Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_module.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #include <drm/drm_debugfs.h>
52 #include <drm/amdgpu_drm.h>
53
54 #include "amdgpu.h"
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "bif/bif_4_1_d.h"
61
62 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
63                              struct ttm_mem_reg *mem, unsigned num_pages,
64                              uint64_t offset, unsigned window,
65                              struct amdgpu_ring *ring,
66                              uint64_t *addr);
67
68 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
69 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
70
71 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
72 {
73         return 0;
74 }
75
76 /**
77  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
78  * memory request.
79  *
80  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
81  * @type: The type of memory requested
82  * @man: The memory type manager for each domain
83  *
84  * This is called by ttm_bo_init_mm() when a buffer object is being
85  * initialized.
86  */
87 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
88                                 struct ttm_mem_type_manager *man)
89 {
90         struct amdgpu_device *adev;
91
92         adev = amdgpu_ttm_adev(bdev);
93
94         switch (type) {
95         case TTM_PL_SYSTEM:
96                 /* System memory */
97                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
98                 man->available_caching = TTM_PL_MASK_CACHING;
99                 man->default_caching = TTM_PL_FLAG_CACHED;
100                 break;
101         case TTM_PL_TT:
102                 /* GTT memory  */
103                 man->func = &amdgpu_gtt_mgr_func;
104                 man->gpu_offset = adev->gmc.gart_start;
105                 man->available_caching = TTM_PL_MASK_CACHING;
106                 man->default_caching = TTM_PL_FLAG_CACHED;
107                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
108                 break;
109         case TTM_PL_VRAM:
110                 /* "On-card" video ram */
111                 man->func = &amdgpu_vram_mgr_func;
112                 man->gpu_offset = adev->gmc.vram_start;
113                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
114                              TTM_MEMTYPE_FLAG_MAPPABLE;
115                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
116                 man->default_caching = TTM_PL_FLAG_WC;
117                 break;
118         case AMDGPU_PL_GDS:
119         case AMDGPU_PL_GWS:
120         case AMDGPU_PL_OA:
121                 /* On-chip GDS memory*/
122                 man->func = &ttm_bo_manager_func;
123                 man->gpu_offset = 0;
124                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
125                 man->available_caching = TTM_PL_FLAG_UNCACHED;
126                 man->default_caching = TTM_PL_FLAG_UNCACHED;
127                 break;
128         default:
129                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
130                 return -EINVAL;
131         }
132         return 0;
133 }
134
135 /**
136  * amdgpu_evict_flags - Compute placement flags
137  *
138  * @bo: The buffer object to evict
139  * @placement: Possible destination(s) for evicted BO
140  *
141  * Fill in placement data when ttm_bo_evict() is called
142  */
143 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
144                                 struct ttm_placement *placement)
145 {
146         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
147         struct amdgpu_bo *abo;
148         static const struct ttm_place placements = {
149                 .fpfn = 0,
150                 .lpfn = 0,
151                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
152         };
153
154         /* Don't handle scatter gather BOs */
155         if (bo->type == ttm_bo_type_sg) {
156                 placement->num_placement = 0;
157                 placement->num_busy_placement = 0;
158                 return;
159         }
160
161         /* Object isn't an AMDGPU object so ignore */
162         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
163                 placement->placement = &placements;
164                 placement->busy_placement = &placements;
165                 placement->num_placement = 1;
166                 placement->num_busy_placement = 1;
167                 return;
168         }
169
170         abo = ttm_to_amdgpu_bo(bo);
171         switch (bo->mem.mem_type) {
172         case AMDGPU_PL_GDS:
173         case AMDGPU_PL_GWS:
174         case AMDGPU_PL_OA:
175                 placement->num_placement = 0;
176                 placement->num_busy_placement = 0;
177                 return;
178
179         case TTM_PL_VRAM:
180                 if (!adev->mman.buffer_funcs_enabled) {
181                         /* Move to system memory */
182                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
183                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
184                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
185                            amdgpu_bo_in_cpu_visible_vram(abo)) {
186
187                         /* Try evicting to the CPU inaccessible part of VRAM
188                          * first, but only set GTT as busy placement, so this
189                          * BO will be evicted to GTT rather than causing other
190                          * BOs to be evicted from VRAM
191                          */
192                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
193                                                          AMDGPU_GEM_DOMAIN_GTT);
194                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
195                         abo->placements[0].lpfn = 0;
196                         abo->placement.busy_placement = &abo->placements[1];
197                         abo->placement.num_busy_placement = 1;
198                 } else {
199                         /* Move to GTT memory */
200                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
201                 }
202                 break;
203         case TTM_PL_TT:
204         default:
205                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
206                 break;
207         }
208         *placement = abo->placement;
209 }
210
211 /**
212  * amdgpu_verify_access - Verify access for a mmap call
213  *
214  * @bo: The buffer object to map
215  * @filp: The file pointer from the process performing the mmap
216  *
217  * This is called by ttm_bo_mmap() to verify whether a process
218  * has the right to mmap a BO to their process space.
219  */
220 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
221 {
222         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
223
224         /*
225          * Don't verify access for KFD BOs. They don't have a GEM
226          * object associated with them.
227          */
228         if (abo->kfd_bo)
229                 return 0;
230
231         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
232                 return -EPERM;
233         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
234                                           filp->private_data);
235 }
236
237 /**
238  * amdgpu_move_null - Register memory for a buffer object
239  *
240  * @bo: The bo to assign the memory to
241  * @new_mem: The memory to be assigned.
242  *
243  * Assign the memory from new_mem to the memory of the buffer object bo.
244  */
245 static void amdgpu_move_null(struct ttm_buffer_object *bo,
246                              struct ttm_mem_reg *new_mem)
247 {
248         struct ttm_mem_reg *old_mem = &bo->mem;
249
250         BUG_ON(old_mem->mm_node != NULL);
251         *old_mem = *new_mem;
252         new_mem->mm_node = NULL;
253 }
254
255 /**
256  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
257  *
258  * @bo: The bo to assign the memory to.
259  * @mm_node: Memory manager node for drm allocator.
260  * @mem: The region where the bo resides.
261  *
262  */
263 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
264                                     struct drm_mm_node *mm_node,
265                                     struct ttm_mem_reg *mem)
266 {
267         uint64_t addr = 0;
268
269         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
270                 addr = mm_node->start << PAGE_SHIFT;
271                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
272         }
273         return addr;
274 }
275
276 /**
277  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
278  * @offset. It also modifies the offset to be within the drm_mm_node returned
279  *
280  * @mem: The region where the bo resides.
281  * @offset: The offset that drm_mm_node is used for finding.
282  *
283  */
284 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
285                                                unsigned long *offset)
286 {
287         struct drm_mm_node *mm_node = mem->mm_node;
288
289         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
290                 *offset -= (mm_node->size << PAGE_SHIFT);
291                 ++mm_node;
292         }
293         return mm_node;
294 }
295
296 /**
297  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
298  *
299  * The function copies @size bytes from {src->mem + src->offset} to
300  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
301  * move and different for a BO to BO copy.
302  *
303  * @f: Returns the last fence if multiple jobs are submitted.
304  */
305 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
306                                struct amdgpu_copy_mem *src,
307                                struct amdgpu_copy_mem *dst,
308                                uint64_t size,
309                                struct dma_resv *resv,
310                                struct dma_fence **f)
311 {
312         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
313         struct drm_mm_node *src_mm, *dst_mm;
314         uint64_t src_node_start, dst_node_start, src_node_size,
315                  dst_node_size, src_page_offset, dst_page_offset;
316         struct dma_fence *fence = NULL;
317         int r = 0;
318         const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
319                                         AMDGPU_GPU_PAGE_SIZE);
320
321         if (!adev->mman.buffer_funcs_enabled) {
322                 DRM_ERROR("Trying to move memory with ring turned off.\n");
323                 return -EINVAL;
324         }
325
326         src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
327         src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
328                                              src->offset;
329         src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
330         src_page_offset = src_node_start & (PAGE_SIZE - 1);
331
332         dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
333         dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
334                                              dst->offset;
335         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
336         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
337
338         mutex_lock(&adev->mman.gtt_window_lock);
339
340         while (size) {
341                 unsigned long cur_size;
342                 uint64_t from = src_node_start, to = dst_node_start;
343                 struct dma_fence *next;
344
345                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
346                  * begins at an offset, then adjust the size accordingly
347                  */
348                 cur_size = min3(min(src_node_size, dst_node_size), size,
349                                 GTT_MAX_BYTES);
350                 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
351                     cur_size + dst_page_offset > GTT_MAX_BYTES)
352                         cur_size -= max(src_page_offset, dst_page_offset);
353
354                 /* Map only what needs to be accessed. Map src to window 0 and
355                  * dst to window 1
356                  */
357                 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
358                         r = amdgpu_map_buffer(src->bo, src->mem,
359                                         PFN_UP(cur_size + src_page_offset),
360                                         src_node_start, 0, ring,
361                                         &from);
362                         if (r)
363                                 goto error;
364                         /* Adjust the offset because amdgpu_map_buffer returns
365                          * start of mapped page
366                          */
367                         from += src_page_offset;
368                 }
369
370                 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
371                         r = amdgpu_map_buffer(dst->bo, dst->mem,
372                                         PFN_UP(cur_size + dst_page_offset),
373                                         dst_node_start, 1, ring,
374                                         &to);
375                         if (r)
376                                 goto error;
377                         to += dst_page_offset;
378                 }
379
380                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
381                                        resv, &next, false, true);
382                 if (r)
383                         goto error;
384
385                 dma_fence_put(fence);
386                 fence = next;
387
388                 size -= cur_size;
389                 if (!size)
390                         break;
391
392                 src_node_size -= cur_size;
393                 if (!src_node_size) {
394                         src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
395                                                              src->mem);
396                         src_node_size = (src_mm->size << PAGE_SHIFT);
397                         src_page_offset = 0;
398                 } else {
399                         src_node_start += cur_size;
400                         src_page_offset = src_node_start & (PAGE_SIZE - 1);
401                 }
402                 dst_node_size -= cur_size;
403                 if (!dst_node_size) {
404                         dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
405                                                              dst->mem);
406                         dst_node_size = (dst_mm->size << PAGE_SHIFT);
407                         dst_page_offset = 0;
408                 } else {
409                         dst_node_start += cur_size;
410                         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
411                 }
412         }
413 error:
414         mutex_unlock(&adev->mman.gtt_window_lock);
415         if (f)
416                 *f = dma_fence_get(fence);
417         dma_fence_put(fence);
418         return r;
419 }
420
421 /**
422  * amdgpu_move_blit - Copy an entire buffer to another buffer
423  *
424  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
425  * help move buffers to and from VRAM.
426  */
427 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
428                             bool evict, bool no_wait_gpu,
429                             struct ttm_mem_reg *new_mem,
430                             struct ttm_mem_reg *old_mem)
431 {
432         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
433         struct amdgpu_copy_mem src, dst;
434         struct dma_fence *fence = NULL;
435         int r;
436
437         src.bo = bo;
438         dst.bo = bo;
439         src.mem = old_mem;
440         dst.mem = new_mem;
441         src.offset = 0;
442         dst.offset = 0;
443
444         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
445                                        new_mem->num_pages << PAGE_SHIFT,
446                                        bo->base.resv, &fence);
447         if (r)
448                 goto error;
449
450         /* clear the space being freed */
451         if (old_mem->mem_type == TTM_PL_VRAM &&
452             (ttm_to_amdgpu_bo(bo)->flags &
453              AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
454                 struct dma_fence *wipe_fence = NULL;
455
456                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
457                                        NULL, &wipe_fence);
458                 if (r) {
459                         goto error;
460                 } else if (wipe_fence) {
461                         dma_fence_put(fence);
462                         fence = wipe_fence;
463                 }
464         }
465
466         /* Always block for VM page tables before committing the new location */
467         if (bo->type == ttm_bo_type_kernel)
468                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
469         else
470                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
471         dma_fence_put(fence);
472         return r;
473
474 error:
475         if (fence)
476                 dma_fence_wait(fence, false);
477         dma_fence_put(fence);
478         return r;
479 }
480
481 /**
482  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
483  *
484  * Called by amdgpu_bo_move().
485  */
486 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
487                                 struct ttm_operation_ctx *ctx,
488                                 struct ttm_mem_reg *new_mem)
489 {
490         struct ttm_mem_reg *old_mem = &bo->mem;
491         struct ttm_mem_reg tmp_mem;
492         struct ttm_place placements;
493         struct ttm_placement placement;
494         int r;
495
496         /* create space/pages for new_mem in GTT space */
497         tmp_mem = *new_mem;
498         tmp_mem.mm_node = NULL;
499         placement.num_placement = 1;
500         placement.placement = &placements;
501         placement.num_busy_placement = 1;
502         placement.busy_placement = &placements;
503         placements.fpfn = 0;
504         placements.lpfn = 0;
505         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507         if (unlikely(r)) {
508                 pr_err("Failed to find GTT space for blit from VRAM\n");
509                 return r;
510         }
511
512         /* set caching flags */
513         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514         if (unlikely(r)) {
515                 goto out_cleanup;
516         }
517
518         /* Bind the memory to the GTT space */
519         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520         if (unlikely(r)) {
521                 goto out_cleanup;
522         }
523
524         /* blit VRAM to GTT */
525         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526         if (unlikely(r)) {
527                 goto out_cleanup;
528         }
529
530         /* move BO (in tmp_mem) to new_mem */
531         r = ttm_bo_move_ttm(bo, ctx, new_mem);
532 out_cleanup:
533         ttm_bo_mem_put(bo, &tmp_mem);
534         return r;
535 }
536
537 /**
538  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539  *
540  * Called by amdgpu_bo_move().
541  */
542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543                                 struct ttm_operation_ctx *ctx,
544                                 struct ttm_mem_reg *new_mem)
545 {
546         struct ttm_mem_reg *old_mem = &bo->mem;
547         struct ttm_mem_reg tmp_mem;
548         struct ttm_placement placement;
549         struct ttm_place placements;
550         int r;
551
552         /* make space in GTT for old_mem buffer */
553         tmp_mem = *new_mem;
554         tmp_mem.mm_node = NULL;
555         placement.num_placement = 1;
556         placement.placement = &placements;
557         placement.num_busy_placement = 1;
558         placement.busy_placement = &placements;
559         placements.fpfn = 0;
560         placements.lpfn = 0;
561         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
562         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
563         if (unlikely(r)) {
564                 pr_err("Failed to find GTT space for blit to VRAM\n");
565                 return r;
566         }
567
568         /* move/bind old memory to GTT space */
569         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
570         if (unlikely(r)) {
571                 goto out_cleanup;
572         }
573
574         /* copy to VRAM */
575         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
576         if (unlikely(r)) {
577                 goto out_cleanup;
578         }
579 out_cleanup:
580         ttm_bo_mem_put(bo, &tmp_mem);
581         return r;
582 }
583
584 /**
585  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
586  *
587  * Called by amdgpu_bo_move()
588  */
589 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
590                                struct ttm_mem_reg *mem)
591 {
592         struct drm_mm_node *nodes = mem->mm_node;
593
594         if (mem->mem_type == TTM_PL_SYSTEM ||
595             mem->mem_type == TTM_PL_TT)
596                 return true;
597         if (mem->mem_type != TTM_PL_VRAM)
598                 return false;
599
600         /* ttm_mem_reg_ioremap only supports contiguous memory */
601         if (nodes->size != mem->num_pages)
602                 return false;
603
604         return ((nodes->start + nodes->size) << PAGE_SHIFT)
605                 <= adev->gmc.visible_vram_size;
606 }
607
608 /**
609  * amdgpu_bo_move - Move a buffer object to a new memory location
610  *
611  * Called by ttm_bo_handle_move_mem()
612  */
613 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
614                           struct ttm_operation_ctx *ctx,
615                           struct ttm_mem_reg *new_mem)
616 {
617         struct amdgpu_device *adev;
618         struct amdgpu_bo *abo;
619         struct ttm_mem_reg *old_mem = &bo->mem;
620         int r;
621
622         /* Can't move a pinned BO */
623         abo = ttm_to_amdgpu_bo(bo);
624         if (WARN_ON_ONCE(abo->pin_count > 0))
625                 return -EINVAL;
626
627         adev = amdgpu_ttm_adev(bo->bdev);
628
629         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
630                 amdgpu_move_null(bo, new_mem);
631                 return 0;
632         }
633         if ((old_mem->mem_type == TTM_PL_TT &&
634              new_mem->mem_type == TTM_PL_SYSTEM) ||
635             (old_mem->mem_type == TTM_PL_SYSTEM &&
636              new_mem->mem_type == TTM_PL_TT)) {
637                 /* bind is enough */
638                 amdgpu_move_null(bo, new_mem);
639                 return 0;
640         }
641         if (old_mem->mem_type == AMDGPU_PL_GDS ||
642             old_mem->mem_type == AMDGPU_PL_GWS ||
643             old_mem->mem_type == AMDGPU_PL_OA ||
644             new_mem->mem_type == AMDGPU_PL_GDS ||
645             new_mem->mem_type == AMDGPU_PL_GWS ||
646             new_mem->mem_type == AMDGPU_PL_OA) {
647                 /* Nothing to save here */
648                 amdgpu_move_null(bo, new_mem);
649                 return 0;
650         }
651
652         if (!adev->mman.buffer_funcs_enabled) {
653                 r = -ENODEV;
654                 goto memcpy;
655         }
656
657         if (old_mem->mem_type == TTM_PL_VRAM &&
658             new_mem->mem_type == TTM_PL_SYSTEM) {
659                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
660         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
661                    new_mem->mem_type == TTM_PL_VRAM) {
662                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
663         } else {
664                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
665                                      new_mem, old_mem);
666         }
667
668         if (r) {
669 memcpy:
670                 /* Check that all memory is CPU accessible */
671                 if (!amdgpu_mem_visible(adev, old_mem) ||
672                     !amdgpu_mem_visible(adev, new_mem)) {
673                         pr_err("Move buffer fallback to memcpy unavailable\n");
674                         return r;
675                 }
676
677                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
678                 if (r)
679                         return r;
680         }
681
682         if (bo->type == ttm_bo_type_device &&
683             new_mem->mem_type == TTM_PL_VRAM &&
684             old_mem->mem_type != TTM_PL_VRAM) {
685                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
686                  * accesses the BO after it's moved.
687                  */
688                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
689         }
690
691         /* update statistics */
692         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
693         return 0;
694 }
695
696 /**
697  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
698  *
699  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
700  */
701 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
702 {
703         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
704         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
705         struct drm_mm_node *mm_node = mem->mm_node;
706
707         mem->bus.addr = NULL;
708         mem->bus.offset = 0;
709         mem->bus.size = mem->num_pages << PAGE_SHIFT;
710         mem->bus.base = 0;
711         mem->bus.is_iomem = false;
712         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
713                 return -EINVAL;
714         switch (mem->mem_type) {
715         case TTM_PL_SYSTEM:
716                 /* system memory */
717                 return 0;
718         case TTM_PL_TT:
719                 break;
720         case TTM_PL_VRAM:
721                 mem->bus.offset = mem->start << PAGE_SHIFT;
722                 /* check if it's visible */
723                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
724                         return -EINVAL;
725                 /* Only physically contiguous buffers apply. In a contiguous
726                  * buffer, size of the first mm_node would match the number of
727                  * pages in ttm_mem_reg.
728                  */
729                 if (adev->mman.aper_base_kaddr &&
730                     (mm_node->size == mem->num_pages))
731                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
732                                         mem->bus.offset;
733
734                 mem->bus.base = adev->gmc.aper_base;
735                 mem->bus.is_iomem = true;
736                 break;
737         default:
738                 return -EINVAL;
739         }
740         return 0;
741 }
742
743 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
744 {
745 }
746
747 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
748                                            unsigned long page_offset)
749 {
750         struct drm_mm_node *mm;
751         unsigned long offset = (page_offset << PAGE_SHIFT);
752
753         mm = amdgpu_find_mm_node(&bo->mem, &offset);
754         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
755                 (offset >> PAGE_SHIFT);
756 }
757
758 /*
759  * TTM backend functions.
760  */
761 struct amdgpu_ttm_tt {
762         struct ttm_dma_tt       ttm;
763         struct drm_gem_object   *gobj;
764         u64                     offset;
765         uint64_t                userptr;
766         struct task_struct      *usertask;
767         uint32_t                userflags;
768 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
769         struct hmm_range        *range;
770 #endif
771 };
772
773 #ifdef CONFIG_DRM_AMDGPU_USERPTR
774 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
775 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
776         (1 << 0), /* HMM_PFN_VALID */
777         (1 << 1), /* HMM_PFN_WRITE */
778         0 /* HMM_PFN_DEVICE_PRIVATE */
779 };
780
781 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
782         0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
783         0, /* HMM_PFN_NONE */
784         0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
785 };
786
787 /**
788  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
789  * memory and start HMM tracking CPU page table update
790  *
791  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
792  * once afterwards to stop HMM tracking
793  */
794 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
795 {
796         struct ttm_tt *ttm = bo->tbo.ttm;
797         struct amdgpu_ttm_tt *gtt = (void *)ttm;
798         unsigned long start = gtt->userptr;
799         struct vm_area_struct *vma;
800         struct hmm_range *range;
801         unsigned long timeout;
802         struct mm_struct *mm;
803         unsigned long i;
804         int r = 0;
805
806         mm = bo->notifier.mm;
807         if (unlikely(!mm)) {
808                 DRM_DEBUG_DRIVER("BO is not registered?\n");
809                 return -EFAULT;
810         }
811
812         /* Another get_user_pages is running at the same time?? */
813         if (WARN_ON(gtt->range))
814                 return -EFAULT;
815
816         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
817                 return -ESRCH;
818
819         range = kzalloc(sizeof(*range), GFP_KERNEL);
820         if (unlikely(!range)) {
821                 r = -ENOMEM;
822                 goto out;
823         }
824         range->notifier = &bo->notifier;
825         range->flags = hmm_range_flags;
826         range->values = hmm_range_values;
827         range->pfn_shift = PAGE_SHIFT;
828         range->start = bo->notifier.interval_tree.start;
829         range->end = bo->notifier.interval_tree.last + 1;
830         range->default_flags = hmm_range_flags[HMM_PFN_VALID];
831         if (!amdgpu_ttm_tt_is_readonly(ttm))
832                 range->default_flags |= range->flags[HMM_PFN_WRITE];
833
834         range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
835                                      GFP_KERNEL);
836         if (unlikely(!range->pfns)) {
837                 r = -ENOMEM;
838                 goto out_free_ranges;
839         }
840
841         down_read(&mm->mmap_sem);
842         vma = find_vma(mm, start);
843         if (unlikely(!vma || start < vma->vm_start)) {
844                 r = -EFAULT;
845                 goto out_unlock;
846         }
847         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
848                 vma->vm_file)) {
849                 r = -EPERM;
850                 goto out_unlock;
851         }
852         up_read(&mm->mmap_sem);
853         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
854
855 retry:
856         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
857
858         down_read(&mm->mmap_sem);
859         r = hmm_range_fault(range, 0);
860         up_read(&mm->mmap_sem);
861         if (unlikely(r <= 0)) {
862                 /*
863                  * FIXME: This timeout should encompass the retry from
864                  * mmu_interval_read_retry() as well.
865                  */
866                 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
867                         goto retry;
868                 goto out_free_pfns;
869         }
870
871         for (i = 0; i < ttm->num_pages; i++) {
872                 /* FIXME: The pages cannot be touched outside the notifier_lock */
873                 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
874                 if (unlikely(!pages[i])) {
875                         pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
876                                i, range->pfns[i]);
877                         r = -ENOMEM;
878
879                         goto out_free_pfns;
880                 }
881         }
882
883         gtt->range = range;
884         mmput(mm);
885
886         return 0;
887
888 out_unlock:
889         up_read(&mm->mmap_sem);
890 out_free_pfns:
891         kvfree(range->pfns);
892 out_free_ranges:
893         kfree(range);
894 out:
895         mmput(mm);
896         return r;
897 }
898
899 /**
900  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
901  * Check if the pages backing this ttm range have been invalidated
902  *
903  * Returns: true if pages are still valid
904  */
905 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
906 {
907         struct amdgpu_ttm_tt *gtt = (void *)ttm;
908         bool r = false;
909
910         if (!gtt || !gtt->userptr)
911                 return false;
912
913         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
914                 gtt->userptr, ttm->num_pages);
915
916         WARN_ONCE(!gtt->range || !gtt->range->pfns,
917                 "No user pages to check\n");
918
919         if (gtt->range) {
920                 /*
921                  * FIXME: Must always hold notifier_lock for this, and must
922                  * not ignore the return code.
923                  */
924                 r = mmu_interval_read_retry(gtt->range->notifier,
925                                          gtt->range->notifier_seq);
926                 kvfree(gtt->range->pfns);
927                 kfree(gtt->range);
928                 gtt->range = NULL;
929         }
930
931         return !r;
932 }
933 #endif
934
935 /**
936  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
937  *
938  * Called by amdgpu_cs_list_validate(). This creates the page list
939  * that backs user memory and will ultimately be mapped into the device
940  * address space.
941  */
942 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
943 {
944         unsigned long i;
945
946         for (i = 0; i < ttm->num_pages; ++i)
947                 ttm->pages[i] = pages ? pages[i] : NULL;
948 }
949
950 /**
951  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
952  *
953  * Called by amdgpu_ttm_backend_bind()
954  **/
955 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
956 {
957         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
958         struct amdgpu_ttm_tt *gtt = (void *)ttm;
959         unsigned nents;
960         int r;
961
962         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
963         enum dma_data_direction direction = write ?
964                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
965
966         /* Allocate an SG array and squash pages into it */
967         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
968                                       ttm->num_pages << PAGE_SHIFT,
969                                       GFP_KERNEL);
970         if (r)
971                 goto release_sg;
972
973         /* Map SG to device */
974         r = -ENOMEM;
975         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
976         if (nents != ttm->sg->nents)
977                 goto release_sg;
978
979         /* convert SG to linear array of pages and dma addresses */
980         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
981                                          gtt->ttm.dma_address, ttm->num_pages);
982
983         return 0;
984
985 release_sg:
986         kfree(ttm->sg);
987         return r;
988 }
989
990 /**
991  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
992  */
993 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
994 {
995         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
996         struct amdgpu_ttm_tt *gtt = (void *)ttm;
997
998         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
999         enum dma_data_direction direction = write ?
1000                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1001
1002         /* double check that we don't free the table twice */
1003         if (!ttm->sg->sgl)
1004                 return;
1005
1006         /* unmap the pages mapped to the device */
1007         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1008
1009         sg_free_table(ttm->sg);
1010
1011 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1012         if (gtt->range) {
1013                 unsigned long i;
1014
1015                 for (i = 0; i < ttm->num_pages; i++) {
1016                         if (ttm->pages[i] !=
1017                                 hmm_device_entry_to_page(gtt->range,
1018                                               gtt->range->pfns[i]))
1019                                 break;
1020                 }
1021
1022                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1023         }
1024 #endif
1025 }
1026
1027 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1028                                 struct ttm_buffer_object *tbo,
1029                                 uint64_t flags)
1030 {
1031         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1032         struct ttm_tt *ttm = tbo->ttm;
1033         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1034         int r;
1035
1036         if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1037                 uint64_t page_idx = 1;
1038
1039                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1040                                 ttm->pages, gtt->ttm.dma_address, flags);
1041                 if (r)
1042                         goto gart_bind_fail;
1043
1044                 /* Patch mtype of the second part BO */
1045                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1046                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1047
1048                 r = amdgpu_gart_bind(adev,
1049                                 gtt->offset + (page_idx << PAGE_SHIFT),
1050                                 ttm->num_pages - page_idx,
1051                                 &ttm->pages[page_idx],
1052                                 &(gtt->ttm.dma_address[page_idx]), flags);
1053         } else {
1054                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1055                                      ttm->pages, gtt->ttm.dma_address, flags);
1056         }
1057
1058 gart_bind_fail:
1059         if (r)
1060                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1061                           ttm->num_pages, gtt->offset);
1062
1063         return r;
1064 }
1065
1066 /**
1067  * amdgpu_ttm_backend_bind - Bind GTT memory
1068  *
1069  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1070  * This handles binding GTT memory to the device address space.
1071  */
1072 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1073                                    struct ttm_mem_reg *bo_mem)
1074 {
1075         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1076         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1077         uint64_t flags;
1078         int r = 0;
1079
1080         if (gtt->userptr) {
1081                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1082                 if (r) {
1083                         DRM_ERROR("failed to pin userptr\n");
1084                         return r;
1085                 }
1086         }
1087         if (!ttm->num_pages) {
1088                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1089                      ttm->num_pages, bo_mem, ttm);
1090         }
1091
1092         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1093             bo_mem->mem_type == AMDGPU_PL_GWS ||
1094             bo_mem->mem_type == AMDGPU_PL_OA)
1095                 return -EINVAL;
1096
1097         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1098                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1099                 return 0;
1100         }
1101
1102         /* compute PTE flags relevant to this BO memory */
1103         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1104
1105         /* bind pages into GART page tables */
1106         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1107         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1108                 ttm->pages, gtt->ttm.dma_address, flags);
1109
1110         if (r)
1111                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1112                           ttm->num_pages, gtt->offset);
1113         return r;
1114 }
1115
1116 /**
1117  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1118  */
1119 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1120 {
1121         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1122         struct ttm_operation_ctx ctx = { false, false };
1123         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1124         struct ttm_mem_reg tmp;
1125         struct ttm_placement placement;
1126         struct ttm_place placements;
1127         uint64_t addr, flags;
1128         int r;
1129
1130         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1131                 return 0;
1132
1133         addr = amdgpu_gmc_agp_addr(bo);
1134         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1135                 bo->mem.start = addr >> PAGE_SHIFT;
1136         } else {
1137
1138                 /* allocate GART space */
1139                 tmp = bo->mem;
1140                 tmp.mm_node = NULL;
1141                 placement.num_placement = 1;
1142                 placement.placement = &placements;
1143                 placement.num_busy_placement = 1;
1144                 placement.busy_placement = &placements;
1145                 placements.fpfn = 0;
1146                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1147                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1148                         TTM_PL_FLAG_TT;
1149
1150                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1151                 if (unlikely(r))
1152                         return r;
1153
1154                 /* compute PTE flags for this buffer object */
1155                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1156
1157                 /* Bind pages */
1158                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1159                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1160                 if (unlikely(r)) {
1161                         ttm_bo_mem_put(bo, &tmp);
1162                         return r;
1163                 }
1164
1165                 ttm_bo_mem_put(bo, &bo->mem);
1166                 bo->mem = tmp;
1167         }
1168
1169         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1170                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1171
1172         return 0;
1173 }
1174
1175 /**
1176  * amdgpu_ttm_recover_gart - Rebind GTT pages
1177  *
1178  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1179  * rebind GTT pages during a GPU reset.
1180  */
1181 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1182 {
1183         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1184         uint64_t flags;
1185         int r;
1186
1187         if (!tbo->ttm)
1188                 return 0;
1189
1190         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1191         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1192
1193         return r;
1194 }
1195
1196 /**
1197  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1198  *
1199  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1200  * ttm_tt_destroy().
1201  */
1202 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1203 {
1204         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1205         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1206         int r;
1207
1208         /* if the pages have userptr pinning then clear that first */
1209         if (gtt->userptr)
1210                 amdgpu_ttm_tt_unpin_userptr(ttm);
1211
1212         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1213                 return 0;
1214
1215         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1216         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1217         if (r)
1218                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1219                           gtt->ttm.ttm.num_pages, gtt->offset);
1220         return r;
1221 }
1222
1223 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1224 {
1225         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1226
1227         if (gtt->usertask)
1228                 put_task_struct(gtt->usertask);
1229
1230         ttm_dma_tt_fini(&gtt->ttm);
1231         kfree(gtt);
1232 }
1233
1234 static struct ttm_backend_func amdgpu_backend_func = {
1235         .bind = &amdgpu_ttm_backend_bind,
1236         .unbind = &amdgpu_ttm_backend_unbind,
1237         .destroy = &amdgpu_ttm_backend_destroy,
1238 };
1239
1240 /**
1241  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1242  *
1243  * @bo: The buffer object to create a GTT ttm_tt object around
1244  *
1245  * Called by ttm_tt_create().
1246  */
1247 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1248                                            uint32_t page_flags)
1249 {
1250         struct amdgpu_ttm_tt *gtt;
1251
1252         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1253         if (gtt == NULL) {
1254                 return NULL;
1255         }
1256         gtt->ttm.ttm.func = &amdgpu_backend_func;
1257         gtt->gobj = &bo->base;
1258
1259         /* allocate space for the uninitialized page entries */
1260         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1261                 kfree(gtt);
1262                 return NULL;
1263         }
1264         return &gtt->ttm.ttm;
1265 }
1266
1267 /**
1268  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1269  *
1270  * Map the pages of a ttm_tt object to an address space visible
1271  * to the underlying device.
1272  */
1273 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1274                         struct ttm_operation_ctx *ctx)
1275 {
1276         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1277         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1278
1279         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1280         if (gtt && gtt->userptr) {
1281                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1282                 if (!ttm->sg)
1283                         return -ENOMEM;
1284
1285                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1286                 ttm->state = tt_unbound;
1287                 return 0;
1288         }
1289
1290         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1291                 if (!ttm->sg) {
1292                         struct dma_buf_attachment *attach;
1293                         struct sg_table *sgt;
1294
1295                         attach = gtt->gobj->import_attach;
1296                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1297                         if (IS_ERR(sgt))
1298                                 return PTR_ERR(sgt);
1299
1300                         ttm->sg = sgt;
1301                 }
1302
1303                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1304                                                  gtt->ttm.dma_address,
1305                                                  ttm->num_pages);
1306                 ttm->state = tt_unbound;
1307                 return 0;
1308         }
1309
1310 #ifdef CONFIG_SWIOTLB
1311         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1312                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1313         }
1314 #endif
1315
1316         /* fall back to generic helper to populate the page array
1317          * and map them to the device */
1318         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1319 }
1320
1321 /**
1322  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1323  *
1324  * Unmaps pages of a ttm_tt object from the device address space and
1325  * unpopulates the page array backing it.
1326  */
1327 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1328 {
1329         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1330         struct amdgpu_device *adev;
1331
1332         if (gtt && gtt->userptr) {
1333                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1334                 kfree(ttm->sg);
1335                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1336                 return;
1337         }
1338
1339         if (ttm->sg && gtt->gobj->import_attach) {
1340                 struct dma_buf_attachment *attach;
1341
1342                 attach = gtt->gobj->import_attach;
1343                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1344                 ttm->sg = NULL;
1345                 return;
1346         }
1347
1348         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1349                 return;
1350
1351         adev = amdgpu_ttm_adev(ttm->bdev);
1352
1353 #ifdef CONFIG_SWIOTLB
1354         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1355                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1356                 return;
1357         }
1358 #endif
1359
1360         /* fall back to generic helper to unmap and unpopulate array */
1361         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1362 }
1363
1364 /**
1365  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1366  * task
1367  *
1368  * @ttm: The ttm_tt object to bind this userptr object to
1369  * @addr:  The address in the current tasks VM space to use
1370  * @flags: Requirements of userptr object.
1371  *
1372  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1373  * to current task
1374  */
1375 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1376                               uint32_t flags)
1377 {
1378         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1379
1380         if (gtt == NULL)
1381                 return -EINVAL;
1382
1383         gtt->userptr = addr;
1384         gtt->userflags = flags;
1385
1386         if (gtt->usertask)
1387                 put_task_struct(gtt->usertask);
1388         gtt->usertask = current->group_leader;
1389         get_task_struct(gtt->usertask);
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1396  */
1397 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1398 {
1399         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1400
1401         if (gtt == NULL)
1402                 return NULL;
1403
1404         if (gtt->usertask == NULL)
1405                 return NULL;
1406
1407         return gtt->usertask->mm;
1408 }
1409
1410 /**
1411  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1412  * address range for the current task.
1413  *
1414  */
1415 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1416                                   unsigned long end)
1417 {
1418         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1419         unsigned long size;
1420
1421         if (gtt == NULL || !gtt->userptr)
1422                 return false;
1423
1424         /* Return false if no part of the ttm_tt object lies within
1425          * the range
1426          */
1427         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1428         if (gtt->userptr > end || gtt->userptr + size <= start)
1429                 return false;
1430
1431         return true;
1432 }
1433
1434 /**
1435  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1436  */
1437 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1438 {
1439         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1440
1441         if (gtt == NULL || !gtt->userptr)
1442                 return false;
1443
1444         return true;
1445 }
1446
1447 /**
1448  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1449  */
1450 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1451 {
1452         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1453
1454         if (gtt == NULL)
1455                 return false;
1456
1457         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1458 }
1459
1460 /**
1461  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1462  *
1463  * @ttm: The ttm_tt object to compute the flags for
1464  * @mem: The memory registry backing this ttm_tt object
1465  *
1466  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1467  */
1468 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1469 {
1470         uint64_t flags = 0;
1471
1472         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1473                 flags |= AMDGPU_PTE_VALID;
1474
1475         if (mem && mem->mem_type == TTM_PL_TT) {
1476                 flags |= AMDGPU_PTE_SYSTEM;
1477
1478                 if (ttm->caching_state == tt_cached)
1479                         flags |= AMDGPU_PTE_SNOOPED;
1480         }
1481
1482         return flags;
1483 }
1484
1485 /**
1486  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1487  *
1488  * @ttm: The ttm_tt object to compute the flags for
1489  * @mem: The memory registry backing this ttm_tt object
1490
1491  * Figure out the flags to use for a VM PTE (Page Table Entry).
1492  */
1493 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1494                                  struct ttm_mem_reg *mem)
1495 {
1496         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1497
1498         flags |= adev->gart.gart_pte_flags;
1499         flags |= AMDGPU_PTE_READABLE;
1500
1501         if (!amdgpu_ttm_tt_is_readonly(ttm))
1502                 flags |= AMDGPU_PTE_WRITEABLE;
1503
1504         return flags;
1505 }
1506
1507 /**
1508  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1509  * object.
1510  *
1511  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1512  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1513  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1514  * used to clean out a memory space.
1515  */
1516 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1517                                             const struct ttm_place *place)
1518 {
1519         unsigned long num_pages = bo->mem.num_pages;
1520         struct drm_mm_node *node = bo->mem.mm_node;
1521         struct dma_resv_list *flist;
1522         struct dma_fence *f;
1523         int i;
1524
1525         /* Don't evict VM page tables while they are busy, otherwise we can't
1526          * cleanly handle page faults.
1527          */
1528         if (bo->type == ttm_bo_type_kernel &&
1529             !dma_resv_test_signaled_rcu(bo->base.resv, true))
1530                 return false;
1531
1532         /* If bo is a KFD BO, check if the bo belongs to the current process.
1533          * If true, then return false as any KFD process needs all its BOs to
1534          * be resident to run successfully
1535          */
1536         flist = dma_resv_get_list(bo->base.resv);
1537         if (flist) {
1538                 for (i = 0; i < flist->shared_count; ++i) {
1539                         f = rcu_dereference_protected(flist->shared[i],
1540                                 dma_resv_held(bo->base.resv));
1541                         if (amdkfd_fence_check_mm(f, current->mm))
1542                                 return false;
1543                 }
1544         }
1545
1546         switch (bo->mem.mem_type) {
1547         case TTM_PL_TT:
1548                 return true;
1549
1550         case TTM_PL_VRAM:
1551                 /* Check each drm MM node individually */
1552                 while (num_pages) {
1553                         if (place->fpfn < (node->start + node->size) &&
1554                             !(place->lpfn && place->lpfn <= node->start))
1555                                 return true;
1556
1557                         num_pages -= node->size;
1558                         ++node;
1559                 }
1560                 return false;
1561
1562         default:
1563                 break;
1564         }
1565
1566         return ttm_bo_eviction_valuable(bo, place);
1567 }
1568
1569 /**
1570  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1571  *
1572  * @bo:  The buffer object to read/write
1573  * @offset:  Offset into buffer object
1574  * @buf:  Secondary buffer to write/read from
1575  * @len: Length in bytes of access
1576  * @write:  true if writing
1577  *
1578  * This is used to access VRAM that backs a buffer object via MMIO
1579  * access for debugging purposes.
1580  */
1581 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1582                                     unsigned long offset,
1583                                     void *buf, int len, int write)
1584 {
1585         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1586         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1587         struct drm_mm_node *nodes;
1588         uint32_t value = 0;
1589         int ret = 0;
1590         uint64_t pos;
1591         unsigned long flags;
1592
1593         if (bo->mem.mem_type != TTM_PL_VRAM)
1594                 return -EIO;
1595
1596         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1597         pos = (nodes->start << PAGE_SHIFT) + offset;
1598
1599         while (len && pos < adev->gmc.mc_vram_size) {
1600                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1601                 uint32_t bytes = 4 - (pos & 3);
1602                 uint32_t shift = (pos & 3) * 8;
1603                 uint32_t mask = 0xffffffff << shift;
1604
1605                 if (len < bytes) {
1606                         mask &= 0xffffffff >> (bytes - len) * 8;
1607                         bytes = len;
1608                 }
1609
1610                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1611                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1612                 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1613                 if (!write || mask != 0xffffffff)
1614                         value = RREG32_NO_KIQ(mmMM_DATA);
1615                 if (write) {
1616                         value &= ~mask;
1617                         value |= (*(uint32_t *)buf << shift) & mask;
1618                         WREG32_NO_KIQ(mmMM_DATA, value);
1619                 }
1620                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1621                 if (!write) {
1622                         value = (value & mask) >> shift;
1623                         memcpy(buf, &value, bytes);
1624                 }
1625
1626                 ret += bytes;
1627                 buf = (uint8_t *)buf + bytes;
1628                 pos += bytes;
1629                 len -= bytes;
1630                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1631                         ++nodes;
1632                         pos = (nodes->start << PAGE_SHIFT);
1633                 }
1634         }
1635
1636         return ret;
1637 }
1638
1639 static struct ttm_bo_driver amdgpu_bo_driver = {
1640         .ttm_tt_create = &amdgpu_ttm_tt_create,
1641         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1642         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1643         .invalidate_caches = &amdgpu_invalidate_caches,
1644         .init_mem_type = &amdgpu_init_mem_type,
1645         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1646         .evict_flags = &amdgpu_evict_flags,
1647         .move = &amdgpu_bo_move,
1648         .verify_access = &amdgpu_verify_access,
1649         .move_notify = &amdgpu_bo_move_notify,
1650         .release_notify = &amdgpu_bo_release_notify,
1651         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1652         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1653         .io_mem_free = &amdgpu_ttm_io_mem_free,
1654         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1655         .access_memory = &amdgpu_ttm_access_memory,
1656         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1657 };
1658
1659 /*
1660  * Firmware Reservation functions
1661  */
1662 /**
1663  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1664  *
1665  * @adev: amdgpu_device pointer
1666  *
1667  * free fw reserved vram if it has been reserved.
1668  */
1669 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1670 {
1671         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1672                 NULL, &adev->fw_vram_usage.va);
1673 }
1674
1675 /**
1676  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1677  *
1678  * @adev: amdgpu_device pointer
1679  *
1680  * create bo vram reservation from fw.
1681  */
1682 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1683 {
1684         uint64_t vram_size = adev->gmc.visible_vram_size;
1685
1686         adev->fw_vram_usage.va = NULL;
1687         adev->fw_vram_usage.reserved_bo = NULL;
1688
1689         if (adev->fw_vram_usage.size == 0 ||
1690             adev->fw_vram_usage.size > vram_size)
1691                 return 0;
1692
1693         return amdgpu_bo_create_kernel_at(adev,
1694                                           adev->fw_vram_usage.start_offset,
1695                                           adev->fw_vram_usage.size,
1696                                           AMDGPU_GEM_DOMAIN_VRAM,
1697                                           &adev->fw_vram_usage.reserved_bo,
1698                                           &adev->fw_vram_usage.va);
1699 }
1700
1701 /*
1702  * Memoy training reservation functions
1703  */
1704
1705 /**
1706  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1707  *
1708  * @adev: amdgpu_device pointer
1709  *
1710  * free memory training reserved vram if it has been reserved.
1711  */
1712 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1713 {
1714         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1715
1716         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1717         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1718         ctx->c2p_bo = NULL;
1719
1720         amdgpu_bo_free_kernel(&ctx->p2c_bo, NULL, NULL);
1721         ctx->p2c_bo = NULL;
1722
1723         return 0;
1724 }
1725
1726 /**
1727  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1728  *
1729  * @adev: amdgpu_device pointer
1730  *
1731  * create bo vram reservation from memory training.
1732  */
1733 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1734 {
1735         int ret;
1736         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1737
1738         memset(ctx, 0, sizeof(*ctx));
1739         if (!adev->fw_vram_usage.mem_train_support) {
1740                 DRM_DEBUG("memory training does not support!\n");
1741                 return 0;
1742         }
1743
1744         ctx->c2p_train_data_offset = adev->fw_vram_usage.mem_train_fb_loc;
1745         ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1746         ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1747
1748         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1749                   ctx->train_data_size,
1750                   ctx->p2c_train_data_offset,
1751                   ctx->c2p_train_data_offset);
1752
1753         ret = amdgpu_bo_create_kernel_at(adev,
1754                                          ctx->p2c_train_data_offset,
1755                                          ctx->train_data_size,
1756                                          AMDGPU_GEM_DOMAIN_VRAM,
1757                                          &ctx->p2c_bo,
1758                                          NULL);
1759         if (ret) {
1760                 DRM_ERROR("alloc p2c_bo failed(%d)!\n", ret);
1761                 goto Err_out;
1762         }
1763
1764         ret = amdgpu_bo_create_kernel_at(adev,
1765                                          ctx->c2p_train_data_offset,
1766                                          ctx->train_data_size,
1767                                          AMDGPU_GEM_DOMAIN_VRAM,
1768                                          &ctx->c2p_bo,
1769                                          NULL);
1770         if (ret) {
1771                 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1772                 goto Err_out;
1773         }
1774
1775         ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1776         return 0;
1777
1778 Err_out:
1779         amdgpu_ttm_training_reserve_vram_fini(adev);
1780         return ret;
1781 }
1782
1783 /**
1784  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1785  * gtt/vram related fields.
1786  *
1787  * This initializes all of the memory space pools that the TTM layer
1788  * will need such as the GTT space (system memory mapped to the device),
1789  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1790  * can be mapped per VMID.
1791  */
1792 int amdgpu_ttm_init(struct amdgpu_device *adev)
1793 {
1794         uint64_t gtt_size;
1795         int r;
1796         u64 vis_vram_limit;
1797         void *stolen_vga_buf;
1798
1799         mutex_init(&adev->mman.gtt_window_lock);
1800
1801         /* No others user of address space so set it to 0 */
1802         r = ttm_bo_device_init(&adev->mman.bdev,
1803                                &amdgpu_bo_driver,
1804                                adev->ddev->anon_inode->i_mapping,
1805                                adev->ddev->vma_offset_manager,
1806                                dma_addressing_limited(adev->dev));
1807         if (r) {
1808                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1809                 return r;
1810         }
1811         adev->mman.initialized = true;
1812
1813         /* We opt to avoid OOM on system pages allocations */
1814         adev->mman.bdev.no_retry = true;
1815
1816         /* Initialize VRAM pool with all of VRAM divided into pages */
1817         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1818                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1819         if (r) {
1820                 DRM_ERROR("Failed initializing VRAM heap.\n");
1821                 return r;
1822         }
1823
1824         /* Reduce size of CPU-visible VRAM if requested */
1825         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1826         if (amdgpu_vis_vram_limit > 0 &&
1827             vis_vram_limit <= adev->gmc.visible_vram_size)
1828                 adev->gmc.visible_vram_size = vis_vram_limit;
1829
1830         /* Change the size here instead of the init above so only lpfn is affected */
1831         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1832 #ifdef CONFIG_64BIT
1833         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1834                                                 adev->gmc.visible_vram_size);
1835 #endif
1836
1837         /*
1838          *The reserved vram for firmware must be pinned to the specified
1839          *place on the VRAM, so reserve it early.
1840          */
1841         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1842         if (r) {
1843                 return r;
1844         }
1845
1846         /*
1847          *The reserved vram for memory training must be pinned to the specified
1848          *place on the VRAM, so reserve it early.
1849          */
1850         r = amdgpu_ttm_training_reserve_vram_init(adev);
1851         if (r)
1852                 return r;
1853
1854         /* allocate memory as required for VGA
1855          * This is used for VGA emulation and pre-OS scanout buffers to
1856          * avoid display artifacts while transitioning between pre-OS
1857          * and driver.  */
1858         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1859                                     AMDGPU_GEM_DOMAIN_VRAM,
1860                                     &adev->stolen_vga_memory,
1861                                     NULL, &stolen_vga_buf);
1862         if (r)
1863                 return r;
1864
1865         /*
1866          * reserve one TMR (64K) memory at the top of VRAM which holds
1867          * IP Discovery data and is protected by PSP.
1868          */
1869         r = amdgpu_bo_create_kernel_at(adev,
1870                                        adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1871                                        DISCOVERY_TMR_SIZE,
1872                                        AMDGPU_GEM_DOMAIN_VRAM,
1873                                        &adev->discovery_memory,
1874                                        NULL);
1875         if (r)
1876                 return r;
1877
1878         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1879                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1880
1881         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1882          * or whatever the user passed on module init */
1883         if (amdgpu_gtt_size == -1) {
1884                 struct sysinfo si;
1885
1886                 si_meminfo(&si);
1887                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1888                                adev->gmc.mc_vram_size),
1889                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1890         }
1891         else
1892                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1893
1894         /* Initialize GTT memory pool */
1895         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1896         if (r) {
1897                 DRM_ERROR("Failed initializing GTT heap.\n");
1898                 return r;
1899         }
1900         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1901                  (unsigned)(gtt_size / (1024 * 1024)));
1902
1903         /* Initialize various on-chip memory pools */
1904         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1905                            adev->gds.gds_size);
1906         if (r) {
1907                 DRM_ERROR("Failed initializing GDS heap.\n");
1908                 return r;
1909         }
1910
1911         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1912                            adev->gds.gws_size);
1913         if (r) {
1914                 DRM_ERROR("Failed initializing gws heap.\n");
1915                 return r;
1916         }
1917
1918         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1919                            adev->gds.oa_size);
1920         if (r) {
1921                 DRM_ERROR("Failed initializing oa heap.\n");
1922                 return r;
1923         }
1924
1925         /* Register debugfs entries for amdgpu_ttm */
1926         r = amdgpu_ttm_debugfs_init(adev);
1927         if (r) {
1928                 DRM_ERROR("Failed to init debugfs\n");
1929                 return r;
1930         }
1931         return 0;
1932 }
1933
1934 /**
1935  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1936  */
1937 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1938 {
1939         void *stolen_vga_buf;
1940         /* return the VGA stolen memory (if any) back to VRAM */
1941         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1942 }
1943
1944 /**
1945  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1946  */
1947 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1948 {
1949         if (!adev->mman.initialized)
1950                 return;
1951
1952         amdgpu_ttm_debugfs_fini(adev);
1953         amdgpu_ttm_training_reserve_vram_fini(adev);
1954         /* return the IP Discovery TMR memory back to VRAM */
1955         amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1956         amdgpu_ttm_fw_reserve_vram_fini(adev);
1957
1958         if (adev->mman.aper_base_kaddr)
1959                 iounmap(adev->mman.aper_base_kaddr);
1960         adev->mman.aper_base_kaddr = NULL;
1961
1962         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1963         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1964         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1965         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1966         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1967         ttm_bo_device_release(&adev->mman.bdev);
1968         adev->mman.initialized = false;
1969         DRM_INFO("amdgpu: ttm finalized\n");
1970 }
1971
1972 /**
1973  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1974  *
1975  * @adev: amdgpu_device pointer
1976  * @enable: true when we can use buffer functions.
1977  *
1978  * Enable/disable use of buffer functions during suspend/resume. This should
1979  * only be called at bootup or when userspace isn't running.
1980  */
1981 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1982 {
1983         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1984         uint64_t size;
1985         int r;
1986
1987         if (!adev->mman.initialized || adev->in_gpu_reset ||
1988             adev->mman.buffer_funcs_enabled == enable)
1989                 return;
1990
1991         if (enable) {
1992                 struct amdgpu_ring *ring;
1993                 struct drm_sched_rq *rq;
1994
1995                 ring = adev->mman.buffer_funcs_ring;
1996                 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1997                 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1998                 if (r) {
1999                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2000                                   r);
2001                         return;
2002                 }
2003         } else {
2004                 drm_sched_entity_destroy(&adev->mman.entity);
2005                 dma_fence_put(man->move);
2006                 man->move = NULL;
2007         }
2008
2009         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2010         if (enable)
2011                 size = adev->gmc.real_vram_size;
2012         else
2013                 size = adev->gmc.visible_vram_size;
2014         man->size = size >> PAGE_SHIFT;
2015         adev->mman.buffer_funcs_enabled = enable;
2016 }
2017
2018 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2019 {
2020         struct drm_file *file_priv = filp->private_data;
2021         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2022
2023         if (adev == NULL)
2024                 return -EINVAL;
2025
2026         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2027 }
2028
2029 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2030                              struct ttm_mem_reg *mem, unsigned num_pages,
2031                              uint64_t offset, unsigned window,
2032                              struct amdgpu_ring *ring,
2033                              uint64_t *addr)
2034 {
2035         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2036         struct amdgpu_device *adev = ring->adev;
2037         struct ttm_tt *ttm = bo->ttm;
2038         struct amdgpu_job *job;
2039         unsigned num_dw, num_bytes;
2040         dma_addr_t *dma_address;
2041         struct dma_fence *fence;
2042         uint64_t src_addr, dst_addr;
2043         uint64_t flags;
2044         int r;
2045
2046         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2047                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2048
2049         *addr = adev->gmc.gart_start;
2050         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2051                 AMDGPU_GPU_PAGE_SIZE;
2052
2053         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2054         num_bytes = num_pages * 8;
2055
2056         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2057         if (r)
2058                 return r;
2059
2060         src_addr = num_dw * 4;
2061         src_addr += job->ibs[0].gpu_addr;
2062
2063         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2064         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2065         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2066                                 dst_addr, num_bytes);
2067
2068         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2069         WARN_ON(job->ibs[0].length_dw > num_dw);
2070
2071         dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2072         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2073         r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2074                             &job->ibs[0].ptr[num_dw]);
2075         if (r)
2076                 goto error_free;
2077
2078         r = amdgpu_job_submit(job, &adev->mman.entity,
2079                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2080         if (r)
2081                 goto error_free;
2082
2083         dma_fence_put(fence);
2084
2085         return r;
2086
2087 error_free:
2088         amdgpu_job_free(job);
2089         return r;
2090 }
2091
2092 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2093                        uint64_t dst_offset, uint32_t byte_count,
2094                        struct dma_resv *resv,
2095                        struct dma_fence **fence, bool direct_submit,
2096                        bool vm_needs_flush)
2097 {
2098         struct amdgpu_device *adev = ring->adev;
2099         struct amdgpu_job *job;
2100
2101         uint32_t max_bytes;
2102         unsigned num_loops, num_dw;
2103         unsigned i;
2104         int r;
2105
2106         if (direct_submit && !ring->sched.ready) {
2107                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2108                 return -EINVAL;
2109         }
2110
2111         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2112         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2113         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2114
2115         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2116         if (r)
2117                 return r;
2118
2119         if (vm_needs_flush) {
2120                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2121                 job->vm_needs_flush = true;
2122         }
2123         if (resv) {
2124                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2125                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2126                                      false);
2127                 if (r) {
2128                         DRM_ERROR("sync failed (%d).\n", r);
2129                         goto error_free;
2130                 }
2131         }
2132
2133         for (i = 0; i < num_loops; i++) {
2134                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2135
2136                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2137                                         dst_offset, cur_size_in_bytes);
2138
2139                 src_offset += cur_size_in_bytes;
2140                 dst_offset += cur_size_in_bytes;
2141                 byte_count -= cur_size_in_bytes;
2142         }
2143
2144         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2145         WARN_ON(job->ibs[0].length_dw > num_dw);
2146         if (direct_submit)
2147                 r = amdgpu_job_submit_direct(job, ring, fence);
2148         else
2149                 r = amdgpu_job_submit(job, &adev->mman.entity,
2150                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2151         if (r)
2152                 goto error_free;
2153
2154         return r;
2155
2156 error_free:
2157         amdgpu_job_free(job);
2158         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2159         return r;
2160 }
2161
2162 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2163                        uint32_t src_data,
2164                        struct dma_resv *resv,
2165                        struct dma_fence **fence)
2166 {
2167         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2168         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2169         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2170
2171         struct drm_mm_node *mm_node;
2172         unsigned long num_pages;
2173         unsigned int num_loops, num_dw;
2174
2175         struct amdgpu_job *job;
2176         int r;
2177
2178         if (!adev->mman.buffer_funcs_enabled) {
2179                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2180                 return -EINVAL;
2181         }
2182
2183         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2184                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2185                 if (r)
2186                         return r;
2187         }
2188
2189         num_pages = bo->tbo.num_pages;
2190         mm_node = bo->tbo.mem.mm_node;
2191         num_loops = 0;
2192         while (num_pages) {
2193                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2194
2195                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2196                 num_pages -= mm_node->size;
2197                 ++mm_node;
2198         }
2199         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2200
2201         /* for IB padding */
2202         num_dw += 64;
2203
2204         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2205         if (r)
2206                 return r;
2207
2208         if (resv) {
2209                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2210                                      AMDGPU_FENCE_OWNER_UNDEFINED, false);
2211                 if (r) {
2212                         DRM_ERROR("sync failed (%d).\n", r);
2213                         goto error_free;
2214                 }
2215         }
2216
2217         num_pages = bo->tbo.num_pages;
2218         mm_node = bo->tbo.mem.mm_node;
2219
2220         while (num_pages) {
2221                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2222                 uint64_t dst_addr;
2223
2224                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2225                 while (byte_count) {
2226                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2227                                                            max_bytes);
2228
2229                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2230                                                 dst_addr, cur_size_in_bytes);
2231
2232                         dst_addr += cur_size_in_bytes;
2233                         byte_count -= cur_size_in_bytes;
2234                 }
2235
2236                 num_pages -= mm_node->size;
2237                 ++mm_node;
2238         }
2239
2240         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2241         WARN_ON(job->ibs[0].length_dw > num_dw);
2242         r = amdgpu_job_submit(job, &adev->mman.entity,
2243                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2244         if (r)
2245                 goto error_free;
2246
2247         return 0;
2248
2249 error_free:
2250         amdgpu_job_free(job);
2251         return r;
2252 }
2253
2254 #if defined(CONFIG_DEBUG_FS)
2255
2256 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2257 {
2258         struct drm_info_node *node = (struct drm_info_node *)m->private;
2259         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2260         struct drm_device *dev = node->minor->dev;
2261         struct amdgpu_device *adev = dev->dev_private;
2262         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2263         struct drm_printer p = drm_seq_file_printer(m);
2264
2265         man->func->debug(man, &p);
2266         return 0;
2267 }
2268
2269 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2270         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2271         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2272         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2273         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2274         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2275         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2276 #ifdef CONFIG_SWIOTLB
2277         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2278 #endif
2279 };
2280
2281 /**
2282  * amdgpu_ttm_vram_read - Linear read access to VRAM
2283  *
2284  * Accesses VRAM via MMIO for debugging purposes.
2285  */
2286 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2287                                     size_t size, loff_t *pos)
2288 {
2289         struct amdgpu_device *adev = file_inode(f)->i_private;
2290         ssize_t result = 0;
2291         int r;
2292
2293         if (size & 0x3 || *pos & 0x3)
2294                 return -EINVAL;
2295
2296         if (*pos >= adev->gmc.mc_vram_size)
2297                 return -ENXIO;
2298
2299         while (size) {
2300                 unsigned long flags;
2301                 uint32_t value;
2302
2303                 if (*pos >= adev->gmc.mc_vram_size)
2304                         return result;
2305
2306                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2307                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2308                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2309                 value = RREG32_NO_KIQ(mmMM_DATA);
2310                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2311
2312                 r = put_user(value, (uint32_t *)buf);
2313                 if (r)
2314                         return r;
2315
2316                 result += 4;
2317                 buf += 4;
2318                 *pos += 4;
2319                 size -= 4;
2320         }
2321
2322         return result;
2323 }
2324
2325 /**
2326  * amdgpu_ttm_vram_write - Linear write access to VRAM
2327  *
2328  * Accesses VRAM via MMIO for debugging purposes.
2329  */
2330 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2331                                     size_t size, loff_t *pos)
2332 {
2333         struct amdgpu_device *adev = file_inode(f)->i_private;
2334         ssize_t result = 0;
2335         int r;
2336
2337         if (size & 0x3 || *pos & 0x3)
2338                 return -EINVAL;
2339
2340         if (*pos >= adev->gmc.mc_vram_size)
2341                 return -ENXIO;
2342
2343         while (size) {
2344                 unsigned long flags;
2345                 uint32_t value;
2346
2347                 if (*pos >= adev->gmc.mc_vram_size)
2348                         return result;
2349
2350                 r = get_user(value, (uint32_t *)buf);
2351                 if (r)
2352                         return r;
2353
2354                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2355                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2356                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2357                 WREG32_NO_KIQ(mmMM_DATA, value);
2358                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2359
2360                 result += 4;
2361                 buf += 4;
2362                 *pos += 4;
2363                 size -= 4;
2364         }
2365
2366         return result;
2367 }
2368
2369 static const struct file_operations amdgpu_ttm_vram_fops = {
2370         .owner = THIS_MODULE,
2371         .read = amdgpu_ttm_vram_read,
2372         .write = amdgpu_ttm_vram_write,
2373         .llseek = default_llseek,
2374 };
2375
2376 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2377
2378 /**
2379  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2380  */
2381 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2382                                    size_t size, loff_t *pos)
2383 {
2384         struct amdgpu_device *adev = file_inode(f)->i_private;
2385         ssize_t result = 0;
2386         int r;
2387
2388         while (size) {
2389                 loff_t p = *pos / PAGE_SIZE;
2390                 unsigned off = *pos & ~PAGE_MASK;
2391                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2392                 struct page *page;
2393                 void *ptr;
2394
2395                 if (p >= adev->gart.num_cpu_pages)
2396                         return result;
2397
2398                 page = adev->gart.pages[p];
2399                 if (page) {
2400                         ptr = kmap(page);
2401                         ptr += off;
2402
2403                         r = copy_to_user(buf, ptr, cur_size);
2404                         kunmap(adev->gart.pages[p]);
2405                 } else
2406                         r = clear_user(buf, cur_size);
2407
2408                 if (r)
2409                         return -EFAULT;
2410
2411                 result += cur_size;
2412                 buf += cur_size;
2413                 *pos += cur_size;
2414                 size -= cur_size;
2415         }
2416
2417         return result;
2418 }
2419
2420 static const struct file_operations amdgpu_ttm_gtt_fops = {
2421         .owner = THIS_MODULE,
2422         .read = amdgpu_ttm_gtt_read,
2423         .llseek = default_llseek
2424 };
2425
2426 #endif
2427
2428 /**
2429  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2430  *
2431  * This function is used to read memory that has been mapped to the
2432  * GPU and the known addresses are not physical addresses but instead
2433  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2434  */
2435 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2436                                  size_t size, loff_t *pos)
2437 {
2438         struct amdgpu_device *adev = file_inode(f)->i_private;
2439         struct iommu_domain *dom;
2440         ssize_t result = 0;
2441         int r;
2442
2443         /* retrieve the IOMMU domain if any for this device */
2444         dom = iommu_get_domain_for_dev(adev->dev);
2445
2446         while (size) {
2447                 phys_addr_t addr = *pos & PAGE_MASK;
2448                 loff_t off = *pos & ~PAGE_MASK;
2449                 size_t bytes = PAGE_SIZE - off;
2450                 unsigned long pfn;
2451                 struct page *p;
2452                 void *ptr;
2453
2454                 bytes = bytes < size ? bytes : size;
2455
2456                 /* Translate the bus address to a physical address.  If
2457                  * the domain is NULL it means there is no IOMMU active
2458                  * and the address translation is the identity
2459                  */
2460                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2461
2462                 pfn = addr >> PAGE_SHIFT;
2463                 if (!pfn_valid(pfn))
2464                         return -EPERM;
2465
2466                 p = pfn_to_page(pfn);
2467                 if (p->mapping != adev->mman.bdev.dev_mapping)
2468                         return -EPERM;
2469
2470                 ptr = kmap(p);
2471                 r = copy_to_user(buf, ptr + off, bytes);
2472                 kunmap(p);
2473                 if (r)
2474                         return -EFAULT;
2475
2476                 size -= bytes;
2477                 *pos += bytes;
2478                 result += bytes;
2479         }
2480
2481         return result;
2482 }
2483
2484 /**
2485  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2486  *
2487  * This function is used to write memory that has been mapped to the
2488  * GPU and the known addresses are not physical addresses but instead
2489  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2490  */
2491 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2492                                  size_t size, loff_t *pos)
2493 {
2494         struct amdgpu_device *adev = file_inode(f)->i_private;
2495         struct iommu_domain *dom;
2496         ssize_t result = 0;
2497         int r;
2498
2499         dom = iommu_get_domain_for_dev(adev->dev);
2500
2501         while (size) {
2502                 phys_addr_t addr = *pos & PAGE_MASK;
2503                 loff_t off = *pos & ~PAGE_MASK;
2504                 size_t bytes = PAGE_SIZE - off;
2505                 unsigned long pfn;
2506                 struct page *p;
2507                 void *ptr;
2508
2509                 bytes = bytes < size ? bytes : size;
2510
2511                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2512
2513                 pfn = addr >> PAGE_SHIFT;
2514                 if (!pfn_valid(pfn))
2515                         return -EPERM;
2516
2517                 p = pfn_to_page(pfn);
2518                 if (p->mapping != adev->mman.bdev.dev_mapping)
2519                         return -EPERM;
2520
2521                 ptr = kmap(p);
2522                 r = copy_from_user(ptr + off, buf, bytes);
2523                 kunmap(p);
2524                 if (r)
2525                         return -EFAULT;
2526
2527                 size -= bytes;
2528                 *pos += bytes;
2529                 result += bytes;
2530         }
2531
2532         return result;
2533 }
2534
2535 static const struct file_operations amdgpu_ttm_iomem_fops = {
2536         .owner = THIS_MODULE,
2537         .read = amdgpu_iomem_read,
2538         .write = amdgpu_iomem_write,
2539         .llseek = default_llseek
2540 };
2541
2542 static const struct {
2543         char *name;
2544         const struct file_operations *fops;
2545         int domain;
2546 } ttm_debugfs_entries[] = {
2547         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2548 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2549         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2550 #endif
2551         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2552 };
2553
2554 #endif
2555
2556 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2557 {
2558 #if defined(CONFIG_DEBUG_FS)
2559         unsigned count;
2560
2561         struct drm_minor *minor = adev->ddev->primary;
2562         struct dentry *ent, *root = minor->debugfs_root;
2563
2564         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2565                 ent = debugfs_create_file(
2566                                 ttm_debugfs_entries[count].name,
2567                                 S_IFREG | S_IRUGO, root,
2568                                 adev,
2569                                 ttm_debugfs_entries[count].fops);
2570                 if (IS_ERR(ent))
2571                         return PTR_ERR(ent);
2572                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2573                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2574                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2575                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2576                 adev->mman.debugfs_entries[count] = ent;
2577         }
2578
2579         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2580
2581 #ifdef CONFIG_SWIOTLB
2582         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2583                 --count;
2584 #endif
2585
2586         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2587 #else
2588         return 0;
2589 #endif
2590 }
2591
2592 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2593 {
2594 #if defined(CONFIG_DEBUG_FS)
2595         unsigned i;
2596
2597         for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2598                 debugfs_remove(adev->mman.debugfs_entries[i]);
2599 #endif
2600 }