drm/amdgpu: expand sdma copy_buffer interface with tmz parameter
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/mmu_context.h>
24
25 #include "amdgpu.h"
26 #include "amdgpu_amdkfd.h"
27 #include "cikd.h"
28 #include "cik_sdma.h"
29 #include "gfx_v7_0.h"
30 #include "gca/gfx_7_2_d.h"
31 #include "gca/gfx_7_2_enum.h"
32 #include "gca/gfx_7_2_sh_mask.h"
33 #include "oss/oss_2_0_d.h"
34 #include "oss/oss_2_0_sh_mask.h"
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37 #include "cik_structs.h"
38
39 enum hqd_dequeue_request_type {
40         NO_ACTION = 0,
41         DRAIN_PIPE,
42         RESET_WAVES
43 };
44
45 enum {
46         MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
47         MAX_WATCH_ADDRESSES = 4
48 };
49
50 enum {
51         ADDRESS_WATCH_REG_ADDR_HI = 0,
52         ADDRESS_WATCH_REG_ADDR_LO,
53         ADDRESS_WATCH_REG_CNTL,
54         ADDRESS_WATCH_REG_MAX
55 };
56
57 /*  not defined in the CI/KV reg file  */
58 enum {
59         ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
60         ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
61         ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
62         /* extend the mask to 26 bits to match the low address field */
63         ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
64         ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
65 };
66
67 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
68         mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
69         mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
70         mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
71         mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
72 };
73
74 union TCP_WATCH_CNTL_BITS {
75         struct {
76                 uint32_t mask:24;
77                 uint32_t vmid:4;
78                 uint32_t atc:1;
79                 uint32_t mode:2;
80                 uint32_t valid:1;
81         } bitfields, bits;
82         uint32_t u32All;
83         signed int i32All;
84         float f32All;
85 };
86
87 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
88 {
89         return (struct amdgpu_device *)kgd;
90 }
91
92 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
93                         uint32_t queue, uint32_t vmid)
94 {
95         struct amdgpu_device *adev = get_amdgpu_device(kgd);
96         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
97
98         mutex_lock(&adev->srbm_mutex);
99         WREG32(mmSRBM_GFX_CNTL, value);
100 }
101
102 static void unlock_srbm(struct kgd_dev *kgd)
103 {
104         struct amdgpu_device *adev = get_amdgpu_device(kgd);
105
106         WREG32(mmSRBM_GFX_CNTL, 0);
107         mutex_unlock(&adev->srbm_mutex);
108 }
109
110 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
111                                 uint32_t queue_id)
112 {
113         struct amdgpu_device *adev = get_amdgpu_device(kgd);
114
115         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
116         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
117
118         lock_srbm(kgd, mec, pipe, queue_id, 0);
119 }
120
121 static void release_queue(struct kgd_dev *kgd)
122 {
123         unlock_srbm(kgd);
124 }
125
126 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
127                                         uint32_t sh_mem_config,
128                                         uint32_t sh_mem_ape1_base,
129                                         uint32_t sh_mem_ape1_limit,
130                                         uint32_t sh_mem_bases)
131 {
132         struct amdgpu_device *adev = get_amdgpu_device(kgd);
133
134         lock_srbm(kgd, 0, 0, 0, vmid);
135
136         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
137         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
138         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
139         WREG32(mmSH_MEM_BASES, sh_mem_bases);
140
141         unlock_srbm(kgd);
142 }
143
144 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
145                                         unsigned int vmid)
146 {
147         struct amdgpu_device *adev = get_amdgpu_device(kgd);
148
149         /*
150          * We have to assume that there is no outstanding mapping.
151          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
152          * a mapping is in progress or because a mapping finished and the
153          * SW cleared it. So the protocol is to always wait & clear.
154          */
155         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
156                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
157
158         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
159
160         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
161                 cpu_relax();
162         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
163
164         /* Mapping vmid to pasid also for IH block */
165         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
166
167         return 0;
168 }
169
170 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
171 {
172         struct amdgpu_device *adev = get_amdgpu_device(kgd);
173         uint32_t mec;
174         uint32_t pipe;
175
176         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
177         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
178
179         lock_srbm(kgd, mec, pipe, 0, 0);
180
181         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
182                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
183
184         unlock_srbm(kgd);
185
186         return 0;
187 }
188
189 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
190 {
191         uint32_t retval;
192
193         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
194                         m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
195
196         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
197                         m->sdma_engine_id, m->sdma_queue_id, retval);
198
199         return retval;
200 }
201
202 static inline struct cik_mqd *get_mqd(void *mqd)
203 {
204         return (struct cik_mqd *)mqd;
205 }
206
207 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
208 {
209         return (struct cik_sdma_rlc_registers *)mqd;
210 }
211
212 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
213                         uint32_t queue_id, uint32_t __user *wptr,
214                         uint32_t wptr_shift, uint32_t wptr_mask,
215                         struct mm_struct *mm)
216 {
217         struct amdgpu_device *adev = get_amdgpu_device(kgd);
218         struct cik_mqd *m;
219         uint32_t *mqd_hqd;
220         uint32_t reg, wptr_val, data;
221         bool valid_wptr = false;
222
223         m = get_mqd(mqd);
224
225         acquire_queue(kgd, pipe_id, queue_id);
226
227         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
228         mqd_hqd = &m->cp_mqd_base_addr_lo;
229
230         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
231                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
232
233         /* Copy userspace write pointer value to register.
234          * Activate doorbell logic to monitor subsequent changes.
235          */
236         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
237                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
238         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
239
240         /* read_user_ptr may take the mm->mmap_sem.
241          * release srbm_mutex to avoid circular dependency between
242          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
243          */
244         release_queue(kgd);
245         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
246         acquire_queue(kgd, pipe_id, queue_id);
247         if (valid_wptr)
248                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
249
250         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
251         WREG32(mmCP_HQD_ACTIVE, data);
252
253         release_queue(kgd);
254
255         return 0;
256 }
257
258 static int kgd_hqd_dump(struct kgd_dev *kgd,
259                         uint32_t pipe_id, uint32_t queue_id,
260                         uint32_t (**dump)[2], uint32_t *n_regs)
261 {
262         struct amdgpu_device *adev = get_amdgpu_device(kgd);
263         uint32_t i = 0, reg;
264 #define HQD_N_REGS (35+4)
265 #define DUMP_REG(addr) do {                             \
266                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
267                         break;                          \
268                 (*dump)[i][0] = (addr) << 2;            \
269                 (*dump)[i++][1] = RREG32(addr);         \
270         } while (0)
271
272         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
273         if (*dump == NULL)
274                 return -ENOMEM;
275
276         acquire_queue(kgd, pipe_id, queue_id);
277
278         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
279         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
280         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
281         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
282
283         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
284                 DUMP_REG(reg);
285
286         release_queue(kgd);
287
288         WARN_ON_ONCE(i != HQD_N_REGS);
289         *n_regs = i;
290
291         return 0;
292 }
293
294 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
295                              uint32_t __user *wptr, struct mm_struct *mm)
296 {
297         struct amdgpu_device *adev = get_amdgpu_device(kgd);
298         struct cik_sdma_rlc_registers *m;
299         unsigned long end_jiffies;
300         uint32_t sdma_rlc_reg_offset;
301         uint32_t data;
302
303         m = get_sdma_mqd(mqd);
304         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
305
306         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
307                 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
308
309         end_jiffies = msecs_to_jiffies(2000) + jiffies;
310         while (true) {
311                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
312                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
313                         break;
314                 if (time_after(jiffies, end_jiffies)) {
315                         pr_err("SDMA RLC not idle in %s\n", __func__);
316                         return -ETIME;
317                 }
318                 usleep_range(500, 1000);
319         }
320
321         data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
322                              ENABLE, 1);
323         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
324         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
325                                 m->sdma_rlc_rb_rptr);
326
327         if (read_user_wptr(mm, wptr, data))
328                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
329         else
330                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
331                        m->sdma_rlc_rb_rptr);
332
333         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
334                                 m->sdma_rlc_virtual_addr);
335         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
336         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
337                         m->sdma_rlc_rb_base_hi);
338         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
339                         m->sdma_rlc_rb_rptr_addr_lo);
340         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
341                         m->sdma_rlc_rb_rptr_addr_hi);
342
343         data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
344                              RB_ENABLE, 1);
345         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
346
347         return 0;
348 }
349
350 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
351                              uint32_t engine_id, uint32_t queue_id,
352                              uint32_t (**dump)[2], uint32_t *n_regs)
353 {
354         struct amdgpu_device *adev = get_amdgpu_device(kgd);
355         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
356                 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
357         uint32_t i = 0, reg;
358 #undef HQD_N_REGS
359 #define HQD_N_REGS (19+4)
360
361         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
362         if (*dump == NULL)
363                 return -ENOMEM;
364
365         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
366                 DUMP_REG(sdma_offset + reg);
367         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
368              reg++)
369                 DUMP_REG(sdma_offset + reg);
370
371         WARN_ON_ONCE(i != HQD_N_REGS);
372         *n_regs = i;
373
374         return 0;
375 }
376
377 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
378                                 uint32_t pipe_id, uint32_t queue_id)
379 {
380         struct amdgpu_device *adev = get_amdgpu_device(kgd);
381         uint32_t act;
382         bool retval = false;
383         uint32_t low, high;
384
385         acquire_queue(kgd, pipe_id, queue_id);
386         act = RREG32(mmCP_HQD_ACTIVE);
387         if (act) {
388                 low = lower_32_bits(queue_address >> 8);
389                 high = upper_32_bits(queue_address >> 8);
390
391                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
392                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
393                         retval = true;
394         }
395         release_queue(kgd);
396         return retval;
397 }
398
399 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
400 {
401         struct amdgpu_device *adev = get_amdgpu_device(kgd);
402         struct cik_sdma_rlc_registers *m;
403         uint32_t sdma_rlc_reg_offset;
404         uint32_t sdma_rlc_rb_cntl;
405
406         m = get_sdma_mqd(mqd);
407         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
408
409         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
410
411         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
412                 return true;
413
414         return false;
415 }
416
417 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
418                                 enum kfd_preempt_type reset_type,
419                                 unsigned int utimeout, uint32_t pipe_id,
420                                 uint32_t queue_id)
421 {
422         struct amdgpu_device *adev = get_amdgpu_device(kgd);
423         uint32_t temp;
424         enum hqd_dequeue_request_type type;
425         unsigned long flags, end_jiffies;
426         int retry;
427
428         if (adev->in_gpu_reset)
429                 return -EIO;
430
431         acquire_queue(kgd, pipe_id, queue_id);
432         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
433
434         switch (reset_type) {
435         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
436                 type = DRAIN_PIPE;
437                 break;
438         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
439                 type = RESET_WAVES;
440                 break;
441         default:
442                 type = DRAIN_PIPE;
443                 break;
444         }
445
446         /* Workaround: If IQ timer is active and the wait time is close to or
447          * equal to 0, dequeueing is not safe. Wait until either the wait time
448          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
449          * cleared before continuing. Also, ensure wait times are set to at
450          * least 0x3.
451          */
452         local_irq_save(flags);
453         preempt_disable();
454         retry = 5000; /* wait for 500 usecs at maximum */
455         while (true) {
456                 temp = RREG32(mmCP_HQD_IQ_TIMER);
457                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
458                         pr_debug("HW is processing IQ\n");
459                         goto loop;
460                 }
461                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
462                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
463                                         == 3) /* SEM-rearm is safe */
464                                 break;
465                         /* Wait time 3 is safe for CP, but our MMIO read/write
466                          * time is close to 1 microsecond, so check for 10 to
467                          * leave more buffer room
468                          */
469                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
470                                         >= 10)
471                                 break;
472                         pr_debug("IQ timer is active\n");
473                 } else
474                         break;
475 loop:
476                 if (!retry) {
477                         pr_err("CP HQD IQ timer status time out\n");
478                         break;
479                 }
480                 ndelay(100);
481                 --retry;
482         }
483         retry = 1000;
484         while (true) {
485                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
486                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
487                         break;
488                 pr_debug("Dequeue request is pending\n");
489
490                 if (!retry) {
491                         pr_err("CP HQD dequeue request time out\n");
492                         break;
493                 }
494                 ndelay(100);
495                 --retry;
496         }
497         local_irq_restore(flags);
498         preempt_enable();
499
500         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
501
502         end_jiffies = (utimeout * HZ / 1000) + jiffies;
503         while (true) {
504                 temp = RREG32(mmCP_HQD_ACTIVE);
505                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
506                         break;
507                 if (time_after(jiffies, end_jiffies)) {
508                         pr_err("cp queue preemption time out\n");
509                         release_queue(kgd);
510                         return -ETIME;
511                 }
512                 usleep_range(500, 1000);
513         }
514
515         release_queue(kgd);
516         return 0;
517 }
518
519 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
520                                 unsigned int utimeout)
521 {
522         struct amdgpu_device *adev = get_amdgpu_device(kgd);
523         struct cik_sdma_rlc_registers *m;
524         uint32_t sdma_rlc_reg_offset;
525         uint32_t temp;
526         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
527
528         m = get_sdma_mqd(mqd);
529         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
530
531         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
532         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
533         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
534
535         while (true) {
536                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
537                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
538                         break;
539                 if (time_after(jiffies, end_jiffies)) {
540                         pr_err("SDMA RLC not idle in %s\n", __func__);
541                         return -ETIME;
542                 }
543                 usleep_range(500, 1000);
544         }
545
546         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
547         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
548                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
549                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
550
551         m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
552
553         return 0;
554 }
555
556 static int kgd_address_watch_disable(struct kgd_dev *kgd)
557 {
558         struct amdgpu_device *adev = get_amdgpu_device(kgd);
559         union TCP_WATCH_CNTL_BITS cntl;
560         unsigned int i;
561
562         cntl.u32All = 0;
563
564         cntl.bitfields.valid = 0;
565         cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
566         cntl.bitfields.atc = 1;
567
568         /* Turning off this address until we set all the registers */
569         for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
570                 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
571                         ADDRESS_WATCH_REG_CNTL], cntl.u32All);
572
573         return 0;
574 }
575
576 static int kgd_address_watch_execute(struct kgd_dev *kgd,
577                                         unsigned int watch_point_id,
578                                         uint32_t cntl_val,
579                                         uint32_t addr_hi,
580                                         uint32_t addr_lo)
581 {
582         struct amdgpu_device *adev = get_amdgpu_device(kgd);
583         union TCP_WATCH_CNTL_BITS cntl;
584
585         cntl.u32All = cntl_val;
586
587         /* Turning off this watch point until we set all the registers */
588         cntl.bitfields.valid = 0;
589         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
590                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
591
592         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
593                 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
594
595         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
596                 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
597
598         /* Enable the watch point */
599         cntl.bitfields.valid = 1;
600
601         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
602                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
603
604         return 0;
605 }
606
607 static int kgd_wave_control_execute(struct kgd_dev *kgd,
608                                         uint32_t gfx_index_val,
609                                         uint32_t sq_cmd)
610 {
611         struct amdgpu_device *adev = get_amdgpu_device(kgd);
612         uint32_t data;
613
614         mutex_lock(&adev->grbm_idx_mutex);
615
616         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
617         WREG32(mmSQ_CMD, sq_cmd);
618
619         /*  Restore the GRBM_GFX_INDEX register  */
620
621         data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
622                 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
623                 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
624
625         WREG32(mmGRBM_GFX_INDEX, data);
626
627         mutex_unlock(&adev->grbm_idx_mutex);
628
629         return 0;
630 }
631
632 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
633                                         unsigned int watch_point_id,
634                                         unsigned int reg_offset)
635 {
636         return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
637 }
638
639 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
640                                         uint8_t vmid, uint16_t *p_pasid)
641 {
642         uint32_t value;
643         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
644
645         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
646         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
647
648         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
649 }
650
651 static void set_scratch_backing_va(struct kgd_dev *kgd,
652                                         uint64_t va, uint32_t vmid)
653 {
654         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
655
656         lock_srbm(kgd, 0, 0, 0, vmid);
657         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
658         unlock_srbm(kgd);
659 }
660
661 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
662                         uint64_t page_table_base)
663 {
664         struct amdgpu_device *adev = get_amdgpu_device(kgd);
665
666         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
667                 pr_err("trying to set page table base for wrong VMID\n");
668                 return;
669         }
670         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
671                 lower_32_bits(page_table_base));
672 }
673
674  /**
675   * read_vmid_from_vmfault_reg - read vmid from register
676   *
677   * adev: amdgpu_device pointer
678   * @vmid: vmid pointer
679   * read vmid from register (CIK).
680   */
681 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
682 {
683         struct amdgpu_device *adev = get_amdgpu_device(kgd);
684
685         uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
686
687         return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
688 }
689
690 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
691         .program_sh_mem_settings = kgd_program_sh_mem_settings,
692         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
693         .init_interrupts = kgd_init_interrupts,
694         .hqd_load = kgd_hqd_load,
695         .hqd_sdma_load = kgd_hqd_sdma_load,
696         .hqd_dump = kgd_hqd_dump,
697         .hqd_sdma_dump = kgd_hqd_sdma_dump,
698         .hqd_is_occupied = kgd_hqd_is_occupied,
699         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
700         .hqd_destroy = kgd_hqd_destroy,
701         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
702         .address_watch_disable = kgd_address_watch_disable,
703         .address_watch_execute = kgd_address_watch_execute,
704         .wave_control_execute = kgd_wave_control_execute,
705         .address_watch_get_offset = kgd_address_watch_get_offset,
706         .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
707         .set_scratch_backing_va = set_scratch_backing_va,
708         .set_vm_context_page_table_base = set_vm_context_page_table_base,
709         .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
710 };