drm/amdgpu: expand sdma copy_buffer interface with tmz parameter
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v8.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/mmu_context.h>
24
25 #include "amdgpu.h"
26 #include "amdgpu_amdkfd.h"
27 #include "gfx_v8_0.h"
28 #include "gca/gfx_8_0_sh_mask.h"
29 #include "gca/gfx_8_0_d.h"
30 #include "gca/gfx_8_0_enum.h"
31 #include "oss/oss_3_0_sh_mask.h"
32 #include "oss/oss_3_0_d.h"
33 #include "gmc/gmc_8_1_sh_mask.h"
34 #include "gmc/gmc_8_1_d.h"
35 #include "vi_structs.h"
36 #include "vid.h"
37
38 enum hqd_dequeue_request_type {
39         NO_ACTION = 0,
40         DRAIN_PIPE,
41         RESET_WAVES
42 };
43
44 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
45 {
46         return (struct amdgpu_device *)kgd;
47 }
48
49 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
50                         uint32_t queue, uint32_t vmid)
51 {
52         struct amdgpu_device *adev = get_amdgpu_device(kgd);
53         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
54
55         mutex_lock(&adev->srbm_mutex);
56         WREG32(mmSRBM_GFX_CNTL, value);
57 }
58
59 static void unlock_srbm(struct kgd_dev *kgd)
60 {
61         struct amdgpu_device *adev = get_amdgpu_device(kgd);
62
63         WREG32(mmSRBM_GFX_CNTL, 0);
64         mutex_unlock(&adev->srbm_mutex);
65 }
66
67 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
68                                 uint32_t queue_id)
69 {
70         struct amdgpu_device *adev = get_amdgpu_device(kgd);
71
72         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
73         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
74
75         lock_srbm(kgd, mec, pipe, queue_id, 0);
76 }
77
78 static void release_queue(struct kgd_dev *kgd)
79 {
80         unlock_srbm(kgd);
81 }
82
83 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
84                                         uint32_t sh_mem_config,
85                                         uint32_t sh_mem_ape1_base,
86                                         uint32_t sh_mem_ape1_limit,
87                                         uint32_t sh_mem_bases)
88 {
89         struct amdgpu_device *adev = get_amdgpu_device(kgd);
90
91         lock_srbm(kgd, 0, 0, 0, vmid);
92
93         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
94         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
95         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
96         WREG32(mmSH_MEM_BASES, sh_mem_bases);
97
98         unlock_srbm(kgd);
99 }
100
101 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
102                                         unsigned int vmid)
103 {
104         struct amdgpu_device *adev = get_amdgpu_device(kgd);
105
106         /*
107          * We have to assume that there is no outstanding mapping.
108          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
109          * a mapping is in progress or because a mapping finished
110          * and the SW cleared it.
111          * So the protocol is to always wait & clear.
112          */
113         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
114                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
115
116         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
117
118         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
119                 cpu_relax();
120         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
121
122         /* Mapping vmid to pasid also for IH block */
123         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
124
125         return 0;
126 }
127
128 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
129 {
130         struct amdgpu_device *adev = get_amdgpu_device(kgd);
131         uint32_t mec;
132         uint32_t pipe;
133
134         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
135         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
136
137         lock_srbm(kgd, mec, pipe, 0, 0);
138
139         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
140                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
141
142         unlock_srbm(kgd);
143
144         return 0;
145 }
146
147 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
148 {
149         uint32_t retval;
150
151         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
152                 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
153
154         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
155                         m->sdma_engine_id, m->sdma_queue_id, retval);
156
157         return retval;
158 }
159
160 static inline struct vi_mqd *get_mqd(void *mqd)
161 {
162         return (struct vi_mqd *)mqd;
163 }
164
165 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
166 {
167         return (struct vi_sdma_mqd *)mqd;
168 }
169
170 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
171                         uint32_t queue_id, uint32_t __user *wptr,
172                         uint32_t wptr_shift, uint32_t wptr_mask,
173                         struct mm_struct *mm)
174 {
175         struct amdgpu_device *adev = get_amdgpu_device(kgd);
176         struct vi_mqd *m;
177         uint32_t *mqd_hqd;
178         uint32_t reg, wptr_val, data;
179         bool valid_wptr = false;
180
181         m = get_mqd(mqd);
182
183         acquire_queue(kgd, pipe_id, queue_id);
184
185         /* HIQ is set during driver init period with vmid set to 0*/
186         if (m->cp_hqd_vmid == 0) {
187                 uint32_t value, mec, pipe;
188
189                 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
190                 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
191
192                 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
193                         mec, pipe, queue_id);
194                 value = RREG32(mmRLC_CP_SCHEDULERS);
195                 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
196                         ((mec << 5) | (pipe << 3) | queue_id | 0x80));
197                 WREG32(mmRLC_CP_SCHEDULERS, value);
198         }
199
200         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
201         mqd_hqd = &m->cp_mqd_base_addr_lo;
202
203         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
204                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
205
206         /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
207          * This is safe since EOP RPTR==WPTR for any inactive HQD
208          * on ASICs that do not support context-save.
209          * EOP writes/reads can start anywhere in the ring.
210          */
211         if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
212                 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
213                 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
214                 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
215         }
216
217         for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
218                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
219
220         /* Copy userspace write pointer value to register.
221          * Activate doorbell logic to monitor subsequent changes.
222          */
223         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
224                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
225         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
226
227         /* read_user_ptr may take the mm->mmap_sem.
228          * release srbm_mutex to avoid circular dependency between
229          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
230          */
231         release_queue(kgd);
232         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
233         acquire_queue(kgd, pipe_id, queue_id);
234         if (valid_wptr)
235                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
236
237         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
238         WREG32(mmCP_HQD_ACTIVE, data);
239
240         release_queue(kgd);
241
242         return 0;
243 }
244
245 static int kgd_hqd_dump(struct kgd_dev *kgd,
246                         uint32_t pipe_id, uint32_t queue_id,
247                         uint32_t (**dump)[2], uint32_t *n_regs)
248 {
249         struct amdgpu_device *adev = get_amdgpu_device(kgd);
250         uint32_t i = 0, reg;
251 #define HQD_N_REGS (54+4)
252 #define DUMP_REG(addr) do {                             \
253                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
254                         break;                          \
255                 (*dump)[i][0] = (addr) << 2;            \
256                 (*dump)[i++][1] = RREG32(addr);         \
257         } while (0)
258
259         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
260         if (*dump == NULL)
261                 return -ENOMEM;
262
263         acquire_queue(kgd, pipe_id, queue_id);
264
265         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
266         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
267         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
268         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
269
270         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
271                 DUMP_REG(reg);
272
273         release_queue(kgd);
274
275         WARN_ON_ONCE(i != HQD_N_REGS);
276         *n_regs = i;
277
278         return 0;
279 }
280
281 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
282                              uint32_t __user *wptr, struct mm_struct *mm)
283 {
284         struct amdgpu_device *adev = get_amdgpu_device(kgd);
285         struct vi_sdma_mqd *m;
286         unsigned long end_jiffies;
287         uint32_t sdma_rlc_reg_offset;
288         uint32_t data;
289
290         m = get_sdma_mqd(mqd);
291         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
292         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
293                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
294
295         end_jiffies = msecs_to_jiffies(2000) + jiffies;
296         while (true) {
297                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
298                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
299                         break;
300                 if (time_after(jiffies, end_jiffies)) {
301                         pr_err("SDMA RLC not idle in %s\n", __func__);
302                         return -ETIME;
303                 }
304                 usleep_range(500, 1000);
305         }
306
307         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
308                              ENABLE, 1);
309         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
310         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
311                                 m->sdmax_rlcx_rb_rptr);
312
313         if (read_user_wptr(mm, wptr, data))
314                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
315         else
316                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
317                        m->sdmax_rlcx_rb_rptr);
318
319         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
320                                 m->sdmax_rlcx_virtual_addr);
321         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
322         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
323                         m->sdmax_rlcx_rb_base_hi);
324         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
325                         m->sdmax_rlcx_rb_rptr_addr_lo);
326         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
327                         m->sdmax_rlcx_rb_rptr_addr_hi);
328
329         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
330                              RB_ENABLE, 1);
331         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
332
333         return 0;
334 }
335
336 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
337                              uint32_t engine_id, uint32_t queue_id,
338                              uint32_t (**dump)[2], uint32_t *n_regs)
339 {
340         struct amdgpu_device *adev = get_amdgpu_device(kgd);
341         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
342                 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
343         uint32_t i = 0, reg;
344 #undef HQD_N_REGS
345 #define HQD_N_REGS (19+4+2+3+7)
346
347         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
348         if (*dump == NULL)
349                 return -ENOMEM;
350
351         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
352                 DUMP_REG(sdma_offset + reg);
353         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
354              reg++)
355                 DUMP_REG(sdma_offset + reg);
356         for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
357              reg++)
358                 DUMP_REG(sdma_offset + reg);
359         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
360              reg++)
361                 DUMP_REG(sdma_offset + reg);
362         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
363              reg++)
364                 DUMP_REG(sdma_offset + reg);
365
366         WARN_ON_ONCE(i != HQD_N_REGS);
367         *n_regs = i;
368
369         return 0;
370 }
371
372 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
373                                 uint32_t pipe_id, uint32_t queue_id)
374 {
375         struct amdgpu_device *adev = get_amdgpu_device(kgd);
376         uint32_t act;
377         bool retval = false;
378         uint32_t low, high;
379
380         acquire_queue(kgd, pipe_id, queue_id);
381         act = RREG32(mmCP_HQD_ACTIVE);
382         if (act) {
383                 low = lower_32_bits(queue_address >> 8);
384                 high = upper_32_bits(queue_address >> 8);
385
386                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
387                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
388                         retval = true;
389         }
390         release_queue(kgd);
391         return retval;
392 }
393
394 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
395 {
396         struct amdgpu_device *adev = get_amdgpu_device(kgd);
397         struct vi_sdma_mqd *m;
398         uint32_t sdma_rlc_reg_offset;
399         uint32_t sdma_rlc_rb_cntl;
400
401         m = get_sdma_mqd(mqd);
402         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
403
404         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
405
406         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
407                 return true;
408
409         return false;
410 }
411
412 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
413                                 enum kfd_preempt_type reset_type,
414                                 unsigned int utimeout, uint32_t pipe_id,
415                                 uint32_t queue_id)
416 {
417         struct amdgpu_device *adev = get_amdgpu_device(kgd);
418         uint32_t temp;
419         enum hqd_dequeue_request_type type;
420         unsigned long flags, end_jiffies;
421         int retry;
422         struct vi_mqd *m = get_mqd(mqd);
423
424         if (adev->in_gpu_reset)
425                 return -EIO;
426
427         acquire_queue(kgd, pipe_id, queue_id);
428
429         if (m->cp_hqd_vmid == 0)
430                 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
431
432         switch (reset_type) {
433         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434                 type = DRAIN_PIPE;
435                 break;
436         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437                 type = RESET_WAVES;
438                 break;
439         default:
440                 type = DRAIN_PIPE;
441                 break;
442         }
443
444         /* Workaround: If IQ timer is active and the wait time is close to or
445          * equal to 0, dequeueing is not safe. Wait until either the wait time
446          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447          * cleared before continuing. Also, ensure wait times are set to at
448          * least 0x3.
449          */
450         local_irq_save(flags);
451         preempt_disable();
452         retry = 5000; /* wait for 500 usecs at maximum */
453         while (true) {
454                 temp = RREG32(mmCP_HQD_IQ_TIMER);
455                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456                         pr_debug("HW is processing IQ\n");
457                         goto loop;
458                 }
459                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461                                         == 3) /* SEM-rearm is safe */
462                                 break;
463                         /* Wait time 3 is safe for CP, but our MMIO read/write
464                          * time is close to 1 microsecond, so check for 10 to
465                          * leave more buffer room
466                          */
467                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468                                         >= 10)
469                                 break;
470                         pr_debug("IQ timer is active\n");
471                 } else
472                         break;
473 loop:
474                 if (!retry) {
475                         pr_err("CP HQD IQ timer status time out\n");
476                         break;
477                 }
478                 ndelay(100);
479                 --retry;
480         }
481         retry = 1000;
482         while (true) {
483                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485                         break;
486                 pr_debug("Dequeue request is pending\n");
487
488                 if (!retry) {
489                         pr_err("CP HQD dequeue request time out\n");
490                         break;
491                 }
492                 ndelay(100);
493                 --retry;
494         }
495         local_irq_restore(flags);
496         preempt_enable();
497
498         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499
500         end_jiffies = (utimeout * HZ / 1000) + jiffies;
501         while (true) {
502                 temp = RREG32(mmCP_HQD_ACTIVE);
503                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504                         break;
505                 if (time_after(jiffies, end_jiffies)) {
506                         pr_err("cp queue preemption time out.\n");
507                         release_queue(kgd);
508                         return -ETIME;
509                 }
510                 usleep_range(500, 1000);
511         }
512
513         release_queue(kgd);
514         return 0;
515 }
516
517 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518                                 unsigned int utimeout)
519 {
520         struct amdgpu_device *adev = get_amdgpu_device(kgd);
521         struct vi_sdma_mqd *m;
522         uint32_t sdma_rlc_reg_offset;
523         uint32_t temp;
524         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525
526         m = get_sdma_mqd(mqd);
527         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528
529         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532
533         while (true) {
534                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536                         break;
537                 if (time_after(jiffies, end_jiffies)) {
538                         pr_err("SDMA RLC not idle in %s\n", __func__);
539                         return -ETIME;
540                 }
541                 usleep_range(500, 1000);
542         }
543
544         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548
549         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550
551         return 0;
552 }
553
554 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
555                                         uint8_t vmid, uint16_t *p_pasid)
556 {
557         uint32_t value;
558         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
559
560         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
561         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
562
563         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
564 }
565
566 static int kgd_address_watch_disable(struct kgd_dev *kgd)
567 {
568         return 0;
569 }
570
571 static int kgd_address_watch_execute(struct kgd_dev *kgd,
572                                         unsigned int watch_point_id,
573                                         uint32_t cntl_val,
574                                         uint32_t addr_hi,
575                                         uint32_t addr_lo)
576 {
577         return 0;
578 }
579
580 static int kgd_wave_control_execute(struct kgd_dev *kgd,
581                                         uint32_t gfx_index_val,
582                                         uint32_t sq_cmd)
583 {
584         struct amdgpu_device *adev = get_amdgpu_device(kgd);
585         uint32_t data = 0;
586
587         mutex_lock(&adev->grbm_idx_mutex);
588
589         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
590         WREG32(mmSQ_CMD, sq_cmd);
591
592         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
593                 INSTANCE_BROADCAST_WRITES, 1);
594         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
595                 SH_BROADCAST_WRITES, 1);
596         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
597                 SE_BROADCAST_WRITES, 1);
598
599         WREG32(mmGRBM_GFX_INDEX, data);
600         mutex_unlock(&adev->grbm_idx_mutex);
601
602         return 0;
603 }
604
605 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
606                                         unsigned int watch_point_id,
607                                         unsigned int reg_offset)
608 {
609         return 0;
610 }
611
612 static void set_scratch_backing_va(struct kgd_dev *kgd,
613                                         uint64_t va, uint32_t vmid)
614 {
615         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
616
617         lock_srbm(kgd, 0, 0, 0, vmid);
618         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
619         unlock_srbm(kgd);
620 }
621
622 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
623                 uint64_t page_table_base)
624 {
625         struct amdgpu_device *adev = get_amdgpu_device(kgd);
626
627         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
628                 pr_err("trying to set page table base for wrong VMID\n");
629                 return;
630         }
631         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
632                         lower_32_bits(page_table_base));
633 }
634
635 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
636         .program_sh_mem_settings = kgd_program_sh_mem_settings,
637         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
638         .init_interrupts = kgd_init_interrupts,
639         .hqd_load = kgd_hqd_load,
640         .hqd_sdma_load = kgd_hqd_sdma_load,
641         .hqd_dump = kgd_hqd_dump,
642         .hqd_sdma_dump = kgd_hqd_sdma_dump,
643         .hqd_is_occupied = kgd_hqd_is_occupied,
644         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
645         .hqd_destroy = kgd_hqd_destroy,
646         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
647         .address_watch_disable = kgd_address_watch_disable,
648         .address_watch_execute = kgd_address_watch_execute,
649         .wave_control_execute = kgd_wave_control_execute,
650         .address_watch_get_offset = kgd_address_watch_get_offset,
651         .get_atc_vmid_pasid_mapping_info =
652                         get_atc_vmid_pasid_mapping_info,
653         .set_scratch_backing_va = set_scratch_backing_va,
654         .set_vm_context_page_table_base = set_vm_context_page_table_base,
655 };