drm/amdgpu: Move EEPROM I2C adapter to amdgpu_device
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ras_eeprom.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29
30 #define EEPROM_I2C_TARGET_ADDR_VEGA20           0xA0
31 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS         0xA8
32 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342    0xA0
33
34 /*
35  * The 2 macros bellow represent the actual size in bytes that
36  * those entities occupy in the EEPROM memory.
37  * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
38  * uses uint64 to store 6b fields such as retired_page.
39  */
40 #define EEPROM_TABLE_HEADER_SIZE 20
41 #define EEPROM_TABLE_RECORD_SIZE 24
42
43 #define EEPROM_ADDRESS_SIZE 0x2
44
45 /* Table hdr is 'AMDR' */
46 #define EEPROM_TABLE_HDR_VAL 0x414d4452
47 #define EEPROM_TABLE_VER 0x00010000
48
49 /* Assume 2 Mbit size */
50 #define EEPROM_SIZE_BYTES 256000
51 #define EEPROM_PAGE__SIZE_BYTES 256
52 #define EEPROM_HDR_START 0
53 #define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE)
54 #define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE)
55 #define EEPROM_ADDR_MSB_MASK GENMASK(17, 8)
56
57 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
58
59 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
60                                        uint16_t *i2c_addr)
61 {
62         struct atom_context *atom_ctx = adev->mode_info.atom_context;
63
64         if (!i2c_addr || !atom_ctx)
65                 return false;
66
67         if (strnstr(atom_ctx->vbios_version,
68                     "D342",
69                     sizeof(atom_ctx->vbios_version)))
70                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342;
71         else
72                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS;
73
74         return true;
75 }
76
77 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
78                                   uint16_t *i2c_addr)
79 {
80         if (!i2c_addr)
81                 return false;
82
83         switch (adev->asic_type) {
84         case CHIP_VEGA20:
85                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_VEGA20;
86                 break;
87
88         case CHIP_ARCTURUS:
89                 return __get_eeprom_i2c_addr_arct(adev, i2c_addr);
90
91         default:
92                 return false;
93         }
94
95         return true;
96 }
97
98 static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
99                                           unsigned char *buff)
100 {
101         uint32_t *pp = (uint32_t *) buff;
102
103         pp[0] = cpu_to_le32(hdr->header);
104         pp[1] = cpu_to_le32(hdr->version);
105         pp[2] = cpu_to_le32(hdr->first_rec_offset);
106         pp[3] = cpu_to_le32(hdr->tbl_size);
107         pp[4] = cpu_to_le32(hdr->checksum);
108 }
109
110 static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
111                                           unsigned char *buff)
112 {
113         uint32_t *pp = (uint32_t *)buff;
114
115         hdr->header           = le32_to_cpu(pp[0]);
116         hdr->version          = le32_to_cpu(pp[1]);
117         hdr->first_rec_offset = le32_to_cpu(pp[2]);
118         hdr->tbl_size         = le32_to_cpu(pp[3]);
119         hdr->checksum         = le32_to_cpu(pp[4]);
120 }
121
122 static int __update_table_header(struct amdgpu_ras_eeprom_control *control,
123                                  unsigned char *buff)
124 {
125         int ret = 0;
126         struct amdgpu_device *adev = to_amdgpu_device(control);
127         struct i2c_msg msg = {
128                         .addr   = 0,
129                         .flags  = 0,
130                         .len    = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
131                         .buf    = buff,
132         };
133
134
135         *(uint16_t *)buff = EEPROM_HDR_START;
136         __encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE);
137
138         msg.addr = control->i2c_address;
139
140         ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
141         if (ret < 1)
142                 DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);
143
144         return ret;
145 }
146
147 static uint32_t  __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control)
148 {
149         int i;
150         uint32_t tbl_sum = 0;
151
152         /* Header checksum, skip checksum field in the calculation */
153         for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++)
154                 tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i);
155
156         return tbl_sum;
157 }
158
159 static uint32_t  __calc_recs_byte_sum(struct eeprom_table_record *records,
160                                       int num)
161 {
162         int i, j;
163         uint32_t tbl_sum = 0;
164
165         /* Records checksum */
166         for (i = 0; i < num; i++) {
167                 struct eeprom_table_record *record = &records[i];
168
169                 for (j = 0; j < sizeof(*record); j++) {
170                         tbl_sum += *(((unsigned char *)record) + j);
171                 }
172         }
173
174         return tbl_sum;
175 }
176
177 static inline uint32_t  __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
178                                   struct eeprom_table_record *records, int num)
179 {
180         return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num);
181 }
182
183 /* Checksum = 256 -((sum of all table entries) mod 256) */
184 static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
185                                   struct eeprom_table_record *records, int num,
186                                   uint32_t old_hdr_byte_sum)
187 {
188         /*
189          * This will update the table sum with new records.
190          *
191          * TODO: What happens when the EEPROM table is to be wrapped around
192          * and old records from start will get overridden.
193          */
194
195         /* need to recalculate updated header byte sum */
196         control->tbl_byte_sum -= old_hdr_byte_sum;
197         control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num);
198
199         control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256);
200 }
201
202 /* table sum mod 256 + checksum must equals 256 */
203 static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
204                             struct eeprom_table_record *records, int num)
205 {
206         control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
207
208         if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) {
209                 DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum);
210                 return false;
211         }
212
213         return true;
214 }
215
216 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
217 {
218         unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
219         struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
220         int ret = 0;
221
222         mutex_lock(&control->tbl_mutex);
223
224         hdr->header = EEPROM_TABLE_HDR_VAL;
225         hdr->version = EEPROM_TABLE_VER;
226         hdr->first_rec_offset = EEPROM_RECORD_START;
227         hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE;
228
229         control->tbl_byte_sum = 0;
230         __update_tbl_checksum(control, NULL, 0, 0);
231         control->next_addr = EEPROM_RECORD_START;
232
233         ret = __update_table_header(control, buff);
234
235         mutex_unlock(&control->tbl_mutex);
236
237         return ret;
238
239 }
240
241 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
242 {
243         int ret = 0;
244         struct amdgpu_device *adev = to_amdgpu_device(control);
245         unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
246         struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
247         struct i2c_msg msg = {
248                         .addr   = 0,
249                         .flags  = I2C_M_RD,
250                         .len    = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
251                         .buf    = buff,
252         };
253
254         /* Verify i2c adapter is initialized */
255         if (!adev->pm.smu_i2c.algo)
256                 return -ENOENT;
257
258         if (!__get_eeprom_i2c_addr(adev, &control->i2c_address))
259                 return -EINVAL;
260
261         mutex_init(&control->tbl_mutex);
262
263         msg.addr = control->i2c_address;
264         /* Read/Create table header from EEPROM address 0 */
265         ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
266         if (ret < 1) {
267                 DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
268                 return ret;
269         }
270
271         __decode_table_header_from_buff(hdr, &buff[2]);
272
273         if (hdr->header == EEPROM_TABLE_HDR_VAL) {
274                 control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) /
275                                     EEPROM_TABLE_RECORD_SIZE;
276                 control->tbl_byte_sum = __calc_hdr_byte_sum(control);
277                 control->next_addr = EEPROM_RECORD_START;
278
279                 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
280                                  control->num_recs);
281
282         } else {
283                 DRM_INFO("Creating new EEPROM table");
284
285                 ret = amdgpu_ras_eeprom_reset_table(control);
286         }
287
288         return ret == 1 ? 0 : -EIO;
289 }
290
291 static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
292                                           struct eeprom_table_record *record,
293                                           unsigned char *buff)
294 {
295         __le64 tmp = 0;
296         int i = 0;
297
298         /* Next are all record fields according to EEPROM page spec in LE foramt */
299         buff[i++] = record->err_type;
300
301         buff[i++] = record->bank;
302
303         tmp = cpu_to_le64(record->ts);
304         memcpy(buff + i, &tmp, 8);
305         i += 8;
306
307         tmp = cpu_to_le64((record->offset & 0xffffffffffff));
308         memcpy(buff + i, &tmp, 6);
309         i += 6;
310
311         buff[i++] = record->mem_channel;
312         buff[i++] = record->mcumc_id;
313
314         tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
315         memcpy(buff + i, &tmp, 6);
316 }
317
318 static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
319                                             struct eeprom_table_record *record,
320                                             unsigned char *buff)
321 {
322         __le64 tmp = 0;
323         int i =  0;
324
325         /* Next are all record fields according to EEPROM page spec in LE foramt */
326         record->err_type = buff[i++];
327
328         record->bank = buff[i++];
329
330         memcpy(&tmp, buff + i, 8);
331         record->ts = le64_to_cpu(tmp);
332         i += 8;
333
334         memcpy(&tmp, buff + i, 6);
335         record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
336         i += 6;
337
338         record->mem_channel = buff[i++];
339         record->mcumc_id = buff[i++];
340
341         memcpy(&tmp, buff + i,  6);
342         record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
343 }
344
345 /*
346  * When reaching end of EEPROM memory jump back to 0 record address
347  * When next record access will go beyond EEPROM page boundary modify bits A17/A8
348  * in I2C selector to go to next page
349  */
350 static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
351 {
352         uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE;
353
354         /* When all EEPROM memory used jump back to 0 address */
355         if (next_address > EEPROM_SIZE_BYTES) {
356                 DRM_INFO("Reached end of EEPROM memory, jumping to 0 "
357                          "and overriding old record");
358                 return EEPROM_RECORD_START;
359         }
360
361         /*
362          * To check if we overflow page boundary  compare next address with
363          * current and see if bits 17/8 of the EEPROM address will change
364          * If they do start from the next 256b page
365          *
366          * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2
367          */
368         if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) {
369                 DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx",
370                                 (next_address & EEPROM_ADDR_MSB_MASK));
371
372                 return  (next_address & EEPROM_ADDR_MSB_MASK);
373         }
374
375         return curr_address;
376 }
377
378 int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control,
379                                             struct eeprom_table_record *records,
380                                             bool write,
381                                             int num)
382 {
383         int i, ret = 0;
384         struct i2c_msg *msgs, *msg;
385         unsigned char *buffs, *buff;
386         struct eeprom_table_record *record;
387         struct amdgpu_device *adev = to_amdgpu_device(control);
388
389         if (adev->asic_type != CHIP_VEGA20 && adev->asic_type != CHIP_ARCTURUS)
390                 return 0;
391
392         buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE,
393                          GFP_KERNEL);
394         if (!buffs)
395                 return -ENOMEM;
396
397         mutex_lock(&control->tbl_mutex);
398
399         msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL);
400         if (!msgs) {
401                 ret = -ENOMEM;
402                 goto free_buff;
403         }
404
405         /* In case of overflow just start from beginning to not lose newest records */
406         if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES))
407                 control->next_addr = EEPROM_RECORD_START;
408
409
410         /*
411          * TODO Currently makes EEPROM writes for each record, this creates
412          * internal fragmentation. Optimized the code to do full page write of
413          * 256b
414          */
415         for (i = 0; i < num; i++) {
416                 buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
417                 record = &records[i];
418                 msg = &msgs[i];
419
420                 control->next_addr = __correct_eeprom_dest_address(control->next_addr);
421
422                 /*
423                  * Update bits 16,17 of EEPROM address in I2C address by setting them
424                  * to bits 1,2 of Device address byte
425                  */
426                 msg->addr = control->i2c_address |
427                                 ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15);
428                 msg->flags      = write ? 0 : I2C_M_RD;
429                 msg->len        = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE;
430                 msg->buf        = buff;
431
432                 /* Insert the EEPROM dest addess, bits 0-15 */
433                 buff[0] = ((control->next_addr >> 8) & 0xff);
434                 buff[1] = (control->next_addr & 0xff);
435
436                 /* EEPROM table content is stored in LE format */
437                 if (write)
438                         __encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
439
440                 /*
441                  * The destination EEPROM address might need to be corrected to account
442                  * for page or entire memory wrapping
443                  */
444                 control->next_addr += EEPROM_TABLE_RECORD_SIZE;
445         }
446
447         ret = i2c_transfer(&adev->pm.smu_i2c, msgs, num);
448         if (ret < 1) {
449                 DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);
450
451                 /* TODO Restore prev next EEPROM address ? */
452                 goto free_msgs;
453         }
454
455
456         if (!write) {
457                 for (i = 0; i < num; i++) {
458                         buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
459                         record = &records[i];
460
461                         __decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
462                 }
463         }
464
465         if (write) {
466                 uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control);
467
468                 /*
469                  * Update table header with size and CRC and account for table
470                  * wrap around where the assumption is that we treat it as empty
471                  * table
472                  *
473                  * TODO - Check the assumption is correct
474                  */
475                 control->num_recs += num;
476                 control->num_recs %= EEPROM_MAX_RECORD_NUM;
477                 control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num;
478                 if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES)
479                         control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE +
480                         control->num_recs * EEPROM_TABLE_RECORD_SIZE;
481
482                 __update_tbl_checksum(control, records, num, old_hdr_byte_sum);
483
484                 __update_table_header(control, buffs);
485         } else if (!__validate_tbl_checksum(control, records, num)) {
486                 DRM_WARN("EEPROM Table checksum mismatch!");
487                 /* TODO Uncomment when EEPROM read/write is relliable */
488                 /* ret = -EIO; */
489         }
490
491 free_msgs:
492         kfree(msgs);
493
494 free_buff:
495         kfree(buffs);
496
497         mutex_unlock(&control->tbl_mutex);
498
499         return ret == num ? 0 : -EIO;
500 }
501
502 /* Used for testing if bugs encountered */
503 #if 0
504 void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
505 {
506         int i;
507         struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);
508
509         if (!recs)
510                 return;
511
512         for (i = 0; i < 1 ; i++) {
513                 recs[i].address = 0xdeadbeef;
514                 recs[i].retired_page = i;
515         }
516
517         if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) {
518
519                 memset(recs, 0, sizeof(*recs) * 1);
520
521                 control->next_addr = EEPROM_RECORD_START;
522
523                 if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) {
524                         for (i = 0; i < 1; i++)
525                                 DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
526                                          recs[i].address, recs[i].retired_page);
527                 } else
528                         DRM_ERROR("Failed in reading from table");
529
530         } else
531                 DRM_ERROR("Failed in writing to table");
532 }
533 #endif