Merge tag 'selinux-pr-20231030' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v10.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "amdgpu_amdkfd_gfx_v10.h"
25 #include "gc/gc_10_1_0_offset.h"
26 #include "gc/gc_10_1_0_sh_mask.h"
27 #include "athub/athub_2_0_0_offset.h"
28 #include "athub/athub_2_0_0_sh_mask.h"
29 #include "oss/osssys_5_0_0_offset.h"
30 #include "oss/osssys_5_0_0_sh_mask.h"
31 #include "soc15_common.h"
32 #include "v10_structs.h"
33 #include "nv.h"
34 #include "nvd.h"
35 #include <uapi/linux/kfd_ioctl.h>
36
37 enum hqd_dequeue_request_type {
38         NO_ACTION = 0,
39         DRAIN_PIPE,
40         RESET_WAVES,
41         SAVE_WAVES
42 };
43
44 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
45                         uint32_t queue, uint32_t vmid)
46 {
47         mutex_lock(&adev->srbm_mutex);
48         nv_grbm_select(adev, mec, pipe, queue, vmid);
49 }
50
51 static void unlock_srbm(struct amdgpu_device *adev)
52 {
53         nv_grbm_select(adev, 0, 0, 0, 0);
54         mutex_unlock(&adev->srbm_mutex);
55 }
56
57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
58                                 uint32_t queue_id)
59 {
60         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
62
63         lock_srbm(adev, mec, pipe, queue_id, 0);
64 }
65
66 static uint64_t get_queue_mask(struct amdgpu_device *adev,
67                                uint32_t pipe_id, uint32_t queue_id)
68 {
69         unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
70                         queue_id;
71
72         return 1ull << bit;
73 }
74
75 static void release_queue(struct amdgpu_device *adev)
76 {
77         unlock_srbm(adev);
78 }
79
80 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
81                                         uint32_t sh_mem_config,
82                                         uint32_t sh_mem_ape1_base,
83                                         uint32_t sh_mem_ape1_limit,
84                                         uint32_t sh_mem_bases, uint32_t inst)
85 {
86         lock_srbm(adev, 0, 0, 0, vmid);
87
88         WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
89         WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
90         /* APE1 no longer exists on GFX9 */
91
92         unlock_srbm(adev);
93 }
94
95 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
96                                         unsigned int vmid, uint32_t inst)
97 {
98         /*
99          * We have to assume that there is no outstanding mapping.
100          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
101          * a mapping is in progress or because a mapping finished
102          * and the SW cleared it.
103          * So the protocol is to always wait & clear.
104          */
105         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
106                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
107
108         pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
109
110         pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
111         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
112                pasid_mapping);
113
114 #if 0
115         /* TODO: uncomment this code when the hardware support is ready. */
116         while (!(RREG32(SOC15_REG_OFFSET(
117                                 ATHUB, 0,
118                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
119                  (1U << vmid)))
120                 cpu_relax();
121
122         pr_debug("ATHUB mapping update finished\n");
123         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
124                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
125                1U << vmid);
126 #endif
127
128         /* Mapping vmid to pasid also for IH block */
129         pr_debug("update mapping for IH block and mmhub");
130         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
131                pasid_mapping);
132
133         return 0;
134 }
135
136 /* TODO - RING0 form of field is obsolete, seems to date back to SI
137  * but still works
138  */
139
140 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
141                                 uint32_t inst)
142 {
143         uint32_t mec;
144         uint32_t pipe;
145
146         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
147         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
148
149         lock_srbm(adev, mec, pipe, 0, 0);
150
151         WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
152                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
153                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
154
155         unlock_srbm(adev);
156
157         return 0;
158 }
159
160 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
161                                 unsigned int engine_id,
162                                 unsigned int queue_id)
163 {
164         uint32_t sdma_engine_reg_base[2] = {
165                 SOC15_REG_OFFSET(SDMA0, 0,
166                                  mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
167                 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
168                  * on SDMA1 base address (dw 0x1860) but based on SDMA0
169                  * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
170                  * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
171                  * below
172                  */
173                 SOC15_REG_OFFSET(SDMA1, 0,
174                                  mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
175         };
176
177         uint32_t retval = sdma_engine_reg_base[engine_id]
178                 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
179
180         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
181                         queue_id, retval);
182
183         return retval;
184 }
185
186 #if 0
187 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
188 {
189         uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
190                         mmTCP_WATCH0_ADDR_H;
191
192         pr_debug("kfd: reg watch base address: 0x%x\n", retval);
193
194         return retval;
195 }
196 #endif
197
198 static inline struct v10_compute_mqd *get_mqd(void *mqd)
199 {
200         return (struct v10_compute_mqd *)mqd;
201 }
202
203 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
204 {
205         return (struct v10_sdma_mqd *)mqd;
206 }
207
208 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
209                         uint32_t pipe_id, uint32_t queue_id,
210                         uint32_t __user *wptr, uint32_t wptr_shift,
211                         uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
212 {
213         struct v10_compute_mqd *m;
214         uint32_t *mqd_hqd;
215         uint32_t reg, hqd_base, data;
216
217         m = get_mqd(mqd);
218
219         pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
220         acquire_queue(adev, pipe_id, queue_id);
221
222         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
223         mqd_hqd = &m->cp_mqd_base_addr_lo;
224         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
225
226         for (reg = hqd_base;
227              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
228                 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
229
230
231         /* Activate doorbell logic before triggering WPTR poll. */
232         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
233                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
234         WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
235
236         if (wptr) {
237                 /* Don't read wptr with get_user because the user
238                  * context may not be accessible (if this function
239                  * runs in a work queue). Instead trigger a one-shot
240                  * polling read from memory in the CP. This assumes
241                  * that wptr is GPU-accessible in the queue's VMID via
242                  * ATC or SVM. WPTR==RPTR before starting the poll so
243                  * the CP starts fetching new commands from the right
244                  * place.
245                  *
246                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
247                  * tricky. Assume that the queue didn't overflow. The
248                  * number of valid bits in the 32-bit RPTR depends on
249                  * the queue size. The remaining bits are taken from
250                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
251                  * queue size.
252                  */
253                 uint32_t queue_size =
254                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
255                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
256                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
257
258                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
259                         guessed_wptr += queue_size;
260                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
261                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
262
263                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
264                        lower_32_bits(guessed_wptr));
265                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
266                        upper_32_bits(guessed_wptr));
267                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
268                        lower_32_bits((uint64_t)wptr));
269                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
270                        upper_32_bits((uint64_t)wptr));
271                 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
272                          (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
273                 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
274                        (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
275         }
276
277         /* Start the EOP fetcher */
278         WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR,
279                REG_SET_FIELD(m->cp_hqd_eop_rptr,
280                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
281
282         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
283         WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
284
285         release_queue(adev);
286
287         return 0;
288 }
289
290 static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
291                             uint32_t pipe_id, uint32_t queue_id,
292                             uint32_t doorbell_off, uint32_t inst)
293 {
294         struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring;
295         struct v10_compute_mqd *m;
296         uint32_t mec, pipe;
297         int r;
298
299         m = get_mqd(mqd);
300
301         acquire_queue(adev, pipe_id, queue_id);
302
303         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
304         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
305
306         pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
307                  mec, pipe, queue_id);
308
309         spin_lock(&adev->gfx.kiq[0].ring_lock);
310         r = amdgpu_ring_alloc(kiq_ring, 7);
311         if (r) {
312                 pr_err("Failed to alloc KIQ (%d).\n", r);
313                 goto out_unlock;
314         }
315
316         amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
317         amdgpu_ring_write(kiq_ring,
318                           PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
319                           PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
320                           PACKET3_MAP_QUEUES_QUEUE(queue_id) |
321                           PACKET3_MAP_QUEUES_PIPE(pipe) |
322                           PACKET3_MAP_QUEUES_ME((mec - 1)) |
323                           PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
324                           PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
325                           PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
326                           PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
327         amdgpu_ring_write(kiq_ring,
328                           PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
329         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
330         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
331         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
332         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
333         amdgpu_ring_commit(kiq_ring);
334
335 out_unlock:
336         spin_unlock(&adev->gfx.kiq[0].ring_lock);
337         release_queue(adev);
338
339         return r;
340 }
341
342 static int kgd_hqd_dump(struct amdgpu_device *adev,
343                         uint32_t pipe_id, uint32_t queue_id,
344                         uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
345 {
346         uint32_t i = 0, reg;
347 #define HQD_N_REGS 56
348 #define DUMP_REG(addr) do {                             \
349                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
350                         break;                          \
351                 (*dump)[i][0] = (addr) << 2;            \
352                 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr);            \
353         } while (0)
354
355         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
356         if (*dump == NULL)
357                 return -ENOMEM;
358
359         acquire_queue(adev, pipe_id, queue_id);
360
361         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
362              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
363                 DUMP_REG(reg);
364
365         release_queue(adev);
366
367         WARN_ON_ONCE(i != HQD_N_REGS);
368         *n_regs = i;
369
370         return 0;
371 }
372
373 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
374                              uint32_t __user *wptr, struct mm_struct *mm)
375 {
376         struct v10_sdma_mqd *m;
377         uint32_t sdma_rlc_reg_offset;
378         unsigned long end_jiffies;
379         uint32_t data;
380         uint64_t data64;
381         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
382
383         m = get_sdma_mqd(mqd);
384         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
385                                             m->sdma_queue_id);
386
387         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
388                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
389
390         end_jiffies = msecs_to_jiffies(2000) + jiffies;
391         while (true) {
392                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
393                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
394                         break;
395                 if (time_after(jiffies, end_jiffies)) {
396                         pr_err("SDMA RLC not idle in %s\n", __func__);
397                         return -ETIME;
398                 }
399                 usleep_range(500, 1000);
400         }
401
402         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
403                m->sdmax_rlcx_doorbell_offset);
404
405         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
406                              ENABLE, 1);
407         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
408         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
409                                 m->sdmax_rlcx_rb_rptr);
410         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
411                                 m->sdmax_rlcx_rb_rptr_hi);
412
413         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
414         if (read_user_wptr(mm, wptr64, data64)) {
415                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
416                        lower_32_bits(data64));
417                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
418                        upper_32_bits(data64));
419         } else {
420                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
421                        m->sdmax_rlcx_rb_rptr);
422                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
423                        m->sdmax_rlcx_rb_rptr_hi);
424         }
425         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
426
427         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
428         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
429                         m->sdmax_rlcx_rb_base_hi);
430         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
431                         m->sdmax_rlcx_rb_rptr_addr_lo);
432         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
433                         m->sdmax_rlcx_rb_rptr_addr_hi);
434
435         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
436                              RB_ENABLE, 1);
437         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
438
439         return 0;
440 }
441
442 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
443                              uint32_t engine_id, uint32_t queue_id,
444                              uint32_t (**dump)[2], uint32_t *n_regs)
445 {
446         uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
447                         engine_id, queue_id);
448         uint32_t i = 0, reg;
449 #undef HQD_N_REGS
450 #define HQD_N_REGS (19+6+7+10)
451
452         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
453         if (*dump == NULL)
454                 return -ENOMEM;
455
456         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
457                 DUMP_REG(sdma_rlc_reg_offset + reg);
458         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
459                 DUMP_REG(sdma_rlc_reg_offset + reg);
460         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
461              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
462                 DUMP_REG(sdma_rlc_reg_offset + reg);
463         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
464              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
465                 DUMP_REG(sdma_rlc_reg_offset + reg);
466
467         WARN_ON_ONCE(i != HQD_N_REGS);
468         *n_regs = i;
469
470         return 0;
471 }
472
473 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
474                                 uint64_t queue_address, uint32_t pipe_id,
475                                 uint32_t queue_id, uint32_t inst)
476 {
477         uint32_t act;
478         bool retval = false;
479         uint32_t low, high;
480
481         acquire_queue(adev, pipe_id, queue_id);
482         act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
483         if (act) {
484                 low = lower_32_bits(queue_address >> 8);
485                 high = upper_32_bits(queue_address >> 8);
486
487                 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
488                    high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
489                         retval = true;
490         }
491         release_queue(adev);
492         return retval;
493 }
494
495 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
496 {
497         struct v10_sdma_mqd *m;
498         uint32_t sdma_rlc_reg_offset;
499         uint32_t sdma_rlc_rb_cntl;
500
501         m = get_sdma_mqd(mqd);
502         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
503                                             m->sdma_queue_id);
504
505         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
506
507         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
508                 return true;
509
510         return false;
511 }
512
513 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
514                                 enum kfd_preempt_type reset_type,
515                                 unsigned int utimeout, uint32_t pipe_id,
516                                 uint32_t queue_id, uint32_t inst)
517 {
518         enum hqd_dequeue_request_type type;
519         unsigned long end_jiffies;
520         uint32_t temp;
521         struct v10_compute_mqd *m = get_mqd(mqd);
522
523         if (amdgpu_in_reset(adev))
524                 return -EIO;
525
526 #if 0
527         unsigned long flags;
528         int retry;
529 #endif
530
531         acquire_queue(adev, pipe_id, queue_id);
532
533         if (m->cp_hqd_vmid == 0)
534                 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
535
536         switch (reset_type) {
537         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
538                 type = DRAIN_PIPE;
539                 break;
540         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
541                 type = RESET_WAVES;
542                 break;
543         case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
544                 type = SAVE_WAVES;
545                 break;
546         default:
547                 type = DRAIN_PIPE;
548                 break;
549         }
550
551 #if 0 /* Is this still needed? */
552         /* Workaround: If IQ timer is active and the wait time is close to or
553          * equal to 0, dequeueing is not safe. Wait until either the wait time
554          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
555          * cleared before continuing. Also, ensure wait times are set to at
556          * least 0x3.
557          */
558         local_irq_save(flags);
559         preempt_disable();
560         retry = 5000; /* wait for 500 usecs at maximum */
561         while (true) {
562                 temp = RREG32(mmCP_HQD_IQ_TIMER);
563                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
564                         pr_debug("HW is processing IQ\n");
565                         goto loop;
566                 }
567                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
568                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
569                                         == 3) /* SEM-rearm is safe */
570                                 break;
571                         /* Wait time 3 is safe for CP, but our MMIO read/write
572                          * time is close to 1 microsecond, so check for 10 to
573                          * leave more buffer room
574                          */
575                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
576                                         >= 10)
577                                 break;
578                         pr_debug("IQ timer is active\n");
579                 } else
580                         break;
581 loop:
582                 if (!retry) {
583                         pr_err("CP HQD IQ timer status time out\n");
584                         break;
585                 }
586                 ndelay(100);
587                 --retry;
588         }
589         retry = 1000;
590         while (true) {
591                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
592                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
593                         break;
594                 pr_debug("Dequeue request is pending\n");
595
596                 if (!retry) {
597                         pr_err("CP HQD dequeue request time out\n");
598                         break;
599                 }
600                 ndelay(100);
601                 --retry;
602         }
603         local_irq_restore(flags);
604         preempt_enable();
605 #endif
606
607         WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
608
609         end_jiffies = (utimeout * HZ / 1000) + jiffies;
610         while (true) {
611                 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
612                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
613                         break;
614                 if (time_after(jiffies, end_jiffies)) {
615                         pr_err("cp queue preemption time out.\n");
616                         release_queue(adev);
617                         return -ETIME;
618                 }
619                 usleep_range(500, 1000);
620         }
621
622         release_queue(adev);
623         return 0;
624 }
625
626 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
627                                 unsigned int utimeout)
628 {
629         struct v10_sdma_mqd *m;
630         uint32_t sdma_rlc_reg_offset;
631         uint32_t temp;
632         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
633
634         m = get_sdma_mqd(mqd);
635         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
636                                             m->sdma_queue_id);
637
638         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
639         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
640         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
641
642         while (true) {
643                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
644                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
645                         break;
646                 if (time_after(jiffies, end_jiffies)) {
647                         pr_err("SDMA RLC not idle in %s\n", __func__);
648                         return -ETIME;
649                 }
650                 usleep_range(500, 1000);
651         }
652
653         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
654         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
655                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
656                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
657
658         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
659         m->sdmax_rlcx_rb_rptr_hi =
660                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
661
662         return 0;
663 }
664
665 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
666                                         uint8_t vmid, uint16_t *p_pasid)
667 {
668         uint32_t value;
669
670         value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
671                      + vmid);
672         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
673
674         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
675 }
676
677 static int kgd_wave_control_execute(struct amdgpu_device *adev,
678                                         uint32_t gfx_index_val,
679                                         uint32_t sq_cmd, uint32_t inst)
680 {
681         uint32_t data = 0;
682
683         mutex_lock(&adev->grbm_idx_mutex);
684
685         WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
686         WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
687
688         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
689                 INSTANCE_BROADCAST_WRITES, 1);
690         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
691                 SA_BROADCAST_WRITES, 1);
692         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
693                 SE_BROADCAST_WRITES, 1);
694
695         WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
696         mutex_unlock(&adev->grbm_idx_mutex);
697
698         return 0;
699 }
700
701 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
702                 uint32_t vmid, uint64_t page_table_base)
703 {
704         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
705                 pr_err("trying to set page table base for wrong VMID %u\n",
706                        vmid);
707                 return;
708         }
709
710         /* SDMA is on gfxhub as well for Navi1* series */
711         adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
712 }
713
714 /*
715  * GFX10 helper for wave launch stall requirements on debug trap setting.
716  *
717  * vmid:
718  *   Target VMID to stall/unstall.
719  *
720  * stall:
721  *   0-unstall wave launch (enable), 1-stall wave launch (disable).
722  *   After wavefront launch has been stalled, allocated waves must drain from
723  *   SPI in order for debug trap settings to take effect on those waves.
724  *   This is roughly a ~3500 clock cycle wait on SPI where a read on
725  *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
726  *   KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
727  *
728  *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
729  *   because current GFX10 chips cannot support multi-process debugging due to
730  *   trap configuration and masking being limited to global scope.  Always
731  *   assume single process conditions.
732  *
733  */
734
735 #define KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY       110
736 static void kgd_gfx_v10_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall)
737 {
738         uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
739         int i;
740
741         data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
742                                                         stall ? 1 << vmid : 0);
743
744         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
745
746         if (!stall)
747                 return;
748
749         for (i = 0; i < KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
750                 RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
751 }
752
753 uint32_t kgd_gfx_v10_enable_debug_trap(struct amdgpu_device *adev,
754                                 bool restore_dbg_registers,
755                                 uint32_t vmid)
756 {
757
758         mutex_lock(&adev->grbm_idx_mutex);
759
760         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
761
762         /* assume gfx off is disabled for the debug session if rlc restore not supported. */
763         if (restore_dbg_registers) {
764                 uint32_t data = 0;
765
766                 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
767                                 VMID_SEL, 1 << vmid);
768                 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
769                                 TRAP_EN, 1);
770                 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_CONFIG), data);
771                 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA0), 0);
772                 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA1), 0);
773
774                 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
775
776                 mutex_unlock(&adev->grbm_idx_mutex);
777
778                 return 0;
779         }
780
781         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
782
783         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
784
785         mutex_unlock(&adev->grbm_idx_mutex);
786
787         return 0;
788 }
789
790 uint32_t kgd_gfx_v10_disable_debug_trap(struct amdgpu_device *adev,
791                                         bool keep_trap_enabled,
792                                         uint32_t vmid)
793 {
794         mutex_lock(&adev->grbm_idx_mutex);
795
796         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
797
798         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
799
800         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
801
802         mutex_unlock(&adev->grbm_idx_mutex);
803
804         return 0;
805 }
806
807 int kgd_gfx_v10_validate_trap_override_request(struct amdgpu_device *adev,
808                                               uint32_t trap_override,
809                                               uint32_t *trap_mask_supported)
810 {
811         *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
812
813         /* The SPI_GDBG_TRAP_MASK register is global and affects all
814          * processes. Only allow OR-ing the address-watch bit, since
815          * this only affects processes under the debugger. Other bits
816          * should stay 0 to avoid the debugger interfering with other
817          * processes.
818          */
819         if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
820                 return -EINVAL;
821
822         return 0;
823 }
824
825 uint32_t kgd_gfx_v10_set_wave_launch_trap_override(struct amdgpu_device *adev,
826                                               uint32_t vmid,
827                                               uint32_t trap_override,
828                                               uint32_t trap_mask_bits,
829                                               uint32_t trap_mask_request,
830                                               uint32_t *trap_mask_prev,
831                                               uint32_t kfd_dbg_trap_cntl_prev)
832 {
833         uint32_t data, wave_cntl_prev;
834
835         mutex_lock(&adev->grbm_idx_mutex);
836
837         wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
838
839         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
840
841         data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
842         *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
843
844         trap_mask_bits = (trap_mask_bits & trap_mask_request) |
845                 (*trap_mask_prev & ~trap_mask_request);
846
847         data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
848         data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
849         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
850
851         /* We need to preserve wave launch mode stall settings. */
852         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
853
854         mutex_unlock(&adev->grbm_idx_mutex);
855
856         return 0;
857 }
858
859 uint32_t kgd_gfx_v10_set_wave_launch_mode(struct amdgpu_device *adev,
860                                         uint8_t wave_launch_mode,
861                                         uint32_t vmid)
862 {
863         uint32_t data = 0;
864         bool is_mode_set = !!wave_launch_mode;
865
866         mutex_lock(&adev->grbm_idx_mutex);
867
868         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
869
870         data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
871                         VMID_MASK, is_mode_set ? 1 << vmid : 0);
872         data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
873                         MODE, is_mode_set ? wave_launch_mode : 0);
874         WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
875
876         kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
877
878         mutex_unlock(&adev->grbm_idx_mutex);
879
880         return 0;
881 }
882
883 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
884 uint32_t kgd_gfx_v10_set_address_watch(struct amdgpu_device *adev,
885                                         uint64_t watch_address,
886                                         uint32_t watch_address_mask,
887                                         uint32_t watch_id,
888                                         uint32_t watch_mode,
889                                         uint32_t debug_vmid,
890                                         uint32_t inst)
891 {
892         uint32_t watch_address_high;
893         uint32_t watch_address_low;
894         uint32_t watch_address_cntl;
895
896         watch_address_cntl = 0;
897
898         watch_address_low = lower_32_bits(watch_address);
899         watch_address_high = upper_32_bits(watch_address) & 0xffff;
900
901         watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
902                         TCP_WATCH0_CNTL,
903                         VMID,
904                         debug_vmid);
905         watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
906                         TCP_WATCH0_CNTL,
907                         MODE,
908                         watch_mode);
909         watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
910                         TCP_WATCH0_CNTL,
911                         MASK,
912                         watch_address_mask >> 7);
913
914         /* Turning off this watch point until we set all the registers */
915         watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
916                         TCP_WATCH0_CNTL,
917                         VALID,
918                         0);
919
920         WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
921                         (watch_id * TCP_WATCH_STRIDE)),
922                         watch_address_cntl);
923
924         WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
925                         (watch_id * TCP_WATCH_STRIDE)),
926                         watch_address_high);
927
928         WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
929                         (watch_id * TCP_WATCH_STRIDE)),
930                         watch_address_low);
931
932         /* Enable the watch point */
933         watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
934                         TCP_WATCH0_CNTL,
935                         VALID,
936                         1);
937
938         WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
939                         (watch_id * TCP_WATCH_STRIDE)),
940                         watch_address_cntl);
941
942         return 0;
943 }
944
945 uint32_t kgd_gfx_v10_clear_address_watch(struct amdgpu_device *adev,
946                                         uint32_t watch_id)
947 {
948         uint32_t watch_address_cntl;
949
950         watch_address_cntl = 0;
951
952         WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
953                         (watch_id * TCP_WATCH_STRIDE)),
954                         watch_address_cntl);
955
956         return 0;
957 }
958
959
960 /* kgd_gfx_v10_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
961  * The values read are:
962  *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
963  *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
964  *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
965  *     gws_wait_time            -- Wait Count for Global Wave Syncs.
966  *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
967  *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
968  *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
969  *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
970  */
971 void kgd_gfx_v10_get_iq_wait_times(struct amdgpu_device *adev,
972                                         uint32_t *wait_times,
973                                         uint32_t inst)
974
975 {
976         *wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
977 }
978
979 void kgd_gfx_v10_build_grace_period_packet_info(struct amdgpu_device *adev,
980                                                 uint32_t wait_times,
981                                                 uint32_t grace_period,
982                                                 uint32_t *reg_offset,
983                                                 uint32_t *reg_data)
984 {
985         *reg_data = wait_times;
986
987         /*
988          * The CP cannont handle a 0 grace period input and will result in
989          * an infinite grace period being set so set to 1 to prevent this.
990          */
991         if (grace_period == 0)
992                 grace_period = 1;
993
994         *reg_data = REG_SET_FIELD(*reg_data,
995                         CP_IQ_WAIT_TIME2,
996                         SCH_WAVE,
997                         grace_period);
998
999         *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1000 }
1001
1002 static void program_trap_handler_settings(struct amdgpu_device *adev,
1003                 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr,
1004                 uint32_t inst)
1005 {
1006         lock_srbm(adev, 0, 0, 0, vmid);
1007
1008         /*
1009          * Program TBA registers
1010          */
1011         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
1012                         lower_32_bits(tba_addr >> 8));
1013         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
1014                         upper_32_bits(tba_addr >> 8) |
1015                         (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT));
1016
1017         /*
1018          * Program TMA registers
1019          */
1020         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
1021                         lower_32_bits(tma_addr >> 8));
1022         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
1023                         upper_32_bits(tma_addr >> 8));
1024
1025         unlock_srbm(adev);
1026 }
1027
1028 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
1029         .program_sh_mem_settings = kgd_program_sh_mem_settings,
1030         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
1031         .init_interrupts = kgd_init_interrupts,
1032         .hqd_load = kgd_hqd_load,
1033         .hiq_mqd_load = kgd_hiq_mqd_load,
1034         .hqd_sdma_load = kgd_hqd_sdma_load,
1035         .hqd_dump = kgd_hqd_dump,
1036         .hqd_sdma_dump = kgd_hqd_sdma_dump,
1037         .hqd_is_occupied = kgd_hqd_is_occupied,
1038         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1039         .hqd_destroy = kgd_hqd_destroy,
1040         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1041         .wave_control_execute = kgd_wave_control_execute,
1042         .get_atc_vmid_pasid_mapping_info =
1043                         get_atc_vmid_pasid_mapping_info,
1044         .set_vm_context_page_table_base = set_vm_context_page_table_base,
1045         .enable_debug_trap = kgd_gfx_v10_enable_debug_trap,
1046         .disable_debug_trap = kgd_gfx_v10_disable_debug_trap,
1047         .validate_trap_override_request = kgd_gfx_v10_validate_trap_override_request,
1048         .set_wave_launch_trap_override = kgd_gfx_v10_set_wave_launch_trap_override,
1049         .set_wave_launch_mode = kgd_gfx_v10_set_wave_launch_mode,
1050         .set_address_watch = kgd_gfx_v10_set_address_watch,
1051         .clear_address_watch = kgd_gfx_v10_clear_address_watch,
1052         .get_iq_wait_times = kgd_gfx_v10_get_iq_wait_times,
1053         .build_grace_period_packet_info = kgd_gfx_v10_build_grace_period_packet_info,
1054         .program_trap_handler_settings = program_trap_handler_settings,
1055 };