drm/amdgpu: Add comment to function amdgpu_ttm_alloc_gart
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
65
66 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
67                                     unsigned int type,
68                                     uint64_t size)
69 {
70         return ttm_range_man_init(&adev->mman.bdev, type,
71                                   TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED,
72                                   false, size >> PAGE_SHIFT);
73 }
74
75 /**
76  * amdgpu_evict_flags - Compute placement flags
77  *
78  * @bo: The buffer object to evict
79  * @placement: Possible destination(s) for evicted BO
80  *
81  * Fill in placement data when ttm_bo_evict() is called
82  */
83 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
84                                 struct ttm_placement *placement)
85 {
86         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
87         struct amdgpu_bo *abo;
88         static const struct ttm_place placements = {
89                 .fpfn = 0,
90                 .lpfn = 0,
91                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
92         };
93
94         /* Don't handle scatter gather BOs */
95         if (bo->type == ttm_bo_type_sg) {
96                 placement->num_placement = 0;
97                 placement->num_busy_placement = 0;
98                 return;
99         }
100
101         /* Object isn't an AMDGPU object so ignore */
102         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
103                 placement->placement = &placements;
104                 placement->busy_placement = &placements;
105                 placement->num_placement = 1;
106                 placement->num_busy_placement = 1;
107                 return;
108         }
109
110         abo = ttm_to_amdgpu_bo(bo);
111         switch (bo->mem.mem_type) {
112         case AMDGPU_PL_GDS:
113         case AMDGPU_PL_GWS:
114         case AMDGPU_PL_OA:
115                 placement->num_placement = 0;
116                 placement->num_busy_placement = 0;
117                 return;
118
119         case TTM_PL_VRAM:
120                 if (!adev->mman.buffer_funcs_enabled) {
121                         /* Move to system memory */
122                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
123                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
124                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
125                            amdgpu_bo_in_cpu_visible_vram(abo)) {
126
127                         /* Try evicting to the CPU inaccessible part of VRAM
128                          * first, but only set GTT as busy placement, so this
129                          * BO will be evicted to GTT rather than causing other
130                          * BOs to be evicted from VRAM
131                          */
132                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
133                                                          AMDGPU_GEM_DOMAIN_GTT);
134                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
135                         abo->placements[0].lpfn = 0;
136                         abo->placement.busy_placement = &abo->placements[1];
137                         abo->placement.num_busy_placement = 1;
138                 } else {
139                         /* Move to GTT memory */
140                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
141                 }
142                 break;
143         case TTM_PL_TT:
144         default:
145                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
146                 break;
147         }
148         *placement = abo->placement;
149 }
150
151 /**
152  * amdgpu_verify_access - Verify access for a mmap call
153  *
154  * @bo: The buffer object to map
155  * @filp: The file pointer from the process performing the mmap
156  *
157  * This is called by ttm_bo_mmap() to verify whether a process
158  * has the right to mmap a BO to their process space.
159  */
160 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
161 {
162         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
163
164         /*
165          * Don't verify access for KFD BOs. They don't have a GEM
166          * object associated with them.
167          */
168         if (abo->kfd_bo)
169                 return 0;
170
171         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
172                 return -EPERM;
173         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
174                                           filp->private_data);
175 }
176
177 /**
178  * amdgpu_move_null - Register memory for a buffer object
179  *
180  * @bo: The bo to assign the memory to
181  * @new_mem: The memory to be assigned.
182  *
183  * Assign the memory from new_mem to the memory of the buffer object bo.
184  */
185 static void amdgpu_move_null(struct ttm_buffer_object *bo,
186                              struct ttm_resource *new_mem)
187 {
188         struct ttm_resource *old_mem = &bo->mem;
189
190         BUG_ON(old_mem->mm_node != NULL);
191         *old_mem = *new_mem;
192         new_mem->mm_node = NULL;
193 }
194
195 /**
196  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
197  *
198  * @bo: The bo to assign the memory to.
199  * @mm_node: Memory manager node for drm allocator.
200  * @mem: The region where the bo resides.
201  *
202  */
203 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
204                                     struct drm_mm_node *mm_node,
205                                     struct ttm_resource *mem)
206 {
207         uint64_t addr = 0;
208
209         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
210                 addr = mm_node->start << PAGE_SHIFT;
211                 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
212                                                 mem->mem_type);
213         }
214         return addr;
215 }
216
217 /**
218  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
219  * @offset. It also modifies the offset to be within the drm_mm_node returned
220  *
221  * @mem: The region where the bo resides.
222  * @offset: The offset that drm_mm_node is used for finding.
223  *
224  */
225 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
226                                                uint64_t *offset)
227 {
228         struct drm_mm_node *mm_node = mem->mm_node;
229
230         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
231                 *offset -= (mm_node->size << PAGE_SHIFT);
232                 ++mm_node;
233         }
234         return mm_node;
235 }
236
237 /**
238  * amdgpu_ttm_map_buffer - Map memory into the GART windows
239  * @bo: buffer object to map
240  * @mem: memory object to map
241  * @mm_node: drm_mm node object to map
242  * @num_pages: number of pages to map
243  * @offset: offset into @mm_node where to start
244  * @window: which GART window to use
245  * @ring: DMA ring to use for the copy
246  * @tmz: if we should setup a TMZ enabled mapping
247  * @addr: resulting address inside the MC address space
248  *
249  * Setup one of the GART windows to access a specific piece of memory or return
250  * the physical address for local memory.
251  */
252 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
253                                  struct ttm_resource *mem,
254                                  struct drm_mm_node *mm_node,
255                                  unsigned num_pages, uint64_t offset,
256                                  unsigned window, struct amdgpu_ring *ring,
257                                  bool tmz, uint64_t *addr)
258 {
259         struct amdgpu_device *adev = ring->adev;
260         struct amdgpu_job *job;
261         unsigned num_dw, num_bytes;
262         struct dma_fence *fence;
263         uint64_t src_addr, dst_addr;
264         void *cpu_addr;
265         uint64_t flags;
266         unsigned int i;
267         int r;
268
269         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
270                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
271
272         /* Map only what can't be accessed directly */
273         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
274                 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
275                 return 0;
276         }
277
278         *addr = adev->gmc.gart_start;
279         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
280                 AMDGPU_GPU_PAGE_SIZE;
281         *addr += offset & ~PAGE_MASK;
282
283         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
284         num_bytes = num_pages * 8;
285
286         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
287                                      AMDGPU_IB_POOL_DELAYED, &job);
288         if (r)
289                 return r;
290
291         src_addr = num_dw * 4;
292         src_addr += job->ibs[0].gpu_addr;
293
294         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
295         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
296         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
297                                 dst_addr, num_bytes, false);
298
299         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
300         WARN_ON(job->ibs[0].length_dw > num_dw);
301
302         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
303         if (tmz)
304                 flags |= AMDGPU_PTE_TMZ;
305
306         cpu_addr = &job->ibs[0].ptr[num_dw];
307
308         if (mem->mem_type == TTM_PL_TT) {
309                 struct ttm_dma_tt *dma;
310                 dma_addr_t *dma_address;
311
312                 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
313                 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
314                 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
315                                     cpu_addr);
316                 if (r)
317                         goto error_free;
318         } else {
319                 dma_addr_t dma_address;
320
321                 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
322                 dma_address += adev->vm_manager.vram_base_offset;
323
324                 for (i = 0; i < num_pages; ++i) {
325                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
326                                             &dma_address, flags, cpu_addr);
327                         if (r)
328                                 goto error_free;
329
330                         dma_address += PAGE_SIZE;
331                 }
332         }
333
334         r = amdgpu_job_submit(job, &adev->mman.entity,
335                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
336         if (r)
337                 goto error_free;
338
339         dma_fence_put(fence);
340
341         return r;
342
343 error_free:
344         amdgpu_job_free(job);
345         return r;
346 }
347
348 /**
349  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
350  * @adev: amdgpu device
351  * @src: buffer/address where to read from
352  * @dst: buffer/address where to write to
353  * @size: number of bytes to copy
354  * @tmz: if a secure copy should be used
355  * @resv: resv object to sync to
356  * @f: Returns the last fence if multiple jobs are submitted.
357  *
358  * The function copies @size bytes from {src->mem + src->offset} to
359  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
360  * move and different for a BO to BO copy.
361  *
362  */
363 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
364                                const struct amdgpu_copy_mem *src,
365                                const struct amdgpu_copy_mem *dst,
366                                uint64_t size, bool tmz,
367                                struct dma_resv *resv,
368                                struct dma_fence **f)
369 {
370         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
371                                         AMDGPU_GPU_PAGE_SIZE);
372
373         uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
374         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
375         struct drm_mm_node *src_mm, *dst_mm;
376         struct dma_fence *fence = NULL;
377         int r = 0;
378
379         if (!adev->mman.buffer_funcs_enabled) {
380                 DRM_ERROR("Trying to move memory with ring turned off.\n");
381                 return -EINVAL;
382         }
383
384         src_offset = src->offset;
385         if (src->mem->mm_node) {
386                 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
387                 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
388         } else {
389                 src_mm = NULL;
390                 src_node_size = ULLONG_MAX;
391         }
392
393         dst_offset = dst->offset;
394         if (dst->mem->mm_node) {
395                 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
396                 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
397         } else {
398                 dst_mm = NULL;
399                 dst_node_size = ULLONG_MAX;
400         }
401
402         mutex_lock(&adev->mman.gtt_window_lock);
403
404         while (size) {
405                 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
406                 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
407                 struct dma_fence *next;
408                 uint32_t cur_size;
409                 uint64_t from, to;
410
411                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
412                  * begins at an offset, then adjust the size accordingly
413                  */
414                 cur_size = max(src_page_offset, dst_page_offset);
415                 cur_size = min(min3(src_node_size, dst_node_size, size),
416                                (uint64_t)(GTT_MAX_BYTES - cur_size));
417
418                 /* Map src to window 0 and dst to window 1. */
419                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
420                                           PFN_UP(cur_size + src_page_offset),
421                                           src_offset, 0, ring, tmz, &from);
422                 if (r)
423                         goto error;
424
425                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
426                                           PFN_UP(cur_size + dst_page_offset),
427                                           dst_offset, 1, ring, tmz, &to);
428                 if (r)
429                         goto error;
430
431                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
432                                        resv, &next, false, true, tmz);
433                 if (r)
434                         goto error;
435
436                 dma_fence_put(fence);
437                 fence = next;
438
439                 size -= cur_size;
440                 if (!size)
441                         break;
442
443                 src_node_size -= cur_size;
444                 if (!src_node_size) {
445                         ++src_mm;
446                         src_node_size = src_mm->size << PAGE_SHIFT;
447                         src_offset = 0;
448                 } else {
449                         src_offset += cur_size;
450                 }
451
452                 dst_node_size -= cur_size;
453                 if (!dst_node_size) {
454                         ++dst_mm;
455                         dst_node_size = dst_mm->size << PAGE_SHIFT;
456                         dst_offset = 0;
457                 } else {
458                         dst_offset += cur_size;
459                 }
460         }
461 error:
462         mutex_unlock(&adev->mman.gtt_window_lock);
463         if (f)
464                 *f = dma_fence_get(fence);
465         dma_fence_put(fence);
466         return r;
467 }
468
469 /**
470  * amdgpu_move_blit - Copy an entire buffer to another buffer
471  *
472  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
473  * help move buffers to and from VRAM.
474  */
475 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
476                             bool evict,
477                             struct ttm_resource *new_mem,
478                             struct ttm_resource *old_mem)
479 {
480         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
481         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
482         struct amdgpu_copy_mem src, dst;
483         struct dma_fence *fence = NULL;
484         int r;
485
486         src.bo = bo;
487         dst.bo = bo;
488         src.mem = old_mem;
489         dst.mem = new_mem;
490         src.offset = 0;
491         dst.offset = 0;
492
493         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
494                                        new_mem->num_pages << PAGE_SHIFT,
495                                        amdgpu_bo_encrypted(abo),
496                                        bo->base.resv, &fence);
497         if (r)
498                 goto error;
499
500         /* clear the space being freed */
501         if (old_mem->mem_type == TTM_PL_VRAM &&
502             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
503                 struct dma_fence *wipe_fence = NULL;
504
505                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
506                                        NULL, &wipe_fence);
507                 if (r) {
508                         goto error;
509                 } else if (wipe_fence) {
510                         dma_fence_put(fence);
511                         fence = wipe_fence;
512                 }
513         }
514
515         /* Always block for VM page tables before committing the new location */
516         if (bo->type == ttm_bo_type_kernel)
517                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
518         else
519                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
520         dma_fence_put(fence);
521         return r;
522
523 error:
524         if (fence)
525                 dma_fence_wait(fence, false);
526         dma_fence_put(fence);
527         return r;
528 }
529
530 /**
531  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
532  *
533  * Called by amdgpu_bo_move().
534  */
535 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
536                                 struct ttm_operation_ctx *ctx,
537                                 struct ttm_resource *new_mem)
538 {
539         struct ttm_resource *old_mem = &bo->mem;
540         struct ttm_resource tmp_mem;
541         struct ttm_place placements;
542         struct ttm_placement placement;
543         int r;
544
545         /* create space/pages for new_mem in GTT space */
546         tmp_mem = *new_mem;
547         tmp_mem.mm_node = NULL;
548         placement.num_placement = 1;
549         placement.placement = &placements;
550         placement.num_busy_placement = 1;
551         placement.busy_placement = &placements;
552         placements.fpfn = 0;
553         placements.lpfn = 0;
554         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
555         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
556         if (unlikely(r)) {
557                 pr_err("Failed to find GTT space for blit from VRAM\n");
558                 return r;
559         }
560
561         /* set caching flags */
562         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
563         if (unlikely(r)) {
564                 goto out_cleanup;
565         }
566
567         /* Bind the memory to the GTT space */
568         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
569         if (unlikely(r)) {
570                 goto out_cleanup;
571         }
572
573         /* blit VRAM to GTT */
574         r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
575         if (unlikely(r)) {
576                 goto out_cleanup;
577         }
578
579         /* move BO (in tmp_mem) to new_mem */
580         r = ttm_bo_move_ttm(bo, ctx, new_mem);
581 out_cleanup:
582         ttm_resource_free(bo, &tmp_mem);
583         return r;
584 }
585
586 /**
587  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
588  *
589  * Called by amdgpu_bo_move().
590  */
591 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
592                                 struct ttm_operation_ctx *ctx,
593                                 struct ttm_resource *new_mem)
594 {
595         struct ttm_resource *old_mem = &bo->mem;
596         struct ttm_resource tmp_mem;
597         struct ttm_placement placement;
598         struct ttm_place placements;
599         int r;
600
601         /* make space in GTT for old_mem buffer */
602         tmp_mem = *new_mem;
603         tmp_mem.mm_node = NULL;
604         placement.num_placement = 1;
605         placement.placement = &placements;
606         placement.num_busy_placement = 1;
607         placement.busy_placement = &placements;
608         placements.fpfn = 0;
609         placements.lpfn = 0;
610         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
611         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
612         if (unlikely(r)) {
613                 pr_err("Failed to find GTT space for blit to VRAM\n");
614                 return r;
615         }
616
617         /* move/bind old memory to GTT space */
618         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
619         if (unlikely(r)) {
620                 goto out_cleanup;
621         }
622
623         /* copy to VRAM */
624         r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
625         if (unlikely(r)) {
626                 goto out_cleanup;
627         }
628 out_cleanup:
629         ttm_resource_free(bo, &tmp_mem);
630         return r;
631 }
632
633 /**
634  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
635  *
636  * Called by amdgpu_bo_move()
637  */
638 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
639                                struct ttm_resource *mem)
640 {
641         struct drm_mm_node *nodes = mem->mm_node;
642
643         if (mem->mem_type == TTM_PL_SYSTEM ||
644             mem->mem_type == TTM_PL_TT)
645                 return true;
646         if (mem->mem_type != TTM_PL_VRAM)
647                 return false;
648
649         /* ttm_resource_ioremap only supports contiguous memory */
650         if (nodes->size != mem->num_pages)
651                 return false;
652
653         return ((nodes->start + nodes->size) << PAGE_SHIFT)
654                 <= adev->gmc.visible_vram_size;
655 }
656
657 /**
658  * amdgpu_bo_move - Move a buffer object to a new memory location
659  *
660  * Called by ttm_bo_handle_move_mem()
661  */
662 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
663                           struct ttm_operation_ctx *ctx,
664                           struct ttm_resource *new_mem)
665 {
666         struct amdgpu_device *adev;
667         struct amdgpu_bo *abo;
668         struct ttm_resource *old_mem = &bo->mem;
669         int r;
670
671         /* Can't move a pinned BO */
672         abo = ttm_to_amdgpu_bo(bo);
673         if (WARN_ON_ONCE(abo->pin_count > 0))
674                 return -EINVAL;
675
676         adev = amdgpu_ttm_adev(bo->bdev);
677
678         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
679                 amdgpu_move_null(bo, new_mem);
680                 return 0;
681         }
682         if ((old_mem->mem_type == TTM_PL_TT &&
683              new_mem->mem_type == TTM_PL_SYSTEM) ||
684             (old_mem->mem_type == TTM_PL_SYSTEM &&
685              new_mem->mem_type == TTM_PL_TT)) {
686                 /* bind is enough */
687                 amdgpu_move_null(bo, new_mem);
688                 return 0;
689         }
690         if (old_mem->mem_type == AMDGPU_PL_GDS ||
691             old_mem->mem_type == AMDGPU_PL_GWS ||
692             old_mem->mem_type == AMDGPU_PL_OA ||
693             new_mem->mem_type == AMDGPU_PL_GDS ||
694             new_mem->mem_type == AMDGPU_PL_GWS ||
695             new_mem->mem_type == AMDGPU_PL_OA) {
696                 /* Nothing to save here */
697                 amdgpu_move_null(bo, new_mem);
698                 return 0;
699         }
700
701         if (!adev->mman.buffer_funcs_enabled) {
702                 r = -ENODEV;
703                 goto memcpy;
704         }
705
706         if (old_mem->mem_type == TTM_PL_VRAM &&
707             new_mem->mem_type == TTM_PL_SYSTEM) {
708                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
709         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
710                    new_mem->mem_type == TTM_PL_VRAM) {
711                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
712         } else {
713                 r = amdgpu_move_blit(bo, evict,
714                                      new_mem, old_mem);
715         }
716
717         if (r) {
718 memcpy:
719                 /* Check that all memory is CPU accessible */
720                 if (!amdgpu_mem_visible(adev, old_mem) ||
721                     !amdgpu_mem_visible(adev, new_mem)) {
722                         pr_err("Move buffer fallback to memcpy unavailable\n");
723                         return r;
724                 }
725
726                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
727                 if (r)
728                         return r;
729         }
730
731         if (bo->type == ttm_bo_type_device &&
732             new_mem->mem_type == TTM_PL_VRAM &&
733             old_mem->mem_type != TTM_PL_VRAM) {
734                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
735                  * accesses the BO after it's moved.
736                  */
737                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
738         }
739
740         /* update statistics */
741         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
742         return 0;
743 }
744
745 /**
746  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
747  *
748  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
749  */
750 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
751 {
752         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753         struct drm_mm_node *mm_node = mem->mm_node;
754         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
755
756         switch (mem->mem_type) {
757         case TTM_PL_SYSTEM:
758                 /* system memory */
759                 return 0;
760         case TTM_PL_TT:
761                 break;
762         case TTM_PL_VRAM:
763                 mem->bus.offset = mem->start << PAGE_SHIFT;
764                 /* check if it's visible */
765                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
766                         return -EINVAL;
767                 /* Only physically contiguous buffers apply. In a contiguous
768                  * buffer, size of the first mm_node would match the number of
769                  * pages in ttm_resource.
770                  */
771                 if (adev->mman.aper_base_kaddr &&
772                     (mm_node->size == mem->num_pages))
773                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
774                                         mem->bus.offset;
775
776                 mem->bus.base = adev->gmc.aper_base;
777                 mem->bus.is_iomem = true;
778                 break;
779         default:
780                 return -EINVAL;
781         }
782         return 0;
783 }
784
785 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
786                                            unsigned long page_offset)
787 {
788         uint64_t offset = (page_offset << PAGE_SHIFT);
789         struct drm_mm_node *mm;
790
791         mm = amdgpu_find_mm_node(&bo->mem, &offset);
792         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
793                 (offset >> PAGE_SHIFT);
794 }
795
796 /**
797  * amdgpu_ttm_domain_start - Returns GPU start address
798  * @adev: amdgpu device object
799  * @type: type of the memory
800  *
801  * Returns:
802  * GPU start address of a memory domain
803  */
804
805 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
806 {
807         switch (type) {
808         case TTM_PL_TT:
809                 return adev->gmc.gart_start;
810         case TTM_PL_VRAM:
811                 return adev->gmc.vram_start;
812         }
813
814         return 0;
815 }
816
817 /*
818  * TTM backend functions.
819  */
820 struct amdgpu_ttm_tt {
821         struct ttm_dma_tt       ttm;
822         struct drm_gem_object   *gobj;
823         u64                     offset;
824         uint64_t                userptr;
825         struct task_struct      *usertask;
826         uint32_t                userflags;
827 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
828         struct hmm_range        *range;
829 #endif
830 };
831
832 #ifdef CONFIG_DRM_AMDGPU_USERPTR
833 /**
834  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
835  * memory and start HMM tracking CPU page table update
836  *
837  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
838  * once afterwards to stop HMM tracking
839  */
840 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
841 {
842         struct ttm_tt *ttm = bo->tbo.ttm;
843         struct amdgpu_ttm_tt *gtt = (void *)ttm;
844         unsigned long start = gtt->userptr;
845         struct vm_area_struct *vma;
846         struct hmm_range *range;
847         unsigned long timeout;
848         struct mm_struct *mm;
849         unsigned long i;
850         int r = 0;
851
852         mm = bo->notifier.mm;
853         if (unlikely(!mm)) {
854                 DRM_DEBUG_DRIVER("BO is not registered?\n");
855                 return -EFAULT;
856         }
857
858         /* Another get_user_pages is running at the same time?? */
859         if (WARN_ON(gtt->range))
860                 return -EFAULT;
861
862         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
863                 return -ESRCH;
864
865         range = kzalloc(sizeof(*range), GFP_KERNEL);
866         if (unlikely(!range)) {
867                 r = -ENOMEM;
868                 goto out;
869         }
870         range->notifier = &bo->notifier;
871         range->start = bo->notifier.interval_tree.start;
872         range->end = bo->notifier.interval_tree.last + 1;
873         range->default_flags = HMM_PFN_REQ_FAULT;
874         if (!amdgpu_ttm_tt_is_readonly(ttm))
875                 range->default_flags |= HMM_PFN_REQ_WRITE;
876
877         range->hmm_pfns = kvmalloc_array(ttm->num_pages,
878                                          sizeof(*range->hmm_pfns), GFP_KERNEL);
879         if (unlikely(!range->hmm_pfns)) {
880                 r = -ENOMEM;
881                 goto out_free_ranges;
882         }
883
884         mmap_read_lock(mm);
885         vma = find_vma(mm, start);
886         if (unlikely(!vma || start < vma->vm_start)) {
887                 r = -EFAULT;
888                 goto out_unlock;
889         }
890         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
891                 vma->vm_file)) {
892                 r = -EPERM;
893                 goto out_unlock;
894         }
895         mmap_read_unlock(mm);
896         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
897
898 retry:
899         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
900
901         mmap_read_lock(mm);
902         r = hmm_range_fault(range);
903         mmap_read_unlock(mm);
904         if (unlikely(r)) {
905                 /*
906                  * FIXME: This timeout should encompass the retry from
907                  * mmu_interval_read_retry() as well.
908                  */
909                 if (r == -EBUSY && !time_after(jiffies, timeout))
910                         goto retry;
911                 goto out_free_pfns;
912         }
913
914         /*
915          * Due to default_flags, all pages are HMM_PFN_VALID or
916          * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
917          * the notifier_lock, and mmu_interval_read_retry() must be done first.
918          */
919         for (i = 0; i < ttm->num_pages; i++)
920                 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
921
922         gtt->range = range;
923         mmput(mm);
924
925         return 0;
926
927 out_unlock:
928         mmap_read_unlock(mm);
929 out_free_pfns:
930         kvfree(range->hmm_pfns);
931 out_free_ranges:
932         kfree(range);
933 out:
934         mmput(mm);
935         return r;
936 }
937
938 /**
939  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
940  * Check if the pages backing this ttm range have been invalidated
941  *
942  * Returns: true if pages are still valid
943  */
944 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
945 {
946         struct amdgpu_ttm_tt *gtt = (void *)ttm;
947         bool r = false;
948
949         if (!gtt || !gtt->userptr)
950                 return false;
951
952         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
953                 gtt->userptr, ttm->num_pages);
954
955         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
956                 "No user pages to check\n");
957
958         if (gtt->range) {
959                 /*
960                  * FIXME: Must always hold notifier_lock for this, and must
961                  * not ignore the return code.
962                  */
963                 r = mmu_interval_read_retry(gtt->range->notifier,
964                                          gtt->range->notifier_seq);
965                 kvfree(gtt->range->hmm_pfns);
966                 kfree(gtt->range);
967                 gtt->range = NULL;
968         }
969
970         return !r;
971 }
972 #endif
973
974 /**
975  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
976  *
977  * Called by amdgpu_cs_list_validate(). This creates the page list
978  * that backs user memory and will ultimately be mapped into the device
979  * address space.
980  */
981 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
982 {
983         unsigned long i;
984
985         for (i = 0; i < ttm->num_pages; ++i)
986                 ttm->pages[i] = pages ? pages[i] : NULL;
987 }
988
989 /**
990  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
991  *
992  * Called by amdgpu_ttm_backend_bind()
993  **/
994 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
995 {
996         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
997         struct amdgpu_ttm_tt *gtt = (void *)ttm;
998         int r;
999
1000         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1001         enum dma_data_direction direction = write ?
1002                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1003
1004         /* Allocate an SG array and squash pages into it */
1005         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1006                                       ttm->num_pages << PAGE_SHIFT,
1007                                       GFP_KERNEL);
1008         if (r)
1009                 goto release_sg;
1010
1011         /* Map SG to device */
1012         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1013         if (r)
1014                 goto release_sg;
1015
1016         /* convert SG to linear array of pages and dma addresses */
1017         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1018                                          gtt->ttm.dma_address, ttm->num_pages);
1019
1020         return 0;
1021
1022 release_sg:
1023         kfree(ttm->sg);
1024         return r;
1025 }
1026
1027 /**
1028  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1029  */
1030 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1031 {
1032         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1033         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1034
1035         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1036         enum dma_data_direction direction = write ?
1037                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1038
1039         /* double check that we don't free the table twice */
1040         if (!ttm->sg->sgl)
1041                 return;
1042
1043         /* unmap the pages mapped to the device */
1044         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1045         sg_free_table(ttm->sg);
1046
1047 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1048         if (gtt->range) {
1049                 unsigned long i;
1050
1051                 for (i = 0; i < ttm->num_pages; i++) {
1052                         if (ttm->pages[i] !=
1053                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1054                                 break;
1055                 }
1056
1057                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1058         }
1059 #endif
1060 }
1061
1062 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1063                                 struct ttm_buffer_object *tbo,
1064                                 uint64_t flags)
1065 {
1066         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1067         struct ttm_tt *ttm = tbo->ttm;
1068         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1069         int r;
1070
1071         if (amdgpu_bo_encrypted(abo))
1072                 flags |= AMDGPU_PTE_TMZ;
1073
1074         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1075                 uint64_t page_idx = 1;
1076
1077                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1078                                 ttm->pages, gtt->ttm.dma_address, flags);
1079                 if (r)
1080                         goto gart_bind_fail;
1081
1082                 /* The memory type of the first page defaults to UC. Now
1083                  * modify the memory type to NC from the second page of
1084                  * the BO onward.
1085                  */
1086                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1087                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1088
1089                 r = amdgpu_gart_bind(adev,
1090                                 gtt->offset + (page_idx << PAGE_SHIFT),
1091                                 ttm->num_pages - page_idx,
1092                                 &ttm->pages[page_idx],
1093                                 &(gtt->ttm.dma_address[page_idx]), flags);
1094         } else {
1095                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1096                                      ttm->pages, gtt->ttm.dma_address, flags);
1097         }
1098
1099 gart_bind_fail:
1100         if (r)
1101                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1102                           ttm->num_pages, gtt->offset);
1103
1104         return r;
1105 }
1106
1107 /**
1108  * amdgpu_ttm_backend_bind - Bind GTT memory
1109  *
1110  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1111  * This handles binding GTT memory to the device address space.
1112  */
1113 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1114                                    struct ttm_resource *bo_mem)
1115 {
1116         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1117         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1118         uint64_t flags;
1119         int r = 0;
1120
1121         if (gtt->userptr) {
1122                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1123                 if (r) {
1124                         DRM_ERROR("failed to pin userptr\n");
1125                         return r;
1126                 }
1127         }
1128         if (!ttm->num_pages) {
1129                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1130                      ttm->num_pages, bo_mem, ttm);
1131         }
1132
1133         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1134             bo_mem->mem_type == AMDGPU_PL_GWS ||
1135             bo_mem->mem_type == AMDGPU_PL_OA)
1136                 return -EINVAL;
1137
1138         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1139                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1140                 return 0;
1141         }
1142
1143         /* compute PTE flags relevant to this BO memory */
1144         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1145
1146         /* bind pages into GART page tables */
1147         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1148         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1149                 ttm->pages, gtt->ttm.dma_address, flags);
1150
1151         if (r)
1152                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1153                           ttm->num_pages, gtt->offset);
1154         return r;
1155 }
1156
1157 /**
1158  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1159  * through AGP or GART aperture.
1160  *
1161  * If bo is accessible through AGP aperture, then use AGP aperture
1162  * to access bo; otherwise allocate logical space in GART aperture
1163  * and map bo to GART aperture.
1164  */
1165 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1166 {
1167         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1168         struct ttm_operation_ctx ctx = { false, false };
1169         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1170         struct ttm_resource tmp;
1171         struct ttm_placement placement;
1172         struct ttm_place placements;
1173         uint64_t addr, flags;
1174         int r;
1175
1176         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1177                 return 0;
1178
1179         addr = amdgpu_gmc_agp_addr(bo);
1180         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1181                 bo->mem.start = addr >> PAGE_SHIFT;
1182         } else {
1183
1184                 /* allocate GART space */
1185                 tmp = bo->mem;
1186                 tmp.mm_node = NULL;
1187                 placement.num_placement = 1;
1188                 placement.placement = &placements;
1189                 placement.num_busy_placement = 1;
1190                 placement.busy_placement = &placements;
1191                 placements.fpfn = 0;
1192                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1193                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1194                         TTM_PL_FLAG_TT;
1195
1196                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1197                 if (unlikely(r))
1198                         return r;
1199
1200                 /* compute PTE flags for this buffer object */
1201                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1202
1203                 /* Bind pages */
1204                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1205                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1206                 if (unlikely(r)) {
1207                         ttm_resource_free(bo, &tmp);
1208                         return r;
1209                 }
1210
1211                 ttm_resource_free(bo, &bo->mem);
1212                 bo->mem = tmp;
1213         }
1214
1215         return 0;
1216 }
1217
1218 /**
1219  * amdgpu_ttm_recover_gart - Rebind GTT pages
1220  *
1221  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1222  * rebind GTT pages during a GPU reset.
1223  */
1224 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1225 {
1226         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1227         uint64_t flags;
1228         int r;
1229
1230         if (!tbo->ttm)
1231                 return 0;
1232
1233         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1234         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1235
1236         return r;
1237 }
1238
1239 /**
1240  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1241  *
1242  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1243  * ttm_tt_destroy().
1244  */
1245 static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1246 {
1247         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1248         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249         int r;
1250
1251         /* if the pages have userptr pinning then clear that first */
1252         if (gtt->userptr)
1253                 amdgpu_ttm_tt_unpin_userptr(ttm);
1254
1255         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1256                 return;
1257
1258         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1259         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1260         if (r)
1261                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1262                           gtt->ttm.ttm.num_pages, gtt->offset);
1263 }
1264
1265 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1266 {
1267         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1268
1269         if (gtt->usertask)
1270                 put_task_struct(gtt->usertask);
1271
1272         ttm_dma_tt_fini(&gtt->ttm);
1273         kfree(gtt);
1274 }
1275
1276 static struct ttm_backend_func amdgpu_backend_func = {
1277         .bind = &amdgpu_ttm_backend_bind,
1278         .unbind = &amdgpu_ttm_backend_unbind,
1279         .destroy = &amdgpu_ttm_backend_destroy,
1280 };
1281
1282 /**
1283  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1284  *
1285  * @bo: The buffer object to create a GTT ttm_tt object around
1286  *
1287  * Called by ttm_tt_create().
1288  */
1289 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1290                                            uint32_t page_flags)
1291 {
1292         struct amdgpu_ttm_tt *gtt;
1293
1294         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1295         if (gtt == NULL) {
1296                 return NULL;
1297         }
1298         gtt->ttm.ttm.func = &amdgpu_backend_func;
1299         gtt->gobj = &bo->base;
1300
1301         /* allocate space for the uninitialized page entries */
1302         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1303                 kfree(gtt);
1304                 return NULL;
1305         }
1306         return &gtt->ttm.ttm;
1307 }
1308
1309 /**
1310  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1311  *
1312  * Map the pages of a ttm_tt object to an address space visible
1313  * to the underlying device.
1314  */
1315 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1316                         struct ttm_operation_ctx *ctx)
1317 {
1318         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1319         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1320
1321         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1322         if (gtt && gtt->userptr) {
1323                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1324                 if (!ttm->sg)
1325                         return -ENOMEM;
1326
1327                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1328                 ttm->state = tt_unbound;
1329                 return 0;
1330         }
1331
1332         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1333                 if (!ttm->sg) {
1334                         struct dma_buf_attachment *attach;
1335                         struct sg_table *sgt;
1336
1337                         attach = gtt->gobj->import_attach;
1338                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1339                         if (IS_ERR(sgt))
1340                                 return PTR_ERR(sgt);
1341
1342                         ttm->sg = sgt;
1343                 }
1344
1345                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1346                                                  gtt->ttm.dma_address,
1347                                                  ttm->num_pages);
1348                 ttm->state = tt_unbound;
1349                 return 0;
1350         }
1351
1352 #ifdef CONFIG_SWIOTLB
1353         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1355         }
1356 #endif
1357
1358         /* fall back to generic helper to populate the page array
1359          * and map them to the device */
1360         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1361 }
1362
1363 /**
1364  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1365  *
1366  * Unmaps pages of a ttm_tt object from the device address space and
1367  * unpopulates the page array backing it.
1368  */
1369 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1370 {
1371         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372         struct amdgpu_device *adev;
1373
1374         if (gtt && gtt->userptr) {
1375                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1376                 kfree(ttm->sg);
1377                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1378                 return;
1379         }
1380
1381         if (ttm->sg && gtt->gobj->import_attach) {
1382                 struct dma_buf_attachment *attach;
1383
1384                 attach = gtt->gobj->import_attach;
1385                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1386                 ttm->sg = NULL;
1387                 return;
1388         }
1389
1390         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1391                 return;
1392
1393         adev = amdgpu_ttm_adev(ttm->bdev);
1394
1395 #ifdef CONFIG_SWIOTLB
1396         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1397                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1398                 return;
1399         }
1400 #endif
1401
1402         /* fall back to generic helper to unmap and unpopulate array */
1403         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1404 }
1405
1406 /**
1407  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1408  * task
1409  *
1410  * @bo: The ttm_buffer_object to bind this userptr to
1411  * @addr:  The address in the current tasks VM space to use
1412  * @flags: Requirements of userptr object.
1413  *
1414  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1415  * to current task
1416  */
1417 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1418                               uint64_t addr, uint32_t flags)
1419 {
1420         struct amdgpu_ttm_tt *gtt;
1421
1422         if (!bo->ttm) {
1423                 /* TODO: We want a separate TTM object type for userptrs */
1424                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1425                 if (bo->ttm == NULL)
1426                         return -ENOMEM;
1427         }
1428
1429         gtt = (void*)bo->ttm;
1430         gtt->userptr = addr;
1431         gtt->userflags = flags;
1432
1433         if (gtt->usertask)
1434                 put_task_struct(gtt->usertask);
1435         gtt->usertask = current->group_leader;
1436         get_task_struct(gtt->usertask);
1437
1438         return 0;
1439 }
1440
1441 /**
1442  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1443  */
1444 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1445 {
1446         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1447
1448         if (gtt == NULL)
1449                 return NULL;
1450
1451         if (gtt->usertask == NULL)
1452                 return NULL;
1453
1454         return gtt->usertask->mm;
1455 }
1456
1457 /**
1458  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1459  * address range for the current task.
1460  *
1461  */
1462 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1463                                   unsigned long end)
1464 {
1465         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1466         unsigned long size;
1467
1468         if (gtt == NULL || !gtt->userptr)
1469                 return false;
1470
1471         /* Return false if no part of the ttm_tt object lies within
1472          * the range
1473          */
1474         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1475         if (gtt->userptr > end || gtt->userptr + size <= start)
1476                 return false;
1477
1478         return true;
1479 }
1480
1481 /**
1482  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1483  */
1484 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1485 {
1486         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1487
1488         if (gtt == NULL || !gtt->userptr)
1489                 return false;
1490
1491         return true;
1492 }
1493
1494 /**
1495  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1496  */
1497 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1498 {
1499         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1500
1501         if (gtt == NULL)
1502                 return false;
1503
1504         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1505 }
1506
1507 /**
1508  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1509  *
1510  * @ttm: The ttm_tt object to compute the flags for
1511  * @mem: The memory registry backing this ttm_tt object
1512  *
1513  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1514  */
1515 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1516 {
1517         uint64_t flags = 0;
1518
1519         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1520                 flags |= AMDGPU_PTE_VALID;
1521
1522         if (mem && mem->mem_type == TTM_PL_TT) {
1523                 flags |= AMDGPU_PTE_SYSTEM;
1524
1525                 if (ttm->caching_state == tt_cached)
1526                         flags |= AMDGPU_PTE_SNOOPED;
1527         }
1528
1529         return flags;
1530 }
1531
1532 /**
1533  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1534  *
1535  * @ttm: The ttm_tt object to compute the flags for
1536  * @mem: The memory registry backing this ttm_tt object
1537
1538  * Figure out the flags to use for a VM PTE (Page Table Entry).
1539  */
1540 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1541                                  struct ttm_resource *mem)
1542 {
1543         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1544
1545         flags |= adev->gart.gart_pte_flags;
1546         flags |= AMDGPU_PTE_READABLE;
1547
1548         if (!amdgpu_ttm_tt_is_readonly(ttm))
1549                 flags |= AMDGPU_PTE_WRITEABLE;
1550
1551         return flags;
1552 }
1553
1554 /**
1555  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1556  * object.
1557  *
1558  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1559  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1560  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1561  * used to clean out a memory space.
1562  */
1563 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1564                                             const struct ttm_place *place)
1565 {
1566         unsigned long num_pages = bo->mem.num_pages;
1567         struct drm_mm_node *node = bo->mem.mm_node;
1568         struct dma_resv_list *flist;
1569         struct dma_fence *f;
1570         int i;
1571
1572         if (bo->type == ttm_bo_type_kernel &&
1573             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1574                 return false;
1575
1576         /* If bo is a KFD BO, check if the bo belongs to the current process.
1577          * If true, then return false as any KFD process needs all its BOs to
1578          * be resident to run successfully
1579          */
1580         flist = dma_resv_get_list(bo->base.resv);
1581         if (flist) {
1582                 for (i = 0; i < flist->shared_count; ++i) {
1583                         f = rcu_dereference_protected(flist->shared[i],
1584                                 dma_resv_held(bo->base.resv));
1585                         if (amdkfd_fence_check_mm(f, current->mm))
1586                                 return false;
1587                 }
1588         }
1589
1590         switch (bo->mem.mem_type) {
1591         case TTM_PL_TT:
1592                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1593                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1594                         return false;
1595                 return true;
1596
1597         case TTM_PL_VRAM:
1598                 /* Check each drm MM node individually */
1599                 while (num_pages) {
1600                         if (place->fpfn < (node->start + node->size) &&
1601                             !(place->lpfn && place->lpfn <= node->start))
1602                                 return true;
1603
1604                         num_pages -= node->size;
1605                         ++node;
1606                 }
1607                 return false;
1608
1609         default:
1610                 break;
1611         }
1612
1613         return ttm_bo_eviction_valuable(bo, place);
1614 }
1615
1616 /**
1617  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1618  *
1619  * @bo:  The buffer object to read/write
1620  * @offset:  Offset into buffer object
1621  * @buf:  Secondary buffer to write/read from
1622  * @len: Length in bytes of access
1623  * @write:  true if writing
1624  *
1625  * This is used to access VRAM that backs a buffer object via MMIO
1626  * access for debugging purposes.
1627  */
1628 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1629                                     unsigned long offset,
1630                                     void *buf, int len, int write)
1631 {
1632         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1633         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1634         struct drm_mm_node *nodes;
1635         uint32_t value = 0;
1636         int ret = 0;
1637         uint64_t pos;
1638         unsigned long flags;
1639
1640         if (bo->mem.mem_type != TTM_PL_VRAM)
1641                 return -EIO;
1642
1643         pos = offset;
1644         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1645         pos += (nodes->start << PAGE_SHIFT);
1646
1647         while (len && pos < adev->gmc.mc_vram_size) {
1648                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1649                 uint64_t bytes = 4 - (pos & 3);
1650                 uint32_t shift = (pos & 3) * 8;
1651                 uint32_t mask = 0xffffffff << shift;
1652
1653                 if (len < bytes) {
1654                         mask &= 0xffffffff >> (bytes - len) * 8;
1655                         bytes = len;
1656                 }
1657
1658                 if (mask != 0xffffffff) {
1659                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1660                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1661                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1662                         if (!write || mask != 0xffffffff)
1663                                 value = RREG32_NO_KIQ(mmMM_DATA);
1664                         if (write) {
1665                                 value &= ~mask;
1666                                 value |= (*(uint32_t *)buf << shift) & mask;
1667                                 WREG32_NO_KIQ(mmMM_DATA, value);
1668                         }
1669                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1670                         if (!write) {
1671                                 value = (value & mask) >> shift;
1672                                 memcpy(buf, &value, bytes);
1673                         }
1674                 } else {
1675                         bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1676                         bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1677
1678                         amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1679                                                   bytes, write);
1680                 }
1681
1682                 ret += bytes;
1683                 buf = (uint8_t *)buf + bytes;
1684                 pos += bytes;
1685                 len -= bytes;
1686                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1687                         ++nodes;
1688                         pos = (nodes->start << PAGE_SHIFT);
1689                 }
1690         }
1691
1692         return ret;
1693 }
1694
1695 static struct ttm_bo_driver amdgpu_bo_driver = {
1696         .ttm_tt_create = &amdgpu_ttm_tt_create,
1697         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1698         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1699         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1700         .evict_flags = &amdgpu_evict_flags,
1701         .move = &amdgpu_bo_move,
1702         .verify_access = &amdgpu_verify_access,
1703         .move_notify = &amdgpu_bo_move_notify,
1704         .release_notify = &amdgpu_bo_release_notify,
1705         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1706         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1707         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1708         .access_memory = &amdgpu_ttm_access_memory,
1709         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1710 };
1711
1712 /*
1713  * Firmware Reservation functions
1714  */
1715 /**
1716  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1717  *
1718  * @adev: amdgpu_device pointer
1719  *
1720  * free fw reserved vram if it has been reserved.
1721  */
1722 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1723 {
1724         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1725                 NULL, &adev->mman.fw_vram_usage_va);
1726 }
1727
1728 /**
1729  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1730  *
1731  * @adev: amdgpu_device pointer
1732  *
1733  * create bo vram reservation from fw.
1734  */
1735 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1736 {
1737         uint64_t vram_size = adev->gmc.visible_vram_size;
1738
1739         adev->mman.fw_vram_usage_va = NULL;
1740         adev->mman.fw_vram_usage_reserved_bo = NULL;
1741
1742         if (adev->mman.fw_vram_usage_size == 0 ||
1743             adev->mman.fw_vram_usage_size > vram_size)
1744                 return 0;
1745
1746         return amdgpu_bo_create_kernel_at(adev,
1747                                           adev->mman.fw_vram_usage_start_offset,
1748                                           adev->mman.fw_vram_usage_size,
1749                                           AMDGPU_GEM_DOMAIN_VRAM,
1750                                           &adev->mman.fw_vram_usage_reserved_bo,
1751                                           &adev->mman.fw_vram_usage_va);
1752 }
1753
1754 /*
1755  * Memoy training reservation functions
1756  */
1757
1758 /**
1759  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1760  *
1761  * @adev: amdgpu_device pointer
1762  *
1763  * free memory training reserved vram if it has been reserved.
1764  */
1765 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1766 {
1767         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1768
1769         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1770         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1771         ctx->c2p_bo = NULL;
1772
1773         return 0;
1774 }
1775
1776 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1777 {
1778         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1779
1780         memset(ctx, 0, sizeof(*ctx));
1781
1782         ctx->c2p_train_data_offset =
1783                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1784         ctx->p2c_train_data_offset =
1785                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1786         ctx->train_data_size =
1787                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1788         
1789         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1790                         ctx->train_data_size,
1791                         ctx->p2c_train_data_offset,
1792                         ctx->c2p_train_data_offset);
1793 }
1794
1795 /*
1796  * reserve TMR memory at the top of VRAM which holds
1797  * IP Discovery data and is protected by PSP.
1798  */
1799 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1800 {
1801         int ret;
1802         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1803         bool mem_train_support = false;
1804
1805         if (!amdgpu_sriov_vf(adev)) {
1806                 ret = amdgpu_mem_train_support(adev);
1807                 if (ret == 1)
1808                         mem_train_support = true;
1809                 else if (ret == -1)
1810                         return -EINVAL;
1811                 else
1812                         DRM_DEBUG("memory training does not support!\n");
1813         }
1814
1815         /*
1816          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1817          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1818          *
1819          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1820          * discovery data and G6 memory training data respectively
1821          */
1822         adev->mman.discovery_tmr_size =
1823                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1824         if (!adev->mman.discovery_tmr_size)
1825                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1826
1827         if (mem_train_support) {
1828                 /* reserve vram for mem train according to TMR location */
1829                 amdgpu_ttm_training_data_block_init(adev);
1830                 ret = amdgpu_bo_create_kernel_at(adev,
1831                                          ctx->c2p_train_data_offset,
1832                                          ctx->train_data_size,
1833                                          AMDGPU_GEM_DOMAIN_VRAM,
1834                                          &ctx->c2p_bo,
1835                                          NULL);
1836                 if (ret) {
1837                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1838                         amdgpu_ttm_training_reserve_vram_fini(adev);
1839                         return ret;
1840                 }
1841                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1842         }
1843
1844         ret = amdgpu_bo_create_kernel_at(adev,
1845                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1846                                 adev->mman.discovery_tmr_size,
1847                                 AMDGPU_GEM_DOMAIN_VRAM,
1848                                 &adev->mman.discovery_memory,
1849                                 NULL);
1850         if (ret) {
1851                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1852                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1853                 return ret;
1854         }
1855
1856         return 0;
1857 }
1858
1859 /**
1860  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1861  * gtt/vram related fields.
1862  *
1863  * This initializes all of the memory space pools that the TTM layer
1864  * will need such as the GTT space (system memory mapped to the device),
1865  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1866  * can be mapped per VMID.
1867  */
1868 int amdgpu_ttm_init(struct amdgpu_device *adev)
1869 {
1870         uint64_t gtt_size;
1871         int r;
1872         u64 vis_vram_limit;
1873
1874         mutex_init(&adev->mman.gtt_window_lock);
1875
1876         /* No others user of address space so set it to 0 */
1877         r = ttm_bo_device_init(&adev->mman.bdev,
1878                                &amdgpu_bo_driver,
1879                                adev_to_drm(adev)->anon_inode->i_mapping,
1880                                adev_to_drm(adev)->vma_offset_manager,
1881                                dma_addressing_limited(adev->dev));
1882         if (r) {
1883                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1884                 return r;
1885         }
1886         adev->mman.initialized = true;
1887
1888         /* We opt to avoid OOM on system pages allocations */
1889         adev->mman.bdev.no_retry = true;
1890
1891         /* Initialize VRAM pool with all of VRAM divided into pages */
1892         r = amdgpu_vram_mgr_init(adev);
1893         if (r) {
1894                 DRM_ERROR("Failed initializing VRAM heap.\n");
1895                 return r;
1896         }
1897
1898         /* Reduce size of CPU-visible VRAM if requested */
1899         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1900         if (amdgpu_vis_vram_limit > 0 &&
1901             vis_vram_limit <= adev->gmc.visible_vram_size)
1902                 adev->gmc.visible_vram_size = vis_vram_limit;
1903
1904         /* Change the size here instead of the init above so only lpfn is affected */
1905         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1906 #ifdef CONFIG_64BIT
1907         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1908                                                 adev->gmc.visible_vram_size);
1909 #endif
1910
1911         /*
1912          *The reserved vram for firmware must be pinned to the specified
1913          *place on the VRAM, so reserve it early.
1914          */
1915         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1916         if (r) {
1917                 return r;
1918         }
1919
1920         /*
1921          * only NAVI10 and onwards ASIC support for IP discovery.
1922          * If IP discovery enabled, a block of memory should be
1923          * reserved for IP discovey.
1924          */
1925         if (adev->mman.discovery_bin) {
1926                 r = amdgpu_ttm_reserve_tmr(adev);
1927                 if (r)
1928                         return r;
1929         }
1930
1931         /* allocate memory as required for VGA
1932          * This is used for VGA emulation and pre-OS scanout buffers to
1933          * avoid display artifacts while transitioning between pre-OS
1934          * and driver.  */
1935         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1936                                        AMDGPU_GEM_DOMAIN_VRAM,
1937                                        &adev->mman.stolen_vga_memory,
1938                                        NULL);
1939         if (r)
1940                 return r;
1941         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942                                        adev->mman.stolen_extended_size,
1943                                        AMDGPU_GEM_DOMAIN_VRAM,
1944                                        &adev->mman.stolen_extended_memory,
1945                                        NULL);
1946         if (r)
1947                 return r;
1948
1949         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1950                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1951
1952         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1953          * or whatever the user passed on module init */
1954         if (amdgpu_gtt_size == -1) {
1955                 struct sysinfo si;
1956
1957                 si_meminfo(&si);
1958                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1959                                adev->gmc.mc_vram_size),
1960                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1961         }
1962         else
1963                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1964
1965         /* Initialize GTT memory pool */
1966         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1967         if (r) {
1968                 DRM_ERROR("Failed initializing GTT heap.\n");
1969                 return r;
1970         }
1971         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1972                  (unsigned)(gtt_size / (1024 * 1024)));
1973
1974         /* Initialize various on-chip memory pools */
1975         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1976         if (r) {
1977                 DRM_ERROR("Failed initializing GDS heap.\n");
1978                 return r;
1979         }
1980
1981         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1982         if (r) {
1983                 DRM_ERROR("Failed initializing gws heap.\n");
1984                 return r;
1985         }
1986
1987         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1988         if (r) {
1989                 DRM_ERROR("Failed initializing oa heap.\n");
1990                 return r;
1991         }
1992
1993         return 0;
1994 }
1995
1996 /**
1997  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1998  */
1999 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2000 {
2001         /* return the VGA stolen memory (if any) back to VRAM */
2002         if (!adev->mman.keep_stolen_vga_memory)
2003                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 }
2006
2007 /**
2008  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2009  */
2010 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2011 {
2012         if (!adev->mman.initialized)
2013                 return;
2014
2015         amdgpu_ttm_training_reserve_vram_fini(adev);
2016         /* return the stolen vga memory back to VRAM */
2017         if (adev->mman.keep_stolen_vga_memory)
2018                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2019         /* return the IP Discovery TMR memory back to VRAM */
2020         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2021         amdgpu_ttm_fw_reserve_vram_fini(adev);
2022
2023         if (adev->mman.aper_base_kaddr)
2024                 iounmap(adev->mman.aper_base_kaddr);
2025         adev->mman.aper_base_kaddr = NULL;
2026
2027         amdgpu_vram_mgr_fini(adev);
2028         amdgpu_gtt_mgr_fini(adev);
2029         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032         ttm_bo_device_release(&adev->mman.bdev);
2033         adev->mman.initialized = false;
2034         DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036
2037 /**
2038  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039  *
2040  * @adev: amdgpu_device pointer
2041  * @enable: true when we can use buffer functions.
2042  *
2043  * Enable/disable use of buffer functions during suspend/resume. This should
2044  * only be called at bootup or when userspace isn't running.
2045  */
2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049         uint64_t size;
2050         int r;
2051
2052         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053             adev->mman.buffer_funcs_enabled == enable)
2054                 return;
2055
2056         if (enable) {
2057                 struct amdgpu_ring *ring;
2058                 struct drm_gpu_scheduler *sched;
2059
2060                 ring = adev->mman.buffer_funcs_ring;
2061                 sched = &ring->sched;
2062                 r = drm_sched_entity_init(&adev->mman.entity,
2063                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2064                                           1, NULL);
2065                 if (r) {
2066                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067                                   r);
2068                         return;
2069                 }
2070         } else {
2071                 drm_sched_entity_destroy(&adev->mman.entity);
2072                 dma_fence_put(man->move);
2073                 man->move = NULL;
2074         }
2075
2076         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2077         if (enable)
2078                 size = adev->gmc.real_vram_size;
2079         else
2080                 size = adev->gmc.visible_vram_size;
2081         man->size = size >> PAGE_SHIFT;
2082         adev->mman.buffer_funcs_enabled = enable;
2083 }
2084
2085 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2086 {
2087         struct drm_file *file_priv = filp->private_data;
2088         struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2089
2090         if (adev == NULL)
2091                 return -EINVAL;
2092
2093         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2094 }
2095
2096 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2097                        uint64_t dst_offset, uint32_t byte_count,
2098                        struct dma_resv *resv,
2099                        struct dma_fence **fence, bool direct_submit,
2100                        bool vm_needs_flush, bool tmz)
2101 {
2102         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2103                 AMDGPU_IB_POOL_DELAYED;
2104         struct amdgpu_device *adev = ring->adev;
2105         struct amdgpu_job *job;
2106
2107         uint32_t max_bytes;
2108         unsigned num_loops, num_dw;
2109         unsigned i;
2110         int r;
2111
2112         if (direct_submit && !ring->sched.ready) {
2113                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2114                 return -EINVAL;
2115         }
2116
2117         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2118         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2119         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2120
2121         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2122         if (r)
2123                 return r;
2124
2125         if (vm_needs_flush) {
2126                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2127                 job->vm_needs_flush = true;
2128         }
2129         if (resv) {
2130                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2131                                      AMDGPU_SYNC_ALWAYS,
2132                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2133                 if (r) {
2134                         DRM_ERROR("sync failed (%d).\n", r);
2135                         goto error_free;
2136                 }
2137         }
2138
2139         for (i = 0; i < num_loops; i++) {
2140                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2141
2142                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2143                                         dst_offset, cur_size_in_bytes, tmz);
2144
2145                 src_offset += cur_size_in_bytes;
2146                 dst_offset += cur_size_in_bytes;
2147                 byte_count -= cur_size_in_bytes;
2148         }
2149
2150         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2151         WARN_ON(job->ibs[0].length_dw > num_dw);
2152         if (direct_submit)
2153                 r = amdgpu_job_submit_direct(job, ring, fence);
2154         else
2155                 r = amdgpu_job_submit(job, &adev->mman.entity,
2156                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2157         if (r)
2158                 goto error_free;
2159
2160         return r;
2161
2162 error_free:
2163         amdgpu_job_free(job);
2164         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2165         return r;
2166 }
2167
2168 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2169                        uint32_t src_data,
2170                        struct dma_resv *resv,
2171                        struct dma_fence **fence)
2172 {
2173         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2174         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2175         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2176
2177         struct drm_mm_node *mm_node;
2178         unsigned long num_pages;
2179         unsigned int num_loops, num_dw;
2180
2181         struct amdgpu_job *job;
2182         int r;
2183
2184         if (!adev->mman.buffer_funcs_enabled) {
2185                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2186                 return -EINVAL;
2187         }
2188
2189         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2190                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2191                 if (r)
2192                         return r;
2193         }
2194
2195         num_pages = bo->tbo.num_pages;
2196         mm_node = bo->tbo.mem.mm_node;
2197         num_loops = 0;
2198         while (num_pages) {
2199                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2200
2201                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202                 num_pages -= mm_node->size;
2203                 ++mm_node;
2204         }
2205         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2206
2207         /* for IB padding */
2208         num_dw += 64;
2209
2210         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2211                                      &job);
2212         if (r)
2213                 return r;
2214
2215         if (resv) {
2216                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2217                                      AMDGPU_SYNC_ALWAYS,
2218                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2219                 if (r) {
2220                         DRM_ERROR("sync failed (%d).\n", r);
2221                         goto error_free;
2222                 }
2223         }
2224
2225         num_pages = bo->tbo.num_pages;
2226         mm_node = bo->tbo.mem.mm_node;
2227
2228         while (num_pages) {
2229                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2230                 uint64_t dst_addr;
2231
2232                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2233                 while (byte_count) {
2234                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2235                                                            max_bytes);
2236
2237                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2238                                                 dst_addr, cur_size_in_bytes);
2239
2240                         dst_addr += cur_size_in_bytes;
2241                         byte_count -= cur_size_in_bytes;
2242                 }
2243
2244                 num_pages -= mm_node->size;
2245                 ++mm_node;
2246         }
2247
2248         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2249         WARN_ON(job->ibs[0].length_dw > num_dw);
2250         r = amdgpu_job_submit(job, &adev->mman.entity,
2251                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2252         if (r)
2253                 goto error_free;
2254
2255         return 0;
2256
2257 error_free:
2258         amdgpu_job_free(job);
2259         return r;
2260 }
2261
2262 #if defined(CONFIG_DEBUG_FS)
2263
2264 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2265 {
2266         struct drm_info_node *node = (struct drm_info_node *)m->private;
2267         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2268         struct drm_device *dev = node->minor->dev;
2269         struct amdgpu_device *adev = drm_to_adev(dev);
2270         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2271         struct drm_printer p = drm_seq_file_printer(m);
2272
2273         man->func->debug(man, &p);
2274         return 0;
2275 }
2276
2277 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2278         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2279         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2280         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2281         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2282         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2283         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2284 #ifdef CONFIG_SWIOTLB
2285         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2286 #endif
2287 };
2288
2289 /**
2290  * amdgpu_ttm_vram_read - Linear read access to VRAM
2291  *
2292  * Accesses VRAM via MMIO for debugging purposes.
2293  */
2294 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2295                                     size_t size, loff_t *pos)
2296 {
2297         struct amdgpu_device *adev = file_inode(f)->i_private;
2298         ssize_t result = 0;
2299
2300         if (size & 0x3 || *pos & 0x3)
2301                 return -EINVAL;
2302
2303         if (*pos >= adev->gmc.mc_vram_size)
2304                 return -ENXIO;
2305
2306         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2307         while (size) {
2308                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2309                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2310
2311                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2312                 if (copy_to_user(buf, value, bytes))
2313                         return -EFAULT;
2314
2315                 result += bytes;
2316                 buf += bytes;
2317                 *pos += bytes;
2318                 size -= bytes;
2319         }
2320
2321         return result;
2322 }
2323
2324 /**
2325  * amdgpu_ttm_vram_write - Linear write access to VRAM
2326  *
2327  * Accesses VRAM via MMIO for debugging purposes.
2328  */
2329 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2330                                     size_t size, loff_t *pos)
2331 {
2332         struct amdgpu_device *adev = file_inode(f)->i_private;
2333         ssize_t result = 0;
2334         int r;
2335
2336         if (size & 0x3 || *pos & 0x3)
2337                 return -EINVAL;
2338
2339         if (*pos >= adev->gmc.mc_vram_size)
2340                 return -ENXIO;
2341
2342         while (size) {
2343                 unsigned long flags;
2344                 uint32_t value;
2345
2346                 if (*pos >= adev->gmc.mc_vram_size)
2347                         return result;
2348
2349                 r = get_user(value, (uint32_t *)buf);
2350                 if (r)
2351                         return r;
2352
2353                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2354                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2355                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2356                 WREG32_NO_KIQ(mmMM_DATA, value);
2357                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2358
2359                 result += 4;
2360                 buf += 4;
2361                 *pos += 4;
2362                 size -= 4;
2363         }
2364
2365         return result;
2366 }
2367
2368 static const struct file_operations amdgpu_ttm_vram_fops = {
2369         .owner = THIS_MODULE,
2370         .read = amdgpu_ttm_vram_read,
2371         .write = amdgpu_ttm_vram_write,
2372         .llseek = default_llseek,
2373 };
2374
2375 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2376
2377 /**
2378  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2379  */
2380 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2381                                    size_t size, loff_t *pos)
2382 {
2383         struct amdgpu_device *adev = file_inode(f)->i_private;
2384         ssize_t result = 0;
2385         int r;
2386
2387         while (size) {
2388                 loff_t p = *pos / PAGE_SIZE;
2389                 unsigned off = *pos & ~PAGE_MASK;
2390                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2391                 struct page *page;
2392                 void *ptr;
2393
2394                 if (p >= adev->gart.num_cpu_pages)
2395                         return result;
2396
2397                 page = adev->gart.pages[p];
2398                 if (page) {
2399                         ptr = kmap(page);
2400                         ptr += off;
2401
2402                         r = copy_to_user(buf, ptr, cur_size);
2403                         kunmap(adev->gart.pages[p]);
2404                 } else
2405                         r = clear_user(buf, cur_size);
2406
2407                 if (r)
2408                         return -EFAULT;
2409
2410                 result += cur_size;
2411                 buf += cur_size;
2412                 *pos += cur_size;
2413                 size -= cur_size;
2414         }
2415
2416         return result;
2417 }
2418
2419 static const struct file_operations amdgpu_ttm_gtt_fops = {
2420         .owner = THIS_MODULE,
2421         .read = amdgpu_ttm_gtt_read,
2422         .llseek = default_llseek
2423 };
2424
2425 #endif
2426
2427 /**
2428  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2429  *
2430  * This function is used to read memory that has been mapped to the
2431  * GPU and the known addresses are not physical addresses but instead
2432  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2433  */
2434 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2435                                  size_t size, loff_t *pos)
2436 {
2437         struct amdgpu_device *adev = file_inode(f)->i_private;
2438         struct iommu_domain *dom;
2439         ssize_t result = 0;
2440         int r;
2441
2442         /* retrieve the IOMMU domain if any for this device */
2443         dom = iommu_get_domain_for_dev(adev->dev);
2444
2445         while (size) {
2446                 phys_addr_t addr = *pos & PAGE_MASK;
2447                 loff_t off = *pos & ~PAGE_MASK;
2448                 size_t bytes = PAGE_SIZE - off;
2449                 unsigned long pfn;
2450                 struct page *p;
2451                 void *ptr;
2452
2453                 bytes = bytes < size ? bytes : size;
2454
2455                 /* Translate the bus address to a physical address.  If
2456                  * the domain is NULL it means there is no IOMMU active
2457                  * and the address translation is the identity
2458                  */
2459                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2460
2461                 pfn = addr >> PAGE_SHIFT;
2462                 if (!pfn_valid(pfn))
2463                         return -EPERM;
2464
2465                 p = pfn_to_page(pfn);
2466                 if (p->mapping != adev->mman.bdev.dev_mapping)
2467                         return -EPERM;
2468
2469                 ptr = kmap(p);
2470                 r = copy_to_user(buf, ptr + off, bytes);
2471                 kunmap(p);
2472                 if (r)
2473                         return -EFAULT;
2474
2475                 size -= bytes;
2476                 *pos += bytes;
2477                 result += bytes;
2478         }
2479
2480         return result;
2481 }
2482
2483 /**
2484  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2485  *
2486  * This function is used to write memory that has been mapped to the
2487  * GPU and the known addresses are not physical addresses but instead
2488  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2489  */
2490 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2491                                  size_t size, loff_t *pos)
2492 {
2493         struct amdgpu_device *adev = file_inode(f)->i_private;
2494         struct iommu_domain *dom;
2495         ssize_t result = 0;
2496         int r;
2497
2498         dom = iommu_get_domain_for_dev(adev->dev);
2499
2500         while (size) {
2501                 phys_addr_t addr = *pos & PAGE_MASK;
2502                 loff_t off = *pos & ~PAGE_MASK;
2503                 size_t bytes = PAGE_SIZE - off;
2504                 unsigned long pfn;
2505                 struct page *p;
2506                 void *ptr;
2507
2508                 bytes = bytes < size ? bytes : size;
2509
2510                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2511
2512                 pfn = addr >> PAGE_SHIFT;
2513                 if (!pfn_valid(pfn))
2514                         return -EPERM;
2515
2516                 p = pfn_to_page(pfn);
2517                 if (p->mapping != adev->mman.bdev.dev_mapping)
2518                         return -EPERM;
2519
2520                 ptr = kmap(p);
2521                 r = copy_from_user(ptr + off, buf, bytes);
2522                 kunmap(p);
2523                 if (r)
2524                         return -EFAULT;
2525
2526                 size -= bytes;
2527                 *pos += bytes;
2528                 result += bytes;
2529         }
2530
2531         return result;
2532 }
2533
2534 static const struct file_operations amdgpu_ttm_iomem_fops = {
2535         .owner = THIS_MODULE,
2536         .read = amdgpu_iomem_read,
2537         .write = amdgpu_iomem_write,
2538         .llseek = default_llseek
2539 };
2540
2541 static const struct {
2542         char *name;
2543         const struct file_operations *fops;
2544         int domain;
2545 } ttm_debugfs_entries[] = {
2546         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2547 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2548         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2549 #endif
2550         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2551 };
2552
2553 #endif
2554
2555 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2556 {
2557 #if defined(CONFIG_DEBUG_FS)
2558         unsigned count;
2559
2560         struct drm_minor *minor = adev_to_drm(adev)->primary;
2561         struct dentry *ent, *root = minor->debugfs_root;
2562
2563         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2564                 ent = debugfs_create_file(
2565                                 ttm_debugfs_entries[count].name,
2566                                 S_IFREG | S_IRUGO, root,
2567                                 adev,
2568                                 ttm_debugfs_entries[count].fops);
2569                 if (IS_ERR(ent))
2570                         return PTR_ERR(ent);
2571                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2572                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2573                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2574                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2575                 adev->mman.debugfs_entries[count] = ent;
2576         }
2577
2578         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2579
2580 #ifdef CONFIG_SWIOTLB
2581         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2582                 --count;
2583 #endif
2584
2585         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2586 #else
2587         return 0;
2588 #endif
2589 }