside the MC address space
230  *
231  * Setup one of the GART windows to access a specific piece of memory or return
232  * the physical address for local memory.
233  */
234 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
235                                  struct ttm_resource *mem,
236                                  struct drm_mm_node *mm_node,
237                                  unsigned num_pages, uint64_t offset,
238                                  unsigned window, struct amdgpu_ring *ring,
239                                  bool tmz, uint64_t *addr)
240 {
241         struct amdgpu_device *adev = ring->adev;
242         struct amdgpu_job *job;
243         unsigned num_dw, num_bytes;
244         struct dma_fence *fence;
245         uint64_t src_addr, dst_addr;
246         void *cpu_addr;
247         uint64_t flags;
248         unsigned int i;
249         int r;
250
251         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
252                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
253
254         /* Map only what can't be accessed directly */
255         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
256                 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
257                 return 0;
258         }
259
260         *addr = adev->gmc.gart_start;
261         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
262                 AMDGPU_GPU_PAGE_SIZE;
263         *addr += offset & ~PAGE_MASK;
264
265         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
266         num_bytes = num_pages * 8;
267
268         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
269                                      AMDGPU_IB_POOL_DELAYED, &job);
270         if (r)
271                 return r;
272
273         src_addr = num_dw * 4;
274         src_addr += job->ibs[0].gpu_addr;
275
276         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
277         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
278         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
279                                 dst_addr, num_bytes, false);
280
281         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
282         WARN_ON(job->ibs[0].length_dw > num_dw);
283
284         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
285         if (tmz)
286                 flags |= AMDGPU_PTE_TMZ;
287
288         cpu_addr = &job->ibs[0].ptr[num_dw];
289
290         if (mem->mem_type == TTM_PL_TT) {
291                 struct ttm_dma_tt *dma;
292                 dma_addr_t *dma_address;
293
294                 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
295                 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
296                 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
297                                     cpu_addr);
298                 if (r)
299                         goto error_free;
300         } else {
301                 dma_addr_t dma_address;
302
303                 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
304                 dma_address += adev->vm_manager.vram_base_offset;
305
306                 for (i = 0; i < num_pages; ++i) {
307                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
308                                             &dma_address, flags, cpu_addr);
309                         if (r)
310                                 goto error_free;
311
312                         dma_address += PAGE_SIZE;
313                 }
314         }
315
316         r = amdgpu_job_submit(job, &adev->mman.entity,
317                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
318         if (r)
319                 goto error_free;
320
321         dma_fence_put(fence);
322
323         return r;
324
325 error_free:
326         amdgpu_job_free(job);
327         return r;
328 }
329
330 /**
331  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
332  * @adev: amdgpu device
333  * @src: buffer/address where to read from
334  * @dst: buffer/address where to write to
335  * @size: number of bytes to copy
336  * @tmz: if a secure copy should be used
337  * @resv: resv object to sync to
338  * @f: Returns the last fence if multiple jobs are submitted.
339  *
340  * The function copies @size bytes from {src->mem + src->offset} to
341  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
342  * move and different for a BO to BO copy.
343  *
344  */
345 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
346                                const struct amdgpu_copy_mem *src,
347                                const struct amdgpu_copy_mem *dst,
348                                uint64_t size, bool tmz,
349                                struct dma_resv *resv,
350                                struct dma_fence **f)
351 {
352         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
353                                         AMDGPU_GPU_PAGE_SIZE);
354
355         uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
356         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
357         struct drm_mm_node *src_mm, *dst_mm;
358         struct dma_fence *fence = NULL;
359         int r = 0;
360
361         if (!adev->mman.buffer_funcs_enabled) {
362                 DRM_ERROR("Trying to move memory with ring turned off.\n");
363                 return -EINVAL;
364         }
365
366         src_offset = src->offset;
367         if (src->mem->mm_node) {
368                 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
369                 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
370         } else {
371                 src_mm = NULL;
372                 src_node_size = ULLONG_MAX;
373         }
374
375         dst_offset = dst->offset;
376         if (dst->mem->mm_node) {
377                 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
378                 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
379         } else {
380                 dst_mm = NULL;
381                 dst_node_size = ULLONG_MAX;
382         }
383
384         mutex_lock(&adev->mman.gtt_window_lock);
385
386         while (size) {
387                 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
388                 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
389                 struct dma_fence *next;
390                 uint32_t cur_size;
391                 uint64_t from, to;
392
393                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
394                  * begins at an offset, then adjust the size accordingly
395                  */
396                 cur_size = max(src_page_offset, dst_page_offset);
397                 cur_size = min(min3(src_node_size, dst_node_size, size),
398                                (uint64_t)(GTT_MAX_BYTES - cur_size));
399
400                 /* Map src to window 0 and dst to window 1. */
401                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
402                                           PFN_UP(cur_size + src_page_offset),
403                                           src_offset, 0, ring, tmz, &from);
404                 if (r)
405                         goto error;
406
407                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
408                                           PFN_UP(cur_size + dst_page_offset),
409                                           dst_offset, 1, ring, tmz, &to);
410                 if (r)
411                         goto error;
412
413                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
414                                        resv, &next, false, true, tmz);
415                 if (r)
416                         goto error;
417
418                 dma_fence_put(fence);
419                 fence = next;
420
421                 size -= cur_size;
422                 if (!size)
423                         break;
424
425                 src_node_size -= cur_size;
426                 if (!src_node_size) {
427                         ++src_mm;
428                         src_node_size = src_mm->size << PAGE_SHIFT;
429                         src_offset = 0;
430                 } else {
431                         src_offset += cur_size;
432                 }
433
434                 dst_node_size -= cur_size;
435                 if (!dst_node_size) {
436                         ++dst_mm;
437                         dst_node_size = dst_mm->size << PAGE_SHIFT;
438                         dst_offset = 0;
439                 } else {
440                         dst_offset += cur_size;
441                 }
442         }
443 error:
444         mutex_unlock(&adev->mman.gtt_window_lock);
445         if (f)
446                 *f = dma_fence_get(fence);
447         dma_fence_put(fence);
448         return r;
449 }
450
451 /**
452  * amdgpu_move_blit - Copy an entire buffer to another buffer
453  *
454  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
455  * help move buffers to and from VRAM.
456  */
457 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
458                             bool evict,
459                             struct ttm_resource *new_mem,
460                             struct ttm_resource *old_mem)
461 {
462         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
463         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
464         struct amdgpu_copy_mem src, dst;
465         struct dma_fence *fence = NULL;
466         int r;
467
468         src.bo = bo;
469         dst.bo = bo;
470         src.mem = old_mem;
471         dst.mem = new_mem;
472         src.offset = 0;
473         dst.offset = 0;
474
475         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
476                                        new_mem->num_pages << PAGE_SHIFT,
477                                        amdgpu_bo_encrypted(abo),
478                                        bo->base.resv, &fence);
479         if (r)
480                 goto error;
481
482         /* clear the space being freed */
483         if (old_mem->mem_type == TTM_PL_VRAM &&
484             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
485                 struct dma_fence *wipe_fence = NULL;
486
487                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
488                                        NULL, &wipe_fence);
489                 if (r) {
490                         goto error;
491                 } else if (wipe_fence) {
492                         dma_fence_put(fence);
493                         fence = wipe_fence;
494                 }
495         }
496
497         /* Always block for VM page tables before committing the new location */
498         if (bo->type == ttm_bo_type_kernel)
499                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
500         else
501                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
502         dma_fence_put(fence);
503         return r;
504
505 error:
506         if (fence)
507                 dma_fence_wait(fence, false);
508         dma_fence_put(fence);
509         return r;
510 }
511
512 /**
513  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
514  *
515  * Called by amdgpu_bo_move().
516  */
517 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
518                                 struct ttm_operation_ctx *ctx,
519                                 struct ttm_resource *new_mem)
520 {
521         struct ttm_resource *old_mem = &bo->mem;
522         struct ttm_resource tmp_mem;
523         struct ttm_place placements;
524         struct ttm_placement placement;
525         int r;
526
527         /* create space/pages for new_mem in GTT space */
528         tmp_mem = *new_mem;
529         tmp_mem.mm_node = NULL;
530         placement.num_placement = 1;
531         placement.placement = &placements;
532         placement.num_busy_placement = 1;
533         placement.busy_placement = &placements;
534         placements.fpfn = 0;
535         placements.lpfn = 0;
536         placements.mem_type = TTM_PL_TT;
537         placements.flags = TTM_PL_MASK_CACHING;
538         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
539         if (unlikely(r)) {
540                 pr_err("Failed to find GTT space for blit from VRAM\n");
541                 return r;
542         }
543
544         /* set caching flags */
545         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
546         if (unlikely(r)) {
547                 goto out_cleanup;
548         }
549
550         /* Bind the memory to the GTT space */
551         r = ttm_tt_bind(bo->bdev, bo->ttm, &tmp_mem, ctx);
552         if (unlikely(r)) {
553                 goto out_cleanup;
554         }
555
556         /* blit VRAM to GTT */
557         r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
558         if (unlikely(r)) {
559                 goto out_cleanup;
560         }
561
562         /* move BO (in tmp_mem) to new_mem */
563         r = ttm_bo_move_ttm(bo, ctx, new_mem);
564 out_cleanup:
565         ttm_resource_free(bo, &tmp_mem);
566         return r;
567 }
568
569 /**
570  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
571  *
572  * Called by amdgpu_bo_move().
573  */
574 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
575                                 struct ttm_operation_ctx *ctx,
576                                 struct ttm_resource *new_mem)
577 {
578         struct ttm_resource *old_mem = &bo->mem;
579         struct ttm_resource tmp_mem;
580         struct ttm_placement placement;
581         struct ttm_place placements;
582         int r;
583
584         /* make space in GTT for old_mem buffer */
585         tmp_mem = *new_mem;
586         tmp_mem.mm_node = NULL;
587         placement.num_placement = 1;
588         placement.placement = &placements;
589         placement.num_busy_placement = 1;
590         placement.busy_placement = &placements;
591         placements.fpfn = 0;
592         placements.lpfn = 0;
593         placements.mem_type = TTM_PL_TT;
594         placements.flags = TTM_PL_MASK_CACHING;
595         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
596         if (unlikely(r)) {
597                 pr_err("Failed to find GTT space for blit to VRAM\n");
598                 return r;
599         }
600
601         /* move/bind old memory to GTT space */
602         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
603         if (unlikely(r)) {
604                 goto out_cleanup;
605         }
606
607         /* copy to VRAM */
608         r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
609         if (unlikely(r)) {
610                 goto out_cleanup;
611         }
612 out_cleanup:
613         ttm_resource_free(bo, &tmp_mem);
614         return r;
615 }
616
617 /**
618  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
619  *
620  * Called by amdgpu_bo_move()
621  */
622 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
623                                struct ttm_resource *mem)
624 {
625         struct drm_mm_node *nodes = mem->mm_node;
626
627         if (mem->mem_type == TTM_PL_SYSTEM ||
628             mem->mem_type == TTM_PL_TT)
629                 return true;
630         if (mem->mem_type != TTM_PL_VRAM)
631                 return false;
632
633         /* ttm_resource_ioremap only supports contiguous memory */
634         if (nodes->size != mem->num_pages)
635                 return false;
636
637         return ((nodes->start + nodes->size) << PAGE_SHIFT)
638                 <= adev->gmc.visible_vram_size;
639 }
640
641 /**
642  * amdgpu_bo_move - Move a buffer object to a new memory location
643  *
644  * Called by ttm_bo_handle_move_mem()
645  */
646 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
647                           struct ttm_operation_ctx *ctx,
648                           struct ttm_resource *new_mem)
649 {
650         struct amdgpu_device *adev;
651         struct amdgpu_bo *abo;
652         struct ttm_resource *old_mem = &bo->mem;
653         int r;
654
655         /* Can't move a pinned BO */
656         abo = ttm_to_amdgpu_bo(bo);
657         if (WARN_ON_ONCE(abo->pin_count > 0))
658                 return -EINVAL;
659
660         adev = amdgpu_ttm_adev(bo->bdev);
661
662         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
663                 ttm_bo_move_null(bo, new_mem);
664                 return 0;
665         }
666         if ((old_mem->mem_type == TTM_PL_TT &&
667              new_mem->mem_type == TTM_PL_SYSTEM) ||
668             (old_mem->mem_type == TTM_PL_SYSTEM &&
669              new_mem->mem_type == TTM_PL_TT)) {
670                 /* bind is enough */
671                 ttm_bo_move_null(bo, new_mem);
672                 return 0;
673         }
674         if (old_mem->mem_type == AMDGPU_PL_GDS ||
675             old_mem->mem_type == AMDGPU_PL_GWS ||
676             old_mem->mem_type == AMDGPU_PL_OA ||
677             new_mem->mem_type == AMDGPU_PL_GDS ||
678             new_mem->mem_type == AMDGPU_PL_GWS ||
679             new_mem->mem_type == AMDGPU_PL_OA) {
680                 /* Nothing to save here */
681                 ttm_bo_move_null(bo, new_mem);
682                 return 0;
683         }
684
685         if (!adev->mman.buffer_funcs_enabled) {
686                 r = -ENODEV;
687                 goto memcpy;
688         }
689
690         if (old_mem->mem_type == TTM_PL_VRAM &&
691             new_mem->mem_type == TTM_PL_SYSTEM) {
692                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
693         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
694                    new_mem->mem_type == TTM_PL_VRAM) {
695                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
696         } else {
697                 r = amdgpu_move_blit(bo, evict,
698                                      new_mem, old_mem);
699         }
700
701         if (r) {
702 memcpy:
703                 /* Check that all memory is CPU accessible */
704                 if (!amdgpu_mem_visible(adev, old_mem) ||
705                     !amdgpu_mem_visible(adev, new_mem)) {
706                         pr_err("Move buffer fallback to memcpy unavailable\n");
707                         return r;
708                 }
709
710                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
711                 if (r)
712                         return r;
713         }
714
715         if (bo->type == ttm_bo_type_device &&
716             new_mem->mem_type == TTM_PL_VRAM &&
717             old_mem->mem_type != TTM_PL_VRAM) {
718                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
719                  * accesses the BO after it's moved.
720                  */
721                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
722         }
723
724         /* update statistics */
725         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
726         return 0;
727 }
728
729 /**
730  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
731  *
732  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
733  */
734 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
735 {
736         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
737         struct drm_mm_node *mm_node = mem->mm_node;
738         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
739
740         switch (mem->mem_type) {
741         case TTM_PL_SYSTEM:
742                 /* system memory */
743                 return 0;
744         case TTM_PL_TT:
745                 break;
746         case TTM_PL_VRAM:
747                 mem->bus.offset = mem->start << PAGE_SHIFT;
748                 /* check if it's visible */
749                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
750                         return -EINVAL;
751                 /* Only physically contiguous buffers apply. In a contiguous
752                  * buffer, size of the first mm_node would match the number of
753                  * pages in ttm_resource.
754                  */
755                 if (adev->mman.aper_base_kaddr &&
756                     (mm_node->size == mem->num_pages))
757                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
758                                         mem->bus.offset;
759
760                 mem->bus.offset += adev->gmc.aper_base;
761                 mem->bus.is_iomem = true;
762                 break;
763         default:
764                 return -EINVAL;
765         }
766         return 0;
767 }
768
769 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
770                                            unsigned long page_offset)
771 {
772         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
773         uint64_t offset = (page_offset << PAGE_SHIFT);
774         struct drm_mm_node *mm;
775
776         mm = amdgpu_find_mm_node(&bo->mem, &offset);
777         offset += adev->gmc.aper_base;
778         return mm->start + (offset >> PAGE_SHIFT);
779 }
780
781 /**
782  * amdgpu_ttm_domain_start - Returns GPU start address
783  * @adev: amdgpu device object
784  * @type: type of the memory
785  *
786  * Returns:
787  * GPU start address of a memory domain
788  */
789
790 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
791 {
792         switch (type) {
793         case TTM_PL_TT:
794                 return adev->gmc.gart_start;
795         case TTM_PL_VRAM:
796                 return adev->gmc.vram_start;
797         }
798
799         return 0;
800 }
801
802 /*
803  * TTM backend functions.
804  */
805 struct amdgpu_ttm_tt {
806         struct ttm_dma_tt       ttm;
807         struct drm_gem_object   *gobj;
808         u64                     offset;
809         uint64_t                userptr;
810         struct task_struct      *usertask;
811         uint32_t                userflags;
812 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
813         struct hmm_range        *range;
814 #endif
815 };
816
817 #ifdef CONFIG_DRM_AMDGPU_USERPTR
818 /**
819  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
820  * memory and start HMM tracking CPU page table update
821  *
822  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
823  * once afterwards to stop HMM tracking
824  */
825 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
826 {
827         struct ttm_tt *ttm = bo->tbo.ttm;
828         struct amdgpu_ttm_tt *gtt = (void *)ttm;
829         unsigned long start = gtt->userptr;
830         struct vm_area_struct *vma;
831         struct hmm_range *range;
832         unsigned long timeout;
833         struct mm_struct *mm;
834         unsigned long i;
835         int r = 0;
836
837         mm = bo->notifier.mm;
838         if (unlikely(!mm)) {
839                 DRM_DEBUG_DRIVER("BO is not registered?\n");
840                 return -EFAULT;
841         }
842
843         /* Another get_user_pages is running at the same time?? */
844         if (WARN_ON(gtt->range))
845                 return -EFAULT;
846
847         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
848                 return -ESRCH;
849
850         range = kzalloc(sizeof(*range), GFP_KERNEL);
851         if (unlikely(!range)) {
852                 r = -ENOMEM;
853                 goto out;
854         }
855         range->notifier = &bo->notifier;
856         range->start = bo->notifier.interval_tree.start;
857         range->end = bo->notifier.interval_tree.last + 1;
858         range->default_flags = HMM_PFN_REQ_FAULT;
859         if (!amdgpu_ttm_tt_is_readonly(ttm))
860                 range->default_flags |= HMM_PFN_REQ_WRITE;
861
862         range->hmm_pfns = kvmalloc_array(ttm->num_pages,
863                                          sizeof(*range->hmm_pfns), GFP_KERNEL);
864         if (unlikely(!range->hmm_pfns)) {
865                 r = -ENOMEM;
866                 goto out_free_ranges;
867         }
868
869         mmap_read_lock(mm);
870         vma = find_vma(mm, start);
871         if (unlikely(!vma || start < vma->vm_start)) {
872                 r = -EFAULT;
873                 goto out_unlock;
874         }
875         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
876                 vma->vm_file)) {
877                 r = -EPERM;
878                 goto out_unlock;
879         }
880         mmap_read_unlock(mm);
881         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
882
883 retry:
884         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
885
886         mmap_read_lock(mm);
887         r = hmm_range_fault(range);
888         mmap_read_unlock(mm);
889         if (unlikely(r)) {
890                 /*
891                  * FIXME: This timeout should encompass the retry from
892                  * mmu_interval_read_retry() as well.
893                  */
894                 if (r == -EBUSY && !time_after(jiffies, timeout))
895                         goto retry;
896                 goto out_free_pfns;
897         }
898
899         /*
900          * Due to default_flags, all pages are HMM_PFN_VALID or
901          * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
902          * the notifier_lock, and mmu_interval_read_retry() must be done first.
903          */
904         for (i = 0; i < ttm->num_pages; i++)
905                 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
906
907         gtt->range = range;
908         mmput(mm);
909
910         return 0;
911
912 out_unlock:
913         mmap_read_unlock(mm);
914 out_free_pfns:
915         kvfree(range->hmm_pfns);
916 out_free_ranges:
917         kfree(range);
918 out:
919         mmput(mm);
920         return r;
921 }
922
923 /**
924  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
925  * Check if the pages backing this ttm range have been invalidated
926  *
927  * Returns: true if pages are still valid
928  */
929 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
930 {
931         struct amdgpu_ttm_tt *gtt = (void *)ttm;
932         bool r = false;
933
934         if (!gtt || !gtt->userptr)
935                 return false;
936
937         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
938                 gtt->userptr, ttm->num_pages);
939
940         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
941                 "No user pages to check\n");
942
943         if (gtt->range) {
944                 /*
945                  * FIXME: Must always hold notifier_lock for this, and must
946                  * not ignore the return code.
947                  */
948                 r = mmu_interval_read_retry(gtt->range->notifier,
949                                          gtt->range->notifier_seq);
950                 kvfree(gtt->range->hmm_pfns);
951                 kfree(gtt->range);
952                 gtt->range = NULL;
953         }
954
955         return !r;
956 }
957 #endif
958
959 /**
960  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
961  *
962  * Called by amdgpu_cs_list_validate(). This creates the page list
963  * that backs user memory and will ultimately be mapped into the device
964  * address space.
965  */
966 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
967 {
968         unsigned long i;
969
970         for (i = 0; i < ttm->num_pages; ++i)
971                 ttm->pages[i] = pages ? pages[i] : NULL;
972 }
973
974 /**
975  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
976  *
977  * Called by amdgpu_ttm_backend_bind()
978  **/
979 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
980                                      struct ttm_tt *ttm)
981 {
982         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
983         struct amdgpu_ttm_tt *gtt = (void *)ttm;
984         int r;
985
986         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
987         enum dma_data_direction direction = write ?
988                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
989
990         /* Allocate an SG array and squash pages into it */
991         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
992                                       ttm->num_pages << PAGE_SHIFT,
993                                       GFP_KERNEL);
994         if (r)
995                 goto release_sg;
996
997         /* Map SG to device */
998         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
999         if (r)
1000                 goto release_sg;
1001
1002         /* convert SG to linear array of pages and dma addresses */
1003         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1004                                          gtt->ttm.dma_address, ttm->num_pages);
1005
1006         return 0;
1007
1008 release_sg:
1009         kfree(ttm->sg);
1010         return r;
1011 }
1012
1013 /**
1014  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1015  */
1016 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
1017                                         struct ttm_tt *ttm)
1018 {
1019         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1020         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1021
1022         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1023         enum dma_data_direction direction = write ?
1024                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1025
1026         /* double check that we don't free the table twice */
1027         if (!ttm->sg->sgl)
1028                 return;
1029
1030         /* unmap the pages mapped to the device */
1031         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1032         sg_free_table(ttm->sg);
1033
1034 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1035         if (gtt->range) {
1036                 unsigned long i;
1037
1038                 for (i = 0; i < ttm->num_pages; i++) {
1039                         if (ttm->pages[i] !=
1040                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1041                                 break;
1042                 }
1043
1044                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1045         }
1046 #endif
1047 }
1048
1049 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1050                                 struct ttm_buffer_object *tbo,
1051                                 uint64_t flags)
1052 {
1053         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1054         struct ttm_tt *ttm = tbo->ttm;
1055         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1056         int r;
1057
1058         if (amdgpu_bo_encrypted(abo))
1059                 flags |= AMDGPU_PTE_TMZ;
1060
1061         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1062                 uint64_t page_idx = 1;
1063
1064                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1065                                 ttm->pages, gtt->ttm.dma_address, flags);
1066                 if (r)
1067                         goto gart_bind_fail;
1068
1069                 /* The memory type of the first page defaults to UC. Now
1070                  * modify the memory type to NC from the second page of
1071                  * the BO onward.
1072                  */
1073                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1074                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1075
1076                 r = amdgpu_gart_bind(adev,
1077                                 gtt->offset + (page_idx << PAGE_SHIFT),
1078                                 ttm->num_pages - page_idx,
1079                                 &ttm->pages[page_idx],
1080                                 &(gtt->ttm.dma_address[page_idx]), flags);
1081         } else {
1082                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1083                                      ttm->pages, gtt->ttm.dma_address, flags);
1084         }
1085
1086 gart_bind_fail:
1087         if (r)
1088                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1089                           ttm->num_pages, gtt->offset);
1090
1091         return r;
1092 }
1093
1094 /**
1095  * amdgpu_ttm_backend_bind - Bind GTT memory
1096  *
1097  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1098  * This handles binding GTT memory to the device address space.
1099  */
1100 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1101                                    struct ttm_tt *ttm,
1102                                    struct ttm_resource *bo_mem)
1103 {
1104         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1105         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1106         uint64_t flags;
1107         int r = 0;
1108
1109         if (gtt->userptr) {
1110                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1111                 if (r) {
1112                         DRM_ERROR("failed to pin userptr\n");
1113                         return r;
1114                 }
1115         }
1116         if (!ttm->num_pages) {
1117                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1118                      ttm->num_pages, bo_mem, ttm);
1119         }
1120
1121         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1122             bo_mem->mem_type == AMDGPU_PL_GWS ||
1123             bo_mem->mem_type == AMDGPU_PL_OA)
1124                 return -EINVAL;
1125
1126         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1127                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1128                 return 0;
1129         }
1130
1131         /* compute PTE flags relevant to this BO memory */
1132         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1133
1134         /* bind pages into GART page tables */
1135         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1136         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1137                 ttm->pages, gtt->ttm.dma_address, flags);
1138
1139         if (r)
1140                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1141                           ttm->num_pages, gtt->offset);
1142         return r;
1143 }
1144
1145 /**
1146  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1147  */
1148 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1149 {
1150         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1151         struct ttm_operation_ctx ctx = { false, false };
1152         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1153         struct ttm_resource tmp;
1154         struct ttm_placement placement;
1155         struct ttm_place placements;
1156         uint64_t addr, flags;
1157         int r;
1158
1159         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1160                 return 0;
1161
1162         addr = amdgpu_gmc_agp_addr(bo);
1163         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1164                 bo->mem.start = addr >> PAGE_SHIFT;
1165         } else {
1166
1167                 /* allocate GART space */
1168                 tmp = bo->mem;
1169                 tmp.mm_node = NULL;
1170                 placement.num_placement = 1;
1171                 placement.placement = &placements;
1172                 placement.num_busy_placement = 1;
1173                 placement.busy_placement = &placements;
1174                 placements.fpfn = 0;
1175                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1176                 placements.mem_type = TTM_PL_TT;
1177                 placements.flags = bo->mem.placement;
1178
1179                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1180                 if (unlikely(r))
1181                         return r;
1182
1183                 /* compute PTE flags for this buffer object */
1184                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1185
1186                 /* Bind pages */
1187                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1188                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1189                 if (unlikely(r)) {
1190                         ttm_resource_free(bo, &tmp);
1191                         return r;
1192                 }
1193
1194                 ttm_resource_free(bo, &bo->mem);
1195                 bo->mem = tmp;
1196         }
1197
1198         return 0;
1199 }
1200
1201 /**
1202  * amdgpu_ttm_recover_gart - Rebind GTT pages
1203  *
1204  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1205  * rebind GTT pages during a GPU reset.
1206  */
1207 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1208 {
1209         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1210         uint64_t flags;
1211         int r;
1212
1213         if (!tbo->ttm)
1214                 return 0;
1215
1216         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1217         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1218
1219         return r;
1220 }
1221
1222 /**
1223  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1224  *
1225  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1226  * ttm_tt_destroy().
1227  */
1228 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1229                                       struct ttm_tt *ttm)
1230 {
1231         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1232         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233         int r;
1234
1235         /* if the pages have userptr pinning then clear that first */
1236         if (gtt->userptr)
1237                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1238
1239         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1240                 return;
1241
1242         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1243         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1244         if (r)
1245                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1246                           gtt->ttm.ttm.num_pages, gtt->offset);
1247 }
1248
1249 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1250                                        struct ttm_tt *ttm)
1251 {
1252         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1253
1254         if (gtt->usertask)
1255                 put_task_struct(gtt->usertask);
1256
1257         ttm_dma_tt_fini(&gtt->ttm);
1258         kfree(gtt);
1259 }
1260
1261 /**
1262  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1263  *
1264  * @bo: The buffer object to create a GTT ttm_tt object around
1265  *
1266  * Called by ttm_tt_create().
1267  */
1268 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1269                                            uint32_t page_flags)
1270 {
1271         struct amdgpu_ttm_tt *gtt;
1272
1273         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1274         if (gtt == NULL) {
1275                 return NULL;
1276         }
1277         gtt->gobj = &bo->base;
1278
1279         /* allocate space for the uninitialized page entries */
1280         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1281                 kfree(gtt);
1282                 return NULL;
1283         }
1284         return &gtt->ttm.ttm;
1285 }
1286
1287 /**
1288  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1289  *
1290  * Map the pages of a ttm_tt object to an address space visible
1291  * to the underlying device.
1292  */
1293 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1294                                   struct ttm_tt *ttm,
1295                                   struct ttm_operation_ctx *ctx)
1296 {
1297         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1298         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299
1300         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1301         if (gtt && gtt->userptr) {
1302                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1303                 if (!ttm->sg)
1304                         return -ENOMEM;
1305
1306                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1307                 ttm_tt_set_populated(ttm);
1308                 return 0;
1309         }
1310
1311         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1312                 if (!ttm->sg) {
1313                         struct dma_buf_attachment *attach;
1314                         struct sg_table *sgt;
1315
1316                         attach = gtt->gobj->import_attach;
1317                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1318                         if (IS_ERR(sgt))
1319                                 return PTR_ERR(sgt);
1320
1321                         ttm->sg = sgt;
1322                 }
1323
1324                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1325                                                  gtt->ttm.dma_address,
1326                                                  ttm->num_pages);
1327                 ttm_tt_set_populated(ttm);
1328                 return 0;
1329         }
1330
1331 #ifdef CONFIG_SWIOTLB
1332         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1333                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1334         }
1335 #endif
1336
1337         /* fall back to generic helper to populate the page array
1338          * and map them to the device */
1339         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1340 }
1341
1342 /**
1343  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1344  *
1345  * Unmaps pages of a ttm_tt object from the device address space and
1346  * unpopulates the page array backing it.
1347  */
1348 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
1349 {
1350         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1351         struct amdgpu_device *adev;
1352
1353         if (gtt && gtt->userptr) {
1354                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1355                 kfree(ttm->sg);
1356                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1357                 return;
1358         }
1359
1360         if (ttm->sg && gtt->gobj->import_attach) {
1361                 struct dma_buf_attachment *attach;
1362
1363                 attach = gtt->gobj->import_attach;
1364                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1365                 ttm->sg = NULL;
1366                 return;
1367         }
1368
1369         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1370                 return;
1371
1372         adev = amdgpu_ttm_adev(bdev);
1373
1374 #ifdef CONFIG_SWIOTLB
1375         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1376                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1377                 return;
1378         }
1379 #endif
1380
1381         /* fall back to generic helper to unmap and unpopulate array */
1382         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1383 }
1384
1385 /**
1386  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1387  * task
1388  *
1389  * @bo: The ttm_buffer_object to bind this userptr to
1390  * @addr:  The address in the current tasks VM space to use
1391  * @flags: Requirements of userptr object.
1392  *
1393  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1394  * to current task
1395  */
1396 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1397                               uint64_t addr, uint32_t flags)
1398 {
1399         struct amdgpu_ttm_tt *gtt;
1400
1401         if (!bo->ttm) {
1402                 /* TODO: We want a separate TTM object type for userptrs */
1403                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1404                 if (bo->ttm == NULL)
1405                         return -ENOMEM;
1406         }
1407
1408         gtt = (void*)bo->ttm;
1409         gtt->userptr = addr;
1410         gtt->userflags = flags;
1411
1412         if (gtt->usertask)
1413                 put_task_struct(gtt->usertask);
1414         gtt->usertask = current->group_leader;
1415         get_task_struct(gtt->usertask);
1416
1417         return 0;
1418 }
1419
1420 /**
1421  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1422  */
1423 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1424 {
1425         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1426
1427         if (gtt == NULL)
1428                 return NULL;
1429
1430         if (gtt->usertask == NULL)
1431                 return NULL;
1432
1433         return gtt->usertask->mm;
1434 }
1435
1436 /**
1437  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1438  * address range for the current task.
1439  *
1440  */
1441 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1442                                   unsigned long end)
1443 {
1444         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1445         unsigned long size;
1446
1447         if (gtt == NULL || !gtt->userptr)
1448                 return false;
1449
1450         /* Return false if no part of the ttm_tt object lies within
1451          * the range
1452          */
1453         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1454         if (gtt->userptr > end || gtt->userptr + size <= start)
1455                 return false;
1456
1457         return true;
1458 }
1459
1460 /**
1461  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1462  */
1463 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1464 {
1465         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1466
1467         if (gtt == NULL || !gtt->userptr)
1468                 return false;
1469
1470         return true;
1471 }
1472
1473 /**
1474  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1475  */
1476 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1477 {
1478         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1479
1480         if (gtt == NULL)
1481                 return false;
1482
1483         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1484 }
1485
1486 /**
1487  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1488  *
1489  * @ttm: The ttm_tt object to compute the flags for
1490  * @mem: The memory registry backing this ttm_tt object
1491  *
1492  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1493  */
1494 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1495 {
1496         uint64_t flags = 0;
1497
1498         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1499                 flags |= AMDGPU_PTE_VALID;
1500
1501         if (mem && mem->mem_type == TTM_PL_TT) {
1502                 flags |= AMDGPU_PTE_SYSTEM;
1503
1504                 if (ttm->caching_state == tt_cached)
1505                         flags |= AMDGPU_PTE_SNOOPED;
1506         }
1507
1508         return flags;
1509 }
1510
1511 /**
1512  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1513  *
1514  * @ttm: The ttm_tt object to compute the flags for
1515  * @mem: The memory registry backing this ttm_tt object
1516
1517  * Figure out the flags to use for a VM PTE (Page Table Entry).
1518  */
1519 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1520                                  struct ttm_resource *mem)
1521 {
1522         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1523
1524         flags |= adev->gart.gart_pte_flags;
1525         flags |= AMDGPU_PTE_READABLE;
1526
1527         if (!amdgpu_ttm_tt_is_readonly(ttm))
1528                 flags |= AMDGPU_PTE_WRITEABLE;
1529
1530         return flags;
1531 }
1532
1533 /**
1534  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1535  * object.
1536  *
1537  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1538  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1539  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1540  * used to clean out a memory space.
1541  */
1542 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1543                                             const struct ttm_place *place)
1544 {
1545         unsigned long num_pages = bo->mem.num_pages;
1546         struct drm_mm_node *node = bo->mem.mm_node;
1547         struct dma_resv_list *flist;
1548         struct dma_fence *f;
1549         int i;
1550
1551         if (bo->type == ttm_bo_type_kernel &&
1552             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1553                 return false;
1554
1555         /* If bo is a KFD BO, check if the bo belongs to the current process.
1556          * If true, then return false as any KFD process needs all its BOs to
1557          * be resident to run successfully
1558          */
1559         flist = dma_resv_get_list(bo->base.resv);
1560         if (flist) {
1561                 for (i = 0; i < flist->shared_count; ++i) {
1562                         f = rcu_dereference_protected(flist->shared[i],
1563                                 dma_resv_held(bo->base.resv));
1564                         if (amdkfd_fence_check_mm(f, current->mm))
1565                                 return false;
1566                 }
1567         }
1568
1569         switch (bo->mem.mem_type) {
1570         case TTM_PL_TT:
1571                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1572                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1573                         return false;
1574                 return true;
1575
1576         case TTM_PL_VRAM:
1577                 /* Check each drm MM node individually */
1578                 while (num_pages) {
1579                         if (place->fpfn < (node->start + node->size) &&
1580                             !(place->lpfn && place->lpfn <= node->start))
1581                                 return true;
1582
1583                         num_pages -= node->size;
1584                         ++node;
1585                 }
1586                 return false;
1587
1588         default:
1589                 break;
1590         }
1591
1592         return ttm_bo_eviction_valuable(bo, place);
1593 }
1594
1595 /**
1596  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1597  *
1598  * @bo:  The buffer object to read/write
1599  * @offset:  Offset into buffer object
1600  * @buf:  Secondary buffer to write/read from
1601  * @len: Length in bytes of access
1602  * @write:  true if writing
1603  *
1604  * This is used to access VRAM that backs a buffer object via MMIO
1605  * access for debugging purposes.
1606  */
1607 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1608                                     unsigned long offset,
1609                                     void *buf, int len, int write)
1610 {
1611         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1612         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1613         struct drm_mm_node *nodes;
1614         uint32_t value = 0;
1615         int ret = 0;
1616         uint64_t pos;
1617         unsigned long flags;
1618
1619         if (bo->mem.mem_type != TTM_PL_VRAM)
1620                 return -EIO;
1621
1622         pos = offset;
1623         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1624         pos += (nodes->start << PAGE_SHIFT);
1625
1626         while (len && pos < adev->gmc.mc_vram_size) {
1627                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1628                 uint64_t bytes = 4 - (pos & 3);
1629                 uint32_t shift = (pos & 3) * 8;
1630                 uint32_t mask = 0xffffffff << shift;
1631
1632                 if (len < bytes) {
1633                         mask &= 0xffffffff >> (bytes - len) * 8;
1634                         bytes = len;
1635                 }
1636
1637                 if (mask != 0xffffffff) {
1638                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1639                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1640                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1641                         if (!write || mask != 0xffffffff)
1642                                 value = RREG32_NO_KIQ(mmMM_DATA);
1643                         if (write) {
1644                                 value &= ~mask;
1645                                 value |= (*(uint32_t *)buf << shift) & mask;
1646                                 WREG32_NO_KIQ(mmMM_DATA, value);
1647                         }
1648                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1649                         if (!write) {
1650                                 value = (value & mask) >> shift;
1651                                 memcpy(buf, &value, bytes);
1652                         }
1653                 } else {
1654                         bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1655                         bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1656
1657                         amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1658                                                   bytes, write);
1659                 }
1660
1661                 ret += bytes;
1662                 buf = (uint8_t *)buf + bytes;
1663                 pos += bytes;
1664                 len -= bytes;
1665                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1666                         ++nodes;
1667                         pos = (nodes->start << PAGE_SHIFT);
1668                 }
1669         }
1670
1671         return ret;
1672 }
1673
1674 static struct ttm_bo_driver amdgpu_bo_driver = {
1675         .ttm_tt_create = &amdgpu_ttm_tt_create,
1676         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1677         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1678         .ttm_tt_bind = &amdgpu_ttm_backend_bind,
1679         .ttm_tt_unbind = &amdgpu_ttm_backend_unbind,
1680         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1681         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1682         .evict_flags = &amdgpu_evict_flags,
1683         .move = &amdgpu_bo_move,
1684         .verify_access = &amdgpu_verify_access,
1685         .move_notify = &amdgpu_bo_move_notify,
1686         .release_notify = &amdgpu_bo_release_notify,
1687         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1688         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1689         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1690         .access_memory = &amdgpu_ttm_access_memory,
1691         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1692 };
1693
1694 /*
1695  * Firmware Reservation functions
1696  */
1697 /**
1698  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1699  *
1700  * @adev: amdgpu_device pointer
1701  *
1702  * free fw reserved vram if it has been reserved.
1703  */
1704 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1705 {
1706         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1707                 NULL, &adev->mman.fw_vram_usage_va);
1708 }
1709
1710 /**
1711  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1712  *
1713  * @adev: amdgpu_device pointer
1714  *
1715  * create bo vram reservation from fw.
1716  */
1717 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1718 {
1719         uint64_t vram_size = adev->gmc.visible_vram_size;
1720
1721         adev->mman.fw_vram_usage_va = NULL;
1722         adev->mman.fw_vram_usage_reserved_bo = NULL;
1723
1724         if (adev->mman.fw_vram_usage_size == 0 ||
1725             adev->mman.fw_vram_usage_size > vram_size)
1726                 return 0;
1727
1728         return amdgpu_bo_create_kernel_at(adev,
1729                                           adev->mman.fw_vram_usage_start_offset,
1730                                           adev->mman.fw_vram_usage_size,
1731                                           AMDGPU_GEM_DOMAIN_VRAM,
1732                                           &adev->mman.fw_vram_usage_reserved_bo,
1733                                           &adev->mman.fw_vram_usage_va);
1734 }
1735
1736 /*
1737  * Memoy training reservation functions
1738  */
1739
1740 /**
1741  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1742  *
1743  * @adev: amdgpu_device pointer
1744  *
1745  * free memory training reserved vram if it has been reserved.
1746  */
1747 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1748 {
1749         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1750
1751         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1752         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1753         ctx->c2p_bo = NULL;
1754
1755         return 0;
1756 }
1757
1758 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1759 {
1760         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1761
1762         memset(ctx, 0, sizeof(*ctx));
1763
1764         ctx->c2p_train_data_offset =
1765                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1766         ctx->p2c_train_data_offset =
1767                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1768         ctx->train_data_size =
1769                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1770         
1771         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1772                         ctx->train_data_size,
1773                         ctx->p2c_train_data_offset,
1774                         ctx->c2p_train_data_offset);
1775 }
1776
1777 /*
1778  * reserve TMR memory at the top of VRAM which holds
1779  * IP Discovery data and is protected by PSP.
1780  */
1781 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1782 {
1783         int ret;
1784         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1785         bool mem_train_support = false;
1786
1787         if (!amdgpu_sriov_vf(adev)) {
1788                 ret = amdgpu_mem_train_support(adev);
1789                 if (ret == 1)
1790                         mem_train_support = true;
1791                 else if (ret == -1)
1792                         return -EINVAL;
1793                 else
1794                         DRM_DEBUG("memory training does not support!\n");
1795         }
1796
1797         /*
1798          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1799          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1800          *
1801          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1802          * discovery data and G6 memory training data respectively
1803          */
1804         adev->mman.discovery_tmr_size =
1805                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1806         if (!adev->mman.discovery_tmr_size)
1807                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1808
1809         if (mem_train_support) {
1810                 /* reserve vram for mem train according to TMR location */
1811                 amdgpu_ttm_training_data_block_init(adev);
1812                 ret = amdgpu_bo_create_kernel_at(adev,
1813                                          ctx->c2p_train_data_offset,
1814                                          ctx->train_data_size,
1815                                          AMDGPU_GEM_DOMAIN_VRAM,
1816                                          &ctx->c2p_bo,
1817                                          NULL);
1818                 if (ret) {
1819                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1820                         amdgpu_ttm_training_reserve_vram_fini(adev);
1821                         return ret;
1822                 }
1823                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1824         }
1825
1826         ret = amdgpu_bo_create_kernel_at(adev,
1827                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1828                                 adev->mman.discovery_tmr_size,
1829                                 AMDGPU_GEM_DOMAIN_VRAM,
1830                                 &adev->mman.discovery_memory,
1831                                 NULL);
1832         if (ret) {
1833                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1834                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1835                 return ret;
1836         }
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1843  * gtt/vram related fields.
1844  *
1845  * This initializes all of the memory space pools that the TTM layer
1846  * will need such as the GTT space (system memory mapped to the device),
1847  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1848  * can be mapped per VMID.
1849  */
1850 int amdgpu_ttm_init(struct amdgpu_device *adev)
1851 {
1852         uint64_t gtt_size;
1853         int r;
1854         u64 vis_vram_limit;
1855
1856         mutex_init(&adev->mman.gtt_window_lock);
1857
1858         /* No others user of address space so set it to 0 */
1859         r = ttm_bo_device_init(&adev->mman.bdev,
1860                                &amdgpu_bo_driver,
1861                                adev_to_drm(adev)->anon_inode->i_mapping,
1862                                adev_to_drm(adev)->vma_offset_manager,
1863                                dma_addressing_limited(adev->dev));
1864         if (r) {
1865                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1866                 return r;
1867         }
1868         adev->mman.initialized = true;
1869
1870         /* We opt to avoid OOM on system pages allocations */
1871         adev->mman.bdev.no_retry = true;
1872
1873         /* Initialize VRAM pool with all of VRAM divided into pages */
1874         r = amdgpu_vram_mgr_init(adev);
1875         if (r) {
1876                 DRM_ERROR("Failed initializing VRAM heap.\n");
1877                 return r;
1878         }
1879
1880         /* Reduce size of CPU-visible VRAM if requested */
1881         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1882         if (amdgpu_vis_vram_limit > 0 &&
1883             vis_vram_limit <= adev->gmc.visible_vram_size)
1884                 adev->gmc.visible_vram_size = vis_vram_limit;
1885
1886         /* Change the size here instead of the init above so only lpfn is affected */
1887         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1888 #ifdef CONFIG_64BIT
1889         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1890                                                 adev->gmc.visible_vram_size);
1891 #endif
1892
1893         /*
1894          *The reserved vram for firmware must be pinned to the specified
1895          *place on the VRAM, so reserve it early.
1896          */
1897         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1898         if (r) {
1899                 return r;
1900         }
1901
1902         /*
1903          * only NAVI10 and onwards ASIC support for IP discovery.
1904          * If IP discovery enabled, a block of memory should be
1905          * reserved for IP discovey.
1906          */
1907         if (adev->mman.discovery_bin) {
1908                 r = amdgpu_ttm_reserve_tmr(adev);
1909                 if (r)
1910                         return r;
1911         }
1912
1913         /* allocate memory as required for VGA
1914          * This is used for VGA emulation and pre-OS scanout buffers to
1915          * avoid display artifacts while transitioning between pre-OS
1916          * and driver.  */
1917         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1918                                        AMDGPU_GEM_DOMAIN_VRAM,
1919                                        &adev->mman.stolen_vga_memory,
1920                                        NULL);
1921         if (r)
1922                 return r;
1923         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1924                                        adev->mman.stolen_extended_size,
1925                                        AMDGPU_GEM_DOMAIN_VRAM,
1926                                        &adev->mman.stolen_extended_memory,
1927                                        NULL);
1928         if (r)
1929                 return r;
1930
1931         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1932                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1933
1934         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1935          * or whatever the user passed on module init */
1936         if (amdgpu_gtt_size == -1) {
1937                 struct sysinfo si;
1938
1939                 si_meminfo(&si);
1940                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1941                                adev->gmc.mc_vram_size),
1942                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1943         }
1944         else
1945                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1946
1947         /* Initialize GTT memory pool */
1948         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1949         if (r) {
1950                 DRM_ERROR("Failed initializing GTT heap.\n");
1951                 return r;
1952         }
1953         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1954                  (unsigned)(gtt_size / (1024 * 1024)));
1955
1956         /* Initialize various on-chip memory pools */
1957         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1958         if (r) {
1959                 DRM_ERROR("Failed initializing GDS heap.\n");
1960                 return r;
1961         }
1962
1963         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1964         if (r) {
1965                 DRM_ERROR("Failed initializing gws heap.\n");
1966                 return r;
1967         }
1968
1969         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1970         if (r) {
1971                 DRM_ERROR("Failed initializing oa heap.\n");
1972                 return r;
1973         }
1974
1975         return 0;
1976 }
1977
1978 /**
1979  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1980  */
1981 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1982 {
1983         /* return the VGA stolen memory (if any) back to VRAM */
1984         if (!adev->mman.keep_stolen_vga_memory)
1985                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1986         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1987 }
1988
1989 /**
1990  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1991  */
1992 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1993 {
1994         if (!adev->mman.initialized)
1995                 return;
1996
1997         amdgpu_ttm_training_reserve_vram_fini(adev);
1998         /* return the stolen vga memory back to VRAM */
1999         if (adev->mman.keep_stolen_vga_memory)
2000                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2001         /* return the IP Discovery TMR memory back to VRAM */
2002         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2003         amdgpu_ttm_fw_reserve_vram_fini(adev);
2004
2005         if (adev->mman.aper_base_kaddr)
2006                 iounmap(adev->mman.aper_base_kaddr);
2007         adev->mman.aper_base_kaddr = NULL;
2008
2009         amdgpu_vram_mgr_fini(adev);
2010         amdgpu_gtt_mgr_fini(adev);
2011         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2012         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2013         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2014         ttm_bo_device_release(&adev->mman.bdev);
2015         adev->mman.initialized = false;
2016         DRM_INFO("amdgpu: ttm finalized\n");
2017 }
2018
2019 /**
2020  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2021  *
2022  * @adev: amdgpu_device pointer
2023  * @enable: true when we can use buffer functions.
2024  *
2025  * Enable/disable use of buffer functions during suspend/resume. This should
2026  * only be called at bootup or when userspace isn't running.
2027  */
2028 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2029 {
2030         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2031         uint64_t size;
2032         int r;
2033
2034         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2035             adev->mman.buffer_funcs_enabled == enable)
2036                 return;
2037
2038         if (enable) {
2039                 struct amdgpu_ring *ring;
2040                 struct drm_gpu_scheduler *sched;
2041
2042                 ring = adev->mman.buffer_funcs_ring;
2043                 sched = &ring->sched;
2044                 r = drm_sched_entity_init(&adev->mman.entity,
2045                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2046                                           1, NULL);
2047                 if (r) {
2048                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2049                                   r);
2050                         return;
2051                 }
2052         } else {
2053                 drm_sched_entity_destroy(&adev->mman.entity);
2054                 dma_fence_put(man->move);
2055                 man->move = NULL;
2056         }
2057
2058         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2059         if (enable)
2060                 size = adev->gmc.real_vram_size;
2061         else
2062                 size = adev->gmc.visible_vram_size;
2063         man->size = size >> PAGE_SHIFT;
2064         adev->mman.buffer_funcs_enabled = enable;
2065 }
2066
2067 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2068 {
2069         struct drm_file *file_priv = filp->private_data;
2070         struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2071
2072         if (adev == NULL)
2073                 return -EINVAL;
2074
2075         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2076 }
2077
2078 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2079                        uint64_t dst_offset, uint32_t byte_count,
2080                        struct dma_resv *resv,
2081                        struct dma_fence **fence, bool direct_submit,
2082                        bool vm_needs_flush, bool tmz)
2083 {
2084         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2085                 AMDGPU_IB_POOL_DELAYED;
2086         struct amdgpu_device *adev = ring->adev;
2087         struct amdgpu_job *job;
2088
2089         uint32_t max_bytes;
2090         unsigned num_loops, num_dw;
2091         unsigned i;
2092         int r;
2093
2094         if (direct_submit && !ring->sched.ready) {
2095                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2096                 return -EINVAL;
2097         }
2098
2099         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2100         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2101         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2102
2103         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2104         if (r)
2105                 return r;
2106
2107         if (vm_needs_flush) {
2108                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2109                 job->vm_needs_flush = true;
2110         }
2111         if (resv) {
2112                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2113                                      AMDGPU_SYNC_ALWAYS,
2114                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2115                 if (r) {
2116                         DRM_ERROR("sync failed (%d).\n", r);
2117                         goto error_free;
2118                 }
2119         }
2120
2121         for (i = 0; i < num_loops; i++) {
2122                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2123
2124                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2125                                         dst_offset, cur_size_in_bytes, tmz);
2126
2127                 src_offset += cur_size_in_bytes;
2128                 dst_offset += cur_size_in_bytes;
2129                 byte_count -= cur_size_in_bytes;
2130         }
2131
2132         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2133         WARN_ON(job->ibs[0].length_dw > num_dw);
2134         if (direct_submit)
2135                 r = amdgpu_job_submit_direct(job, ring, fence);
2136         else
2137                 r = amdgpu_job_submit(job, &adev->mman.entity,
2138                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2139         if (r)
2140                 goto error_free;
2141
2142         return r;
2143
2144 error_free:
2145         amdgpu_job_free(job);
2146         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2147         return r;
2148 }
2149
2150 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2151                        uint32_t src_data,
2152                        struct dma_resv *resv,
2153                        struct dma_fence **fence)
2154 {
2155         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2156         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2157         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2158
2159         struct drm_mm_node *mm_node;
2160         unsigned long num_pages;
2161         unsigned int num_loops, num_dw;
2162
2163         struct amdgpu_job *job;
2164         int r;
2165
2166         if (!adev->mman.buffer_funcs_enabled) {
2167                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2168                 return -EINVAL;
2169         }
2170
2171         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2172                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2173                 if (r)
2174                         return r;
2175         }
2176
2177         num_pages = bo->tbo.num_pages;
2178         mm_node = bo->tbo.mem.mm_node;
2179         num_loops = 0;
2180         while (num_pages) {
2181                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2182
2183                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2184                 num_pages -= mm_node->size;
2185                 ++mm_node;
2186         }
2187         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2188
2189         /* for IB padding */
2190         num_dw += 64;
2191
2192         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2193                                      &job);
2194         if (r)
2195                 return r;
2196
2197         if (resv) {
2198                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2199                                      AMDGPU_SYNC_ALWAYS,
2200                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2201                 if (r) {
2202                         DRM_ERROR("sync failed (%d).\n", r);
2203                         goto error_free;
2204                 }
2205         }
2206
2207         num_pages = bo->tbo.num_pages;
2208         mm_node = bo->tbo.mem.mm_node;
2209
2210         while (num_pages) {
2211                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2212                 uint64_t dst_addr;
2213
2214                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2215                 while (byte_count) {
2216                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2217                                                            max_bytes);
2218
2219                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2220                                                 dst_addr, cur_size_in_bytes);
2221
2222                         dst_addr += cur_size_in_bytes;
2223                         byte_count -= cur_size_in_bytes;
2224                 }
2225
2226                 num_pages -= mm_node->size;
2227                 ++mm_node;
2228         }
2229
2230         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2231         WARN_ON(job->ibs[0].length_dw > num_dw);
2232         r = amdgpu_job_submit(job, &adev->mman.entity,
2233                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2234         if (r)
2235                 goto error_free;
2236
2237         return 0;
2238
2239 error_free:
2240         amdgpu_job_free(job);
2241         return r;
2242 }
2243
2244 #if defined(CONFIG_DEBUG_FS)
2245
2246 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2247 {
2248         struct drm_info_node *node = (struct drm_info_node *)m->private;
2249         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2250         struct drm_device *dev = node->minor->dev;
2251         struct amdgpu_device *adev = drm_to_adev(dev);
2252         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2253         struct drm_printer p = drm_seq_file_printer(m);
2254
2255         man->func->debug(man, &p);
2256         return 0;
2257 }
2258
2259 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2260         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2261         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2262         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2263         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2264         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2265         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2266 #ifdef CONFIG_SWIOTLB
2267         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2268 #endif
2269 };
2270
2271 /**
2272  * amdgpu_ttm_vram_read - Linear read access to VRAM
2273  *
2274  * Accesses VRAM via MMIO for debugging purposes.
2275  */
2276 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2277                                     size_t size, loff_t *pos)
2278 {
2279         struct amdgpu_device *adev = file_inode(f)->i_private;
2280         ssize_t result = 0;
2281
2282         if (size & 0x3 || *pos & 0x3)
2283                 return -EINVAL;
2284
2285         if (*pos >= adev->gmc.mc_vram_size)
2286                 return -ENXIO;
2287
2288         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2289         while (size) {
2290                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2291                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2292
2293                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2294                 if (copy_to_user(buf, value, bytes))
2295                         return -EFAULT;
2296
2297                 result += bytes;
2298                 buf += bytes;
2299                 *pos += bytes;
2300                 size -= bytes;
2301         }
2302
2303         return result;
2304 }
2305
2306 /**
2307  * amdgpu_ttm_vram_write - Linear write access to VRAM
2308  *
2309  * Accesses VRAM via MMIO for debugging purposes.
2310  */
2311 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2312                                     size_t size, loff_t *pos)
2313 {
2314         struct amdgpu_device *adev = file_inode(f)->i_private;
2315         ssize_t result = 0;
2316         int r;
2317
2318         if (size & 0x3 || *pos & 0x3)
2319                 return -EINVAL;
2320
2321         if (*pos >= adev->gmc.mc_vram_size)
2322                 return -ENXIO;
2323
2324         while (size) {
2325                 unsigned long flags;
2326                 uint32_t value;
2327
2328                 if (*pos >= adev->gmc.mc_vram_size)
2329                         return result;
2330
2331                 r = get_user(value, (uint32_t *)buf);
2332                 if (r)
2333                         return r;
2334
2335                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2336                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2337                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2338                 WREG32_NO_KIQ(mmMM_DATA, value);
2339                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2340
2341                 result += 4;
2342                 buf += 4;
2343                 *pos += 4;
2344                 size -= 4;
2345         }
2346
2347         return result;
2348 }
2349
2350 static const struct file_operations amdgpu_ttm_vram_fops = {
2351         .owner = THIS_MODULE,
2352         .read = amdgpu_ttm_vram_read,
2353         .write = amdgpu_ttm_vram_write,
2354         .llseek = default_llseek,
2355 };
2356
2357 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2358
2359 /**
2360  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2361  */
2362 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2363                                    size_t size, loff_t *pos)
2364 {
2365         struct amdgpu_device *adev = file_inode(f)->i_private;
2366         ssize_t result = 0;
2367         int r;
2368
2369         while (size) {
2370                 loff_t p = *pos / PAGE_SIZE;
2371                 unsigned off = *pos & ~PAGE_MASK;
2372                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2373                 struct page *page;
2374                 void *ptr;
2375
2376                 if (p >= adev->gart.num_cpu_pages)
2377                         return result;
2378
2379                 page = adev->gart.pages[p];
2380                 if (page) {
2381                         ptr = kmap(page);
2382                         ptr += off;
2383
2384                         r = copy_to_user(buf, ptr, cur_size);
2385                         kunmap(adev->gart.pages[p]);
2386                 } else
2387                         r = clear_user(buf, cur_size);
2388
2389                 if (r)
2390                         return -EFAULT;
2391
2392                 result += cur_size;
2393                 buf += cur_size;
2394                 *pos += cur_size;
2395                 size -= cur_size;
2396         }
2397
2398         return result;
2399 }
2400
2401 static const struct file_operations amdgpu_ttm_gtt_fops = {
2402         .owner = THIS_MODULE,
2403         .read = amdgpu_ttm_gtt_read,
2404         .llseek = default_llseek
2405 };
2406
2407 #endif
2408
2409 /**
2410  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2411  *
2412  * This function is used to read memory that has been mapped to the
2413  * GPU and the known addresses are not physical addresses but instead
2414  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2415  */
2416 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2417                                  size_t size, loff_t *pos)
2418 {
2419         struct amdgpu_device *adev = file_inode(f)->i_private;
2420         struct iommu_domain *dom;
2421         ssize_t result = 0;
2422         int r;
2423
2424         /* retrieve the IOMMU domain if any for this device */
2425         dom = iommu_get_domain_for_dev(adev->dev);
2426
2427         while (size) {
2428                 phys_addr_t addr = *pos & PAGE_MASK;
2429                 loff_t off = *pos & ~PAGE_MASK;
2430                 size_t bytes = PAGE_SIZE - off;
2431                 unsigned long pfn;
2432                 struct page *p;
2433                 void *ptr;
2434
2435                 bytes = bytes < size ? bytes : size;
2436
2437                 /* Translate the bus address to a physical address.  If
2438                  * the domain is NULL it means there is no IOMMU active
2439                  * and the address translation is the identity
2440                  */
2441                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2442
2443                 pfn = addr >> PAGE_SHIFT;
2444                 if (!pfn_valid(pfn))
2445                         return -EPERM;
2446
2447                 p = pfn_to_page(pfn);
2448                 if (p->mapping != adev->mman.bdev.dev_mapping)
2449                         return -EPERM;
2450
2451                 ptr = kmap(p);
2452                 r = copy_to_user(buf, ptr + off, bytes);
2453                 kunmap(p);
2454                 if (r)
2455                         return -EFAULT;
2456
2457                 size -= bytes;
2458                 *pos += bytes;
2459                 result += bytes;
2460         }
2461
2462         return result;
2463 }
2464
2465 /**
2466  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2467  *
2468  * This function is used to write memory that has been mapped to the
2469  * GPU and the known addresses are not physical addresses but instead
2470  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2471  */
2472 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2473                                  size_t size, loff_t *pos)
2474 {
2475         struct amdgpu_device *adev = file_inode(f)->i_private;
2476         struct iommu_domain *dom;
2477         ssize_t result = 0;
2478         int r;
2479
2480         dom = iommu_get_domain_for_dev(adev->dev);
2481
2482         while (size) {
2483                 phys_addr_t addr = *pos & PAGE_MASK;
2484                 loff_t off = *pos & ~PAGE_MASK;
2485                 size_t bytes = PAGE_SIZE - off;
2486                 unsigned long pfn;
2487                 struct page *p;
2488                 void *ptr;
2489
2490                 bytes = bytes < size ? bytes : size;
2491
2492                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2493
2494                 pfn = addr >> PAGE_SHIFT;
2495                 if (!pfn_valid(pfn))
2496                         return -EPERM;
2497
2498                 p = pfn_to_page(pfn);
2499                 if (p->mapping != adev->mman.bdev.dev_mapping)
2500                         return -EPERM;
2501
2502                 ptr = kmap(p);
2503                 r = copy_from_user(ptr + off, buf, bytes);
2504                 kunmap(p);
2505                 if (r)
2506                         return -EFAULT;
2507
2508                 size -= bytes;
2509                 *pos += bytes;
2510                 result += bytes;
2511         }
2512
2513         return result;
2514 }
2515
2516 static const struct file_operations amdgpu_ttm_iomem_fops = {
2517         .owner = THIS_MODULE,
2518         .read = amdgpu_iomem_read,
2519         .write = amdgpu_iomem_write,
2520         .llseek = default_llseek
2521 };
2522
2523 static const struct {
2524         char *name;
2525         const struct file_operations *fops;
2526         int domain;
2527 } ttm_debugfs_entries[] = {
2528         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2529 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2530         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2531 #endif
2532         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2533 };
2534
2535 #endif
2536
2537 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2538 {
2539 #if defined(CONFIG_DEBUG_FS)
2540         unsigned count;
2541
2542         struct drm_minor *minor = adev_to_drm(adev)->primary;
2543         struct dentry *ent, *root = minor->debugfs_root;
2544
2545         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2546                 ent = debugfs_create_file(
2547                                 ttm_debugfs_entries[count].name,
2548                                 S_IFREG | S_IRUGO, root,
2549                                 adev,
2550                                 ttm_debugfs_entries[count].fops);
2551                 if (IS_ERR(ent))
2552                         return PTR_ERR(ent);
2553                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2554                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2555                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2556                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2557                 adev->mman.debugfs_entries[count] = ent;
2558         }
2559
2560         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2561
2562 #ifdef CONFIG_SWIOTLB
2563         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2564                 --count;
2565 #endif
2566
2567         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2568 #else
2569         return 0;
2570 #endif
2571 }