Merge tag 'for-linus-5.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v8.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gfx_v8_0.h"
26 #include "gca/gfx_8_0_sh_mask.h"
27 #include "gca/gfx_8_0_d.h"
28 #include "gca/gfx_8_0_enum.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 #include "oss/oss_3_0_d.h"
31 #include "gmc/gmc_8_1_sh_mask.h"
32 #include "gmc/gmc_8_1_d.h"
33 #include "vi_structs.h"
34 #include "vid.h"
35
36 enum hqd_dequeue_request_type {
37         NO_ACTION = 0,
38         DRAIN_PIPE,
39         RESET_WAVES
40 };
41
42 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
43 {
44         return (struct amdgpu_device *)kgd;
45 }
46
47 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
48                         uint32_t queue, uint32_t vmid)
49 {
50         struct amdgpu_device *adev = get_amdgpu_device(kgd);
51         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
52
53         mutex_lock(&adev->srbm_mutex);
54         WREG32(mmSRBM_GFX_CNTL, value);
55 }
56
57 static void unlock_srbm(struct kgd_dev *kgd)
58 {
59         struct amdgpu_device *adev = get_amdgpu_device(kgd);
60
61         WREG32(mmSRBM_GFX_CNTL, 0);
62         mutex_unlock(&adev->srbm_mutex);
63 }
64
65 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
66                                 uint32_t queue_id)
67 {
68         struct amdgpu_device *adev = get_amdgpu_device(kgd);
69
70         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
71         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
72
73         lock_srbm(kgd, mec, pipe, queue_id, 0);
74 }
75
76 static void release_queue(struct kgd_dev *kgd)
77 {
78         unlock_srbm(kgd);
79 }
80
81 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
82                                         uint32_t sh_mem_config,
83                                         uint32_t sh_mem_ape1_base,
84                                         uint32_t sh_mem_ape1_limit,
85                                         uint32_t sh_mem_bases)
86 {
87         struct amdgpu_device *adev = get_amdgpu_device(kgd);
88
89         lock_srbm(kgd, 0, 0, 0, vmid);
90
91         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
92         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
93         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
94         WREG32(mmSH_MEM_BASES, sh_mem_bases);
95
96         unlock_srbm(kgd);
97 }
98
99 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
100                                         unsigned int vmid)
101 {
102         struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104         /*
105          * We have to assume that there is no outstanding mapping.
106          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107          * a mapping is in progress or because a mapping finished
108          * and the SW cleared it.
109          * So the protocol is to always wait & clear.
110          */
111         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
113
114         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
115
116         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
117                 cpu_relax();
118         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
119
120         /* Mapping vmid to pasid also for IH block */
121         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
122
123         return 0;
124 }
125
126 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
127 {
128         struct amdgpu_device *adev = get_amdgpu_device(kgd);
129         uint32_t mec;
130         uint32_t pipe;
131
132         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
133         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
134
135         lock_srbm(kgd, mec, pipe, 0, 0);
136
137         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
138                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
139
140         unlock_srbm(kgd);
141
142         return 0;
143 }
144
145 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
146 {
147         uint32_t retval;
148
149         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
150                 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
151
152         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
153                         m->sdma_engine_id, m->sdma_queue_id, retval);
154
155         return retval;
156 }
157
158 static inline struct vi_mqd *get_mqd(void *mqd)
159 {
160         return (struct vi_mqd *)mqd;
161 }
162
163 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
164 {
165         return (struct vi_sdma_mqd *)mqd;
166 }
167
168 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
169                         uint32_t queue_id, uint32_t __user *wptr,
170                         uint32_t wptr_shift, uint32_t wptr_mask,
171                         struct mm_struct *mm)
172 {
173         struct amdgpu_device *adev = get_amdgpu_device(kgd);
174         struct vi_mqd *m;
175         uint32_t *mqd_hqd;
176         uint32_t reg, wptr_val, data;
177         bool valid_wptr = false;
178
179         m = get_mqd(mqd);
180
181         acquire_queue(kgd, pipe_id, queue_id);
182
183         /* HIQ is set during driver init period with vmid set to 0*/
184         if (m->cp_hqd_vmid == 0) {
185                 uint32_t value, mec, pipe;
186
187                 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
188                 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
189
190                 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
191                         mec, pipe, queue_id);
192                 value = RREG32(mmRLC_CP_SCHEDULERS);
193                 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
194                         ((mec << 5) | (pipe << 3) | queue_id | 0x80));
195                 WREG32(mmRLC_CP_SCHEDULERS, value);
196         }
197
198         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
199         mqd_hqd = &m->cp_mqd_base_addr_lo;
200
201         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
202                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
203
204         /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
205          * This is safe since EOP RPTR==WPTR for any inactive HQD
206          * on ASICs that do not support context-save.
207          * EOP writes/reads can start anywhere in the ring.
208          */
209         if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
210                 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
211                 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
212                 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
213         }
214
215         for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
216                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
217
218         /* Copy userspace write pointer value to register.
219          * Activate doorbell logic to monitor subsequent changes.
220          */
221         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
222                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
223         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
224
225         /* read_user_ptr may take the mm->mmap_lock.
226          * release srbm_mutex to avoid circular dependency between
227          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
228          */
229         release_queue(kgd);
230         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
231         acquire_queue(kgd, pipe_id, queue_id);
232         if (valid_wptr)
233                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
234
235         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
236         WREG32(mmCP_HQD_ACTIVE, data);
237
238         release_queue(kgd);
239
240         return 0;
241 }
242
243 static int kgd_hqd_dump(struct kgd_dev *kgd,
244                         uint32_t pipe_id, uint32_t queue_id,
245                         uint32_t (**dump)[2], uint32_t *n_regs)
246 {
247         struct amdgpu_device *adev = get_amdgpu_device(kgd);
248         uint32_t i = 0, reg;
249 #define HQD_N_REGS (54+4)
250 #define DUMP_REG(addr) do {                             \
251                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
252                         break;                          \
253                 (*dump)[i][0] = (addr) << 2;            \
254                 (*dump)[i++][1] = RREG32(addr);         \
255         } while (0)
256
257         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
258         if (*dump == NULL)
259                 return -ENOMEM;
260
261         acquire_queue(kgd, pipe_id, queue_id);
262
263         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
264         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
265         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
266         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
267
268         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
269                 DUMP_REG(reg);
270
271         release_queue(kgd);
272
273         WARN_ON_ONCE(i != HQD_N_REGS);
274         *n_regs = i;
275
276         return 0;
277 }
278
279 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
280                              uint32_t __user *wptr, struct mm_struct *mm)
281 {
282         struct amdgpu_device *adev = get_amdgpu_device(kgd);
283         struct vi_sdma_mqd *m;
284         unsigned long end_jiffies;
285         uint32_t sdma_rlc_reg_offset;
286         uint32_t data;
287
288         m = get_sdma_mqd(mqd);
289         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
290         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
291                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
292
293         end_jiffies = msecs_to_jiffies(2000) + jiffies;
294         while (true) {
295                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
296                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
297                         break;
298                 if (time_after(jiffies, end_jiffies)) {
299                         pr_err("SDMA RLC not idle in %s\n", __func__);
300                         return -ETIME;
301                 }
302                 usleep_range(500, 1000);
303         }
304
305         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
306                              ENABLE, 1);
307         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
308         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
309                                 m->sdmax_rlcx_rb_rptr);
310
311         if (read_user_wptr(mm, wptr, data))
312                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
313         else
314                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
315                        m->sdmax_rlcx_rb_rptr);
316
317         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
318                                 m->sdmax_rlcx_virtual_addr);
319         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
320         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
321                         m->sdmax_rlcx_rb_base_hi);
322         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
323                         m->sdmax_rlcx_rb_rptr_addr_lo);
324         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
325                         m->sdmax_rlcx_rb_rptr_addr_hi);
326
327         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
328                              RB_ENABLE, 1);
329         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
330
331         return 0;
332 }
333
334 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
335                              uint32_t engine_id, uint32_t queue_id,
336                              uint32_t (**dump)[2], uint32_t *n_regs)
337 {
338         struct amdgpu_device *adev = get_amdgpu_device(kgd);
339         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
340                 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
341         uint32_t i = 0, reg;
342 #undef HQD_N_REGS
343 #define HQD_N_REGS (19+4+2+3+7)
344
345         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
346         if (*dump == NULL)
347                 return -ENOMEM;
348
349         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
350                 DUMP_REG(sdma_offset + reg);
351         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
352              reg++)
353                 DUMP_REG(sdma_offset + reg);
354         for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
355              reg++)
356                 DUMP_REG(sdma_offset + reg);
357         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
358              reg++)
359                 DUMP_REG(sdma_offset + reg);
360         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
361              reg++)
362                 DUMP_REG(sdma_offset + reg);
363
364         WARN_ON_ONCE(i != HQD_N_REGS);
365         *n_regs = i;
366
367         return 0;
368 }
369
370 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
371                                 uint32_t pipe_id, uint32_t queue_id)
372 {
373         struct amdgpu_device *adev = get_amdgpu_device(kgd);
374         uint32_t act;
375         bool retval = false;
376         uint32_t low, high;
377
378         acquire_queue(kgd, pipe_id, queue_id);
379         act = RREG32(mmCP_HQD_ACTIVE);
380         if (act) {
381                 low = lower_32_bits(queue_address >> 8);
382                 high = upper_32_bits(queue_address >> 8);
383
384                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
385                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
386                         retval = true;
387         }
388         release_queue(kgd);
389         return retval;
390 }
391
392 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
393 {
394         struct amdgpu_device *adev = get_amdgpu_device(kgd);
395         struct vi_sdma_mqd *m;
396         uint32_t sdma_rlc_reg_offset;
397         uint32_t sdma_rlc_rb_cntl;
398
399         m = get_sdma_mqd(mqd);
400         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
401
402         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
403
404         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
405                 return true;
406
407         return false;
408 }
409
410 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
411                                 enum kfd_preempt_type reset_type,
412                                 unsigned int utimeout, uint32_t pipe_id,
413                                 uint32_t queue_id)
414 {
415         struct amdgpu_device *adev = get_amdgpu_device(kgd);
416         uint32_t temp;
417         enum hqd_dequeue_request_type type;
418         unsigned long flags, end_jiffies;
419         int retry;
420         struct vi_mqd *m = get_mqd(mqd);
421
422         if (amdgpu_in_reset(adev))
423                 return -EIO;
424
425         acquire_queue(kgd, pipe_id, queue_id);
426
427         if (m->cp_hqd_vmid == 0)
428                 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
429
430         switch (reset_type) {
431         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
432                 type = DRAIN_PIPE;
433                 break;
434         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
435                 type = RESET_WAVES;
436                 break;
437         default:
438                 type = DRAIN_PIPE;
439                 break;
440         }
441
442         /* Workaround: If IQ timer is active and the wait time is close to or
443          * equal to 0, dequeueing is not safe. Wait until either the wait time
444          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
445          * cleared before continuing. Also, ensure wait times are set to at
446          * least 0x3.
447          */
448         local_irq_save(flags);
449         preempt_disable();
450         retry = 5000; /* wait for 500 usecs at maximum */
451         while (true) {
452                 temp = RREG32(mmCP_HQD_IQ_TIMER);
453                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
454                         pr_debug("HW is processing IQ\n");
455                         goto loop;
456                 }
457                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
458                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
459                                         == 3) /* SEM-rearm is safe */
460                                 break;
461                         /* Wait time 3 is safe for CP, but our MMIO read/write
462                          * time is close to 1 microsecond, so check for 10 to
463                          * leave more buffer room
464                          */
465                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
466                                         >= 10)
467                                 break;
468                         pr_debug("IQ timer is active\n");
469                 } else
470                         break;
471 loop:
472                 if (!retry) {
473                         pr_err("CP HQD IQ timer status time out\n");
474                         break;
475                 }
476                 ndelay(100);
477                 --retry;
478         }
479         retry = 1000;
480         while (true) {
481                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
482                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
483                         break;
484                 pr_debug("Dequeue request is pending\n");
485
486                 if (!retry) {
487                         pr_err("CP HQD dequeue request time out\n");
488                         break;
489                 }
490                 ndelay(100);
491                 --retry;
492         }
493         local_irq_restore(flags);
494         preempt_enable();
495
496         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
497
498         end_jiffies = (utimeout * HZ / 1000) + jiffies;
499         while (true) {
500                 temp = RREG32(mmCP_HQD_ACTIVE);
501                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
502                         break;
503                 if (time_after(jiffies, end_jiffies)) {
504                         pr_err("cp queue preemption time out.\n");
505                         release_queue(kgd);
506                         return -ETIME;
507                 }
508                 usleep_range(500, 1000);
509         }
510
511         release_queue(kgd);
512         return 0;
513 }
514
515 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
516                                 unsigned int utimeout)
517 {
518         struct amdgpu_device *adev = get_amdgpu_device(kgd);
519         struct vi_sdma_mqd *m;
520         uint32_t sdma_rlc_reg_offset;
521         uint32_t temp;
522         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
523
524         m = get_sdma_mqd(mqd);
525         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
526
527         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
528         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
529         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
530
531         while (true) {
532                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
533                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
534                         break;
535                 if (time_after(jiffies, end_jiffies)) {
536                         pr_err("SDMA RLC not idle in %s\n", __func__);
537                         return -ETIME;
538                 }
539                 usleep_range(500, 1000);
540         }
541
542         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
543         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
544                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
545                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
546
547         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
548
549         return 0;
550 }
551
552 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
553                                         uint8_t vmid, uint16_t *p_pasid)
554 {
555         uint32_t value;
556         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
557
558         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
559         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
560
561         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
562 }
563
564 static int kgd_address_watch_disable(struct kgd_dev *kgd)
565 {
566         return 0;
567 }
568
569 static int kgd_address_watch_execute(struct kgd_dev *kgd,
570                                         unsigned int watch_point_id,
571                                         uint32_t cntl_val,
572                                         uint32_t addr_hi,
573                                         uint32_t addr_lo)
574 {
575         return 0;
576 }
577
578 static int kgd_wave_control_execute(struct kgd_dev *kgd,
579                                         uint32_t gfx_index_val,
580                                         uint32_t sq_cmd)
581 {
582         struct amdgpu_device *adev = get_amdgpu_device(kgd);
583         uint32_t data = 0;
584
585         mutex_lock(&adev->grbm_idx_mutex);
586
587         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
588         WREG32(mmSQ_CMD, sq_cmd);
589
590         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
591                 INSTANCE_BROADCAST_WRITES, 1);
592         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
593                 SH_BROADCAST_WRITES, 1);
594         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
595                 SE_BROADCAST_WRITES, 1);
596
597         WREG32(mmGRBM_GFX_INDEX, data);
598         mutex_unlock(&adev->grbm_idx_mutex);
599
600         return 0;
601 }
602
603 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
604                                         unsigned int watch_point_id,
605                                         unsigned int reg_offset)
606 {
607         return 0;
608 }
609
610 static void set_scratch_backing_va(struct kgd_dev *kgd,
611                                         uint64_t va, uint32_t vmid)
612 {
613         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
614
615         lock_srbm(kgd, 0, 0, 0, vmid);
616         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
617         unlock_srbm(kgd);
618 }
619
620 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
621                 uint64_t page_table_base)
622 {
623         struct amdgpu_device *adev = get_amdgpu_device(kgd);
624
625         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
626                 pr_err("trying to set page table base for wrong VMID\n");
627                 return;
628         }
629         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
630                         lower_32_bits(page_table_base));
631 }
632
633 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
634         .program_sh_mem_settings = kgd_program_sh_mem_settings,
635         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
636         .init_interrupts = kgd_init_interrupts,
637         .hqd_load = kgd_hqd_load,
638         .hqd_sdma_load = kgd_hqd_sdma_load,
639         .hqd_dump = kgd_hqd_dump,
640         .hqd_sdma_dump = kgd_hqd_sdma_dump,
641         .hqd_is_occupied = kgd_hqd_is_occupied,
642         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
643         .hqd_destroy = kgd_hqd_destroy,
644         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
645         .address_watch_disable = kgd_address_watch_disable,
646         .address_watch_execute = kgd_address_watch_execute,
647         .wave_control_execute = kgd_wave_control_execute,
648         .address_watch_get_offset = kgd_address_watch_get_offset,
649         .get_atc_vmid_pasid_mapping_info =
650                         get_atc_vmid_pasid_mapping_info,
651         .set_scratch_backing_va = set_scratch_backing_va,
652         .set_vm_context_page_table_base = set_vm_context_page_table_base,
653 };