9247dbc7dbbd12efb33845c0c409e89c45f21b22
[linux-2.6-microblaze.git] / drivers / firmware / efi / libstub / x86-stub.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* -----------------------------------------------------------------------
4  *
5  *   Copyright 2011 Intel Corporation; author Matt Fleming
6  *
7  * ----------------------------------------------------------------------- */
8
9 #include <linux/efi.h>
10 #include <linux/pci.h>
11 #include <linux/stddef.h>
12
13 #include <asm/efi.h>
14 #include <asm/e820/types.h>
15 #include <asm/setup.h>
16 #include <asm/desc.h>
17 #include <asm/boot.h>
18
19 #include "efistub.h"
20
21 /* Maximum physical address for 64-bit kernel with 4-level paging */
22 #define MAXMEM_X86_64_4LEVEL (1ull << 46)
23
24 const efi_system_table_t *efi_system_table;
25 const efi_dxe_services_table_t *efi_dxe_table;
26 u32 image_offset __section(".data");
27 static efi_loaded_image_t *image = NULL;
28
29 typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
30 union sev_memory_acceptance_protocol {
31         struct {
32                 efi_status_t (__efiapi * allow_unaccepted_memory)(
33                         sev_memory_acceptance_protocol_t *);
34         };
35         struct {
36                 u32 allow_unaccepted_memory;
37         } mixed_mode;
38 };
39
40 static efi_status_t
41 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
42 {
43         struct pci_setup_rom *rom = NULL;
44         efi_status_t status;
45         unsigned long size;
46         uint64_t romsize;
47         void *romimage;
48
49         /*
50          * Some firmware images contain EFI function pointers at the place where
51          * the romimage and romsize fields are supposed to be. Typically the EFI
52          * code is mapped at high addresses, translating to an unrealistically
53          * large romsize. The UEFI spec limits the size of option ROMs to 16
54          * MiB so we reject any ROMs over 16 MiB in size to catch this.
55          */
56         romimage = efi_table_attr(pci, romimage);
57         romsize = efi_table_attr(pci, romsize);
58         if (!romimage || !romsize || romsize > SZ_16M)
59                 return EFI_INVALID_PARAMETER;
60
61         size = romsize + sizeof(*rom);
62
63         status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
64                              (void **)&rom);
65         if (status != EFI_SUCCESS) {
66                 efi_err("Failed to allocate memory for 'rom'\n");
67                 return status;
68         }
69
70         memset(rom, 0, sizeof(*rom));
71
72         rom->data.type  = SETUP_PCI;
73         rom->data.len   = size - sizeof(struct setup_data);
74         rom->data.next  = 0;
75         rom->pcilen     = pci->romsize;
76         *__rom = rom;
77
78         status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
79                                 PCI_VENDOR_ID, 1, &rom->vendor);
80
81         if (status != EFI_SUCCESS) {
82                 efi_err("Failed to read rom->vendor\n");
83                 goto free_struct;
84         }
85
86         status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
87                                 PCI_DEVICE_ID, 1, &rom->devid);
88
89         if (status != EFI_SUCCESS) {
90                 efi_err("Failed to read rom->devid\n");
91                 goto free_struct;
92         }
93
94         status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
95                                 &rom->device, &rom->function);
96
97         if (status != EFI_SUCCESS)
98                 goto free_struct;
99
100         memcpy(rom->romdata, romimage, romsize);
101         return status;
102
103 free_struct:
104         efi_bs_call(free_pool, rom);
105         return status;
106 }
107
108 /*
109  * There's no way to return an informative status from this function,
110  * because any analysis (and printing of error messages) needs to be
111  * done directly at the EFI function call-site.
112  *
113  * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
114  * just didn't find any PCI devices, but there's no way to tell outside
115  * the context of the call.
116  */
117 static void setup_efi_pci(struct boot_params *params)
118 {
119         efi_status_t status;
120         void **pci_handle = NULL;
121         efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
122         unsigned long size = 0;
123         struct setup_data *data;
124         efi_handle_t h;
125         int i;
126
127         status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
128                              &pci_proto, NULL, &size, pci_handle);
129
130         if (status == EFI_BUFFER_TOO_SMALL) {
131                 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
132                                      (void **)&pci_handle);
133
134                 if (status != EFI_SUCCESS) {
135                         efi_err("Failed to allocate memory for 'pci_handle'\n");
136                         return;
137                 }
138
139                 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
140                                      &pci_proto, NULL, &size, pci_handle);
141         }
142
143         if (status != EFI_SUCCESS)
144                 goto free_handle;
145
146         data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
147
148         while (data && data->next)
149                 data = (struct setup_data *)(unsigned long)data->next;
150
151         for_each_efi_handle(h, pci_handle, size, i) {
152                 efi_pci_io_protocol_t *pci = NULL;
153                 struct pci_setup_rom *rom;
154
155                 status = efi_bs_call(handle_protocol, h, &pci_proto,
156                                      (void **)&pci);
157                 if (status != EFI_SUCCESS || !pci)
158                         continue;
159
160                 status = preserve_pci_rom_image(pci, &rom);
161                 if (status != EFI_SUCCESS)
162                         continue;
163
164                 if (data)
165                         data->next = (unsigned long)rom;
166                 else
167                         params->hdr.setup_data = (unsigned long)rom;
168
169                 data = (struct setup_data *)rom;
170         }
171
172 free_handle:
173         efi_bs_call(free_pool, pci_handle);
174 }
175
176 static void retrieve_apple_device_properties(struct boot_params *boot_params)
177 {
178         efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
179         struct setup_data *data, *new;
180         efi_status_t status;
181         u32 size = 0;
182         apple_properties_protocol_t *p;
183
184         status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
185         if (status != EFI_SUCCESS)
186                 return;
187
188         if (efi_table_attr(p, version) != 0x10000) {
189                 efi_err("Unsupported properties proto version\n");
190                 return;
191         }
192
193         efi_call_proto(p, get_all, NULL, &size);
194         if (!size)
195                 return;
196
197         do {
198                 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
199                                      size + sizeof(struct setup_data),
200                                      (void **)&new);
201                 if (status != EFI_SUCCESS) {
202                         efi_err("Failed to allocate memory for 'properties'\n");
203                         return;
204                 }
205
206                 status = efi_call_proto(p, get_all, new->data, &size);
207
208                 if (status == EFI_BUFFER_TOO_SMALL)
209                         efi_bs_call(free_pool, new);
210         } while (status == EFI_BUFFER_TOO_SMALL);
211
212         new->type = SETUP_APPLE_PROPERTIES;
213         new->len  = size;
214         new->next = 0;
215
216         data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
217         if (!data) {
218                 boot_params->hdr.setup_data = (unsigned long)new;
219         } else {
220                 while (data->next)
221                         data = (struct setup_data *)(unsigned long)data->next;
222                 data->next = (unsigned long)new;
223         }
224 }
225
226 static void
227 adjust_memory_range_protection(unsigned long start, unsigned long size)
228 {
229         efi_status_t status;
230         efi_gcd_memory_space_desc_t desc;
231         unsigned long end, next;
232         unsigned long rounded_start, rounded_end;
233         unsigned long unprotect_start, unprotect_size;
234
235         if (efi_dxe_table == NULL)
236                 return;
237
238         rounded_start = rounddown(start, EFI_PAGE_SIZE);
239         rounded_end = roundup(start + size, EFI_PAGE_SIZE);
240
241         /*
242          * Don't modify memory region attributes, they are
243          * already suitable, to lower the possibility to
244          * encounter firmware bugs.
245          */
246
247         for (end = start + size; start < end; start = next) {
248
249                 status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
250
251                 if (status != EFI_SUCCESS)
252                         return;
253
254                 next = desc.base_address + desc.length;
255
256                 /*
257                  * Only system memory is suitable for trampoline/kernel image placement,
258                  * so only this type of memory needs its attributes to be modified.
259                  */
260
261                 if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
262                     (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
263                         continue;
264
265                 unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
266                 unprotect_size = min(rounded_end, next) - unprotect_start;
267
268                 status = efi_dxe_call(set_memory_space_attributes,
269                                       unprotect_start, unprotect_size,
270                                       EFI_MEMORY_WB);
271
272                 if (status != EFI_SUCCESS) {
273                         efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
274                                  unprotect_start,
275                                  unprotect_start + unprotect_size,
276                                  status);
277                 }
278         }
279 }
280
281 /*
282  * Trampoline takes 2 pages and can be loaded in first megabyte of memory
283  * with its end placed between 128k and 640k where BIOS might start.
284  * (see arch/x86/boot/compressed/pgtable_64.c)
285  *
286  * We cannot find exact trampoline placement since memory map
287  * can be modified by UEFI, and it can alter the computed address.
288  */
289
290 #define TRAMPOLINE_PLACEMENT_BASE ((128 - 8)*1024)
291 #define TRAMPOLINE_PLACEMENT_SIZE (640*1024 - (128 - 8)*1024)
292
293 extern const u8 startup_32[], startup_64[];
294
295 static void
296 setup_memory_protection(unsigned long image_base, unsigned long image_size)
297 {
298         /*
299          * Allow execution of possible trampoline used
300          * for switching between 4- and 5-level page tables
301          * and relocated kernel image.
302          */
303
304         adjust_memory_range_protection(TRAMPOLINE_PLACEMENT_BASE,
305                                        TRAMPOLINE_PLACEMENT_SIZE);
306
307 #ifdef CONFIG_64BIT
308         if (image_base != (unsigned long)startup_32)
309                 adjust_memory_range_protection(image_base, image_size);
310 #else
311         /*
312          * Clear protection flags on a whole range of possible
313          * addresses used for KASLR. We don't need to do that
314          * on x86_64, since KASLR/extraction is performed after
315          * dedicated identity page tables are built and we only
316          * need to remove possible protection on relocated image
317          * itself disregarding further relocations.
318          */
319         adjust_memory_range_protection(LOAD_PHYSICAL_ADDR,
320                                        KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR);
321 #endif
322 }
323
324 static void setup_unaccepted_memory(void)
325 {
326         efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
327         sev_memory_acceptance_protocol_t *proto;
328         efi_status_t status;
329
330         if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
331                 return;
332
333         /*
334          * Enable unaccepted memory before calling exit boot services in order
335          * for the UEFI to not accept all memory on EBS.
336          */
337         status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
338                              (void **)&proto);
339         if (status != EFI_SUCCESS)
340                 return;
341
342         status = efi_call_proto(proto, allow_unaccepted_memory);
343         if (status != EFI_SUCCESS)
344                 efi_err("Memory acceptance protocol failed\n");
345 }
346
347 static const efi_char16_t apple[] = L"Apple";
348
349 static void setup_quirks(struct boot_params *boot_params,
350                          unsigned long image_base,
351                          unsigned long image_size)
352 {
353         efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
354                 efi_table_attr(efi_system_table, fw_vendor);
355
356         if (!memcmp(fw_vendor, apple, sizeof(apple))) {
357                 if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
358                         retrieve_apple_device_properties(boot_params);
359         }
360
361         if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES))
362                 setup_memory_protection(image_base, image_size);
363 }
364
365 /*
366  * See if we have Universal Graphics Adapter (UGA) protocol
367  */
368 static efi_status_t
369 setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
370 {
371         efi_status_t status;
372         u32 width, height;
373         void **uga_handle = NULL;
374         efi_uga_draw_protocol_t *uga = NULL, *first_uga;
375         efi_handle_t handle;
376         int i;
377
378         status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
379                              (void **)&uga_handle);
380         if (status != EFI_SUCCESS)
381                 return status;
382
383         status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
384                              uga_proto, NULL, &size, uga_handle);
385         if (status != EFI_SUCCESS)
386                 goto free_handle;
387
388         height = 0;
389         width = 0;
390
391         first_uga = NULL;
392         for_each_efi_handle(handle, uga_handle, size, i) {
393                 efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
394                 u32 w, h, depth, refresh;
395                 void *pciio;
396
397                 status = efi_bs_call(handle_protocol, handle, uga_proto,
398                                      (void **)&uga);
399                 if (status != EFI_SUCCESS)
400                         continue;
401
402                 pciio = NULL;
403                 efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio);
404
405                 status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh);
406                 if (status == EFI_SUCCESS && (!first_uga || pciio)) {
407                         width = w;
408                         height = h;
409
410                         /*
411                          * Once we've found a UGA supporting PCIIO,
412                          * don't bother looking any further.
413                          */
414                         if (pciio)
415                                 break;
416
417                         first_uga = uga;
418                 }
419         }
420
421         if (!width && !height)
422                 goto free_handle;
423
424         /* EFI framebuffer */
425         si->orig_video_isVGA    = VIDEO_TYPE_EFI;
426
427         si->lfb_depth           = 32;
428         si->lfb_width           = width;
429         si->lfb_height          = height;
430
431         si->red_size            = 8;
432         si->red_pos             = 16;
433         si->green_size          = 8;
434         si->green_pos           = 8;
435         si->blue_size           = 8;
436         si->blue_pos            = 0;
437         si->rsvd_size           = 8;
438         si->rsvd_pos            = 24;
439
440 free_handle:
441         efi_bs_call(free_pool, uga_handle);
442
443         return status;
444 }
445
446 static void setup_graphics(struct boot_params *boot_params)
447 {
448         efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
449         struct screen_info *si;
450         efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
451         efi_status_t status;
452         unsigned long size;
453         void **gop_handle = NULL;
454         void **uga_handle = NULL;
455
456         si = &boot_params->screen_info;
457         memset(si, 0, sizeof(*si));
458
459         size = 0;
460         status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
461                              &graphics_proto, NULL, &size, gop_handle);
462         if (status == EFI_BUFFER_TOO_SMALL)
463                 status = efi_setup_gop(si, &graphics_proto, size);
464
465         if (status != EFI_SUCCESS) {
466                 size = 0;
467                 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
468                                      &uga_proto, NULL, &size, uga_handle);
469                 if (status == EFI_BUFFER_TOO_SMALL)
470                         setup_uga(si, &uga_proto, size);
471         }
472 }
473
474
475 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
476 {
477         efi_bs_call(exit, handle, status, 0, NULL);
478         for(;;)
479                 asm("hlt");
480 }
481
482 void __noreturn efi_stub_entry(efi_handle_t handle,
483                                efi_system_table_t *sys_table_arg,
484                                struct boot_params *boot_params);
485
486 /*
487  * Because the x86 boot code expects to be passed a boot_params we
488  * need to create one ourselves (usually the bootloader would create
489  * one for us).
490  */
491 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
492                                    efi_system_table_t *sys_table_arg)
493 {
494         struct boot_params *boot_params;
495         struct setup_header *hdr;
496         void *image_base;
497         efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
498         int options_size = 0;
499         efi_status_t status;
500         char *cmdline_ptr;
501
502         efi_system_table = sys_table_arg;
503
504         /* Check if we were booted by the EFI firmware */
505         if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
506                 efi_exit(handle, EFI_INVALID_PARAMETER);
507
508         status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
509         if (status != EFI_SUCCESS) {
510                 efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
511                 efi_exit(handle, status);
512         }
513
514         image_base = efi_table_attr(image, image_base);
515         image_offset = (void *)startup_32 - image_base;
516
517         status = efi_allocate_pages(sizeof(struct boot_params),
518                                     (unsigned long *)&boot_params, ULONG_MAX);
519         if (status != EFI_SUCCESS) {
520                 efi_err("Failed to allocate lowmem for boot params\n");
521                 efi_exit(handle, status);
522         }
523
524         memset(boot_params, 0x0, sizeof(struct boot_params));
525
526         hdr = &boot_params->hdr;
527
528         /* Copy the setup header from the second sector to boot_params */
529         memcpy(&hdr->jump, image_base + 512,
530                sizeof(struct setup_header) - offsetof(struct setup_header, jump));
531
532         /*
533          * Fill out some of the header fields ourselves because the
534          * EFI firmware loader doesn't load the first sector.
535          */
536         hdr->root_flags = 1;
537         hdr->vid_mode   = 0xffff;
538         hdr->boot_flag  = 0xAA55;
539
540         hdr->type_of_loader = 0x21;
541
542         /* Convert unicode cmdline to ascii */
543         cmdline_ptr = efi_convert_cmdline(image, &options_size);
544         if (!cmdline_ptr)
545                 goto fail;
546
547         efi_set_u64_split((unsigned long)cmdline_ptr,
548                           &hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr);
549
550         hdr->ramdisk_image = 0;
551         hdr->ramdisk_size = 0;
552
553         /*
554          * Disregard any setup data that was provided by the bootloader:
555          * setup_data could be pointing anywhere, and we have no way of
556          * authenticating or validating the payload.
557          */
558         hdr->setup_data = 0;
559
560         efi_stub_entry(handle, sys_table_arg, boot_params);
561         /* not reached */
562
563 fail:
564         efi_free(sizeof(struct boot_params), (unsigned long)boot_params);
565
566         efi_exit(handle, status);
567 }
568
569 static void add_e820ext(struct boot_params *params,
570                         struct setup_data *e820ext, u32 nr_entries)
571 {
572         struct setup_data *data;
573
574         e820ext->type = SETUP_E820_EXT;
575         e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
576         e820ext->next = 0;
577
578         data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
579
580         while (data && data->next)
581                 data = (struct setup_data *)(unsigned long)data->next;
582
583         if (data)
584                 data->next = (unsigned long)e820ext;
585         else
586                 params->hdr.setup_data = (unsigned long)e820ext;
587 }
588
589 static efi_status_t
590 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
591 {
592         struct boot_e820_entry *entry = params->e820_table;
593         struct efi_info *efi = &params->efi_info;
594         struct boot_e820_entry *prev = NULL;
595         u32 nr_entries;
596         u32 nr_desc;
597         int i;
598
599         nr_entries = 0;
600         nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
601
602         for (i = 0; i < nr_desc; i++) {
603                 efi_memory_desc_t *d;
604                 unsigned int e820_type = 0;
605                 unsigned long m = efi->efi_memmap;
606
607 #ifdef CONFIG_X86_64
608                 m |= (u64)efi->efi_memmap_hi << 32;
609 #endif
610
611                 d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
612                 switch (d->type) {
613                 case EFI_RESERVED_TYPE:
614                 case EFI_RUNTIME_SERVICES_CODE:
615                 case EFI_RUNTIME_SERVICES_DATA:
616                 case EFI_MEMORY_MAPPED_IO:
617                 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
618                 case EFI_PAL_CODE:
619                         e820_type = E820_TYPE_RESERVED;
620                         break;
621
622                 case EFI_UNUSABLE_MEMORY:
623                         e820_type = E820_TYPE_UNUSABLE;
624                         break;
625
626                 case EFI_ACPI_RECLAIM_MEMORY:
627                         e820_type = E820_TYPE_ACPI;
628                         break;
629
630                 case EFI_LOADER_CODE:
631                 case EFI_LOADER_DATA:
632                 case EFI_BOOT_SERVICES_CODE:
633                 case EFI_BOOT_SERVICES_DATA:
634                 case EFI_CONVENTIONAL_MEMORY:
635                         if (efi_soft_reserve_enabled() &&
636                             (d->attribute & EFI_MEMORY_SP))
637                                 e820_type = E820_TYPE_SOFT_RESERVED;
638                         else
639                                 e820_type = E820_TYPE_RAM;
640                         break;
641
642                 case EFI_ACPI_MEMORY_NVS:
643                         e820_type = E820_TYPE_NVS;
644                         break;
645
646                 case EFI_PERSISTENT_MEMORY:
647                         e820_type = E820_TYPE_PMEM;
648                         break;
649
650                 case EFI_UNACCEPTED_MEMORY:
651                         if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY)) {
652                                 efi_warn_once(
653 "The system has unaccepted memory,  but kernel does not support it\nConsider enabling CONFIG_UNACCEPTED_MEMORY\n");
654                                 continue;
655                         }
656                         e820_type = E820_TYPE_RAM;
657                         process_unaccepted_memory(d->phys_addr,
658                                                   d->phys_addr + PAGE_SIZE * d->num_pages);
659                         break;
660                 default:
661                         continue;
662                 }
663
664                 /* Merge adjacent mappings */
665                 if (prev && prev->type == e820_type &&
666                     (prev->addr + prev->size) == d->phys_addr) {
667                         prev->size += d->num_pages << 12;
668                         continue;
669                 }
670
671                 if (nr_entries == ARRAY_SIZE(params->e820_table)) {
672                         u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
673                                    sizeof(struct setup_data);
674
675                         if (!e820ext || e820ext_size < need)
676                                 return EFI_BUFFER_TOO_SMALL;
677
678                         /* boot_params map full, switch to e820 extended */
679                         entry = (struct boot_e820_entry *)e820ext->data;
680                 }
681
682                 entry->addr = d->phys_addr;
683                 entry->size = d->num_pages << PAGE_SHIFT;
684                 entry->type = e820_type;
685                 prev = entry++;
686                 nr_entries++;
687         }
688
689         if (nr_entries > ARRAY_SIZE(params->e820_table)) {
690                 u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
691
692                 add_e820ext(params, e820ext, nr_e820ext);
693                 nr_entries -= nr_e820ext;
694         }
695
696         params->e820_entries = (u8)nr_entries;
697
698         return EFI_SUCCESS;
699 }
700
701 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
702                                   u32 *e820ext_size)
703 {
704         efi_status_t status;
705         unsigned long size;
706
707         size = sizeof(struct setup_data) +
708                 sizeof(struct e820_entry) * nr_desc;
709
710         if (*e820ext) {
711                 efi_bs_call(free_pool, *e820ext);
712                 *e820ext = NULL;
713                 *e820ext_size = 0;
714         }
715
716         status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
717                              (void **)e820ext);
718         if (status == EFI_SUCCESS)
719                 *e820ext_size = size;
720
721         return status;
722 }
723
724 static efi_status_t allocate_e820(struct boot_params *params,
725                                   struct setup_data **e820ext,
726                                   u32 *e820ext_size)
727 {
728         struct efi_boot_memmap *map;
729         efi_status_t status;
730         __u32 nr_desc;
731
732         status = efi_get_memory_map(&map, false);
733         if (status != EFI_SUCCESS)
734                 return status;
735
736         nr_desc = map->map_size / map->desc_size;
737         if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
738                 u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
739                                  EFI_MMAP_NR_SLACK_SLOTS;
740
741                 status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
742         }
743
744         if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && status == EFI_SUCCESS)
745                 status = allocate_unaccepted_bitmap(nr_desc, map);
746
747         efi_bs_call(free_pool, map);
748         return status;
749 }
750
751 struct exit_boot_struct {
752         struct boot_params      *boot_params;
753         struct efi_info         *efi;
754 };
755
756 static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
757                                    void *priv)
758 {
759         const char *signature;
760         struct exit_boot_struct *p = priv;
761
762         signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
763                                    : EFI32_LOADER_SIGNATURE;
764         memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
765
766         efi_set_u64_split((unsigned long)efi_system_table,
767                           &p->efi->efi_systab, &p->efi->efi_systab_hi);
768         p->efi->efi_memdesc_size        = map->desc_size;
769         p->efi->efi_memdesc_version     = map->desc_ver;
770         efi_set_u64_split((unsigned long)map->map,
771                           &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
772         p->efi->efi_memmap_size         = map->map_size;
773
774         return EFI_SUCCESS;
775 }
776
777 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
778 {
779         struct setup_data *e820ext = NULL;
780         __u32 e820ext_size = 0;
781         efi_status_t status;
782         struct exit_boot_struct priv;
783
784         priv.boot_params        = boot_params;
785         priv.efi                = &boot_params->efi_info;
786
787         status = allocate_e820(boot_params, &e820ext, &e820ext_size);
788         if (status != EFI_SUCCESS)
789                 return status;
790
791         /* Might as well exit boot services now */
792         status = efi_exit_boot_services(handle, &priv, exit_boot_func);
793         if (status != EFI_SUCCESS)
794                 return status;
795
796         /* Historic? */
797         boot_params->alt_mem_k  = 32 * 1024;
798
799         status = setup_e820(boot_params, e820ext, e820ext_size);
800         if (status != EFI_SUCCESS)
801                 return status;
802
803         return EFI_SUCCESS;
804 }
805
806 static void __noreturn enter_kernel(unsigned long kernel_addr,
807                                     struct boot_params *boot_params)
808 {
809         /* enter decompressed kernel with boot_params pointer in RSI/ESI */
810         asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
811
812         unreachable();
813 }
814
815 /*
816  * On success, this routine will jump to the relocated image directly and never
817  * return.  On failure, it will exit to the firmware via efi_exit() instead of
818  * returning.
819  */
820 void __noreturn efi_stub_entry(efi_handle_t handle,
821                                efi_system_table_t *sys_table_arg,
822                                struct boot_params *boot_params)
823 {
824         unsigned long bzimage_addr = (unsigned long)startup_32;
825         unsigned long buffer_start, buffer_end;
826         struct setup_header *hdr = &boot_params->hdr;
827         const struct linux_efi_initrd *initrd = NULL;
828         efi_status_t status;
829
830         efi_system_table = sys_table_arg;
831         /* Check if we were booted by the EFI firmware */
832         if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
833                 efi_exit(handle, EFI_INVALID_PARAMETER);
834
835         efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
836         if (efi_dxe_table &&
837             efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
838                 efi_warn("Ignoring DXE services table: invalid signature\n");
839                 efi_dxe_table = NULL;
840         }
841
842         /*
843          * If the kernel isn't already loaded at a suitable address,
844          * relocate it.
845          *
846          * It must be loaded above LOAD_PHYSICAL_ADDR.
847          *
848          * The maximum address for 64-bit is 1 << 46 for 4-level paging. This
849          * is defined as the macro MAXMEM, but unfortunately that is not a
850          * compile-time constant if 5-level paging is configured, so we instead
851          * define our own macro for use here.
852          *
853          * For 32-bit, the maximum address is complicated to figure out, for
854          * now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what
855          * KASLR uses.
856          *
857          * Also relocate it if image_offset is zero, i.e. the kernel wasn't
858          * loaded by LoadImage, but rather by a bootloader that called the
859          * handover entry. The reason we must always relocate in this case is
860          * to handle the case of systemd-boot booting a unified kernel image,
861          * which is a PE executable that contains the bzImage and an initrd as
862          * COFF sections. The initrd section is placed after the bzImage
863          * without ensuring that there are at least init_size bytes available
864          * for the bzImage, and thus the compressed kernel's startup code may
865          * overwrite the initrd unless it is moved out of the way.
866          */
867
868         buffer_start = ALIGN(bzimage_addr - image_offset,
869                              hdr->kernel_alignment);
870         buffer_end = buffer_start + hdr->init_size;
871
872         if ((buffer_start < LOAD_PHYSICAL_ADDR)                              ||
873             (IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE)    ||
874             (IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) ||
875             (image_offset == 0)) {
876                 extern char _bss[];
877
878                 status = efi_relocate_kernel(&bzimage_addr,
879                                              (unsigned long)_bss - bzimage_addr,
880                                              hdr->init_size,
881                                              hdr->pref_address,
882                                              hdr->kernel_alignment,
883                                              LOAD_PHYSICAL_ADDR);
884                 if (status != EFI_SUCCESS) {
885                         efi_err("efi_relocate_kernel() failed!\n");
886                         goto fail;
887                 }
888                 /*
889                  * Now that we've copied the kernel elsewhere, we no longer
890                  * have a set up block before startup_32(), so reset image_offset
891                  * to zero in case it was set earlier.
892                  */
893                 image_offset = 0;
894         }
895
896 #ifdef CONFIG_CMDLINE_BOOL
897         status = efi_parse_options(CONFIG_CMDLINE);
898         if (status != EFI_SUCCESS) {
899                 efi_err("Failed to parse options\n");
900                 goto fail;
901         }
902 #endif
903         if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
904                 unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
905                                                ((u64)boot_params->ext_cmd_line_ptr << 32));
906                 status = efi_parse_options((char *)cmdline_paddr);
907                 if (status != EFI_SUCCESS) {
908                         efi_err("Failed to parse options\n");
909                         goto fail;
910                 }
911         }
912
913         /*
914          * At this point, an initrd may already have been loaded by the
915          * bootloader and passed via bootparams. We permit an initrd loaded
916          * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
917          *
918          * If the device path is not present, any command-line initrd=
919          * arguments will be processed only if image is not NULL, which will be
920          * the case only if we were loaded via the PE entry point.
921          */
922         status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
923                                  &initrd);
924         if (status != EFI_SUCCESS)
925                 goto fail;
926         if (initrd && initrd->size > 0) {
927                 efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
928                                   &boot_params->ext_ramdisk_image);
929                 efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
930                                   &boot_params->ext_ramdisk_size);
931         }
932
933
934         /*
935          * If the boot loader gave us a value for secure_boot then we use that,
936          * otherwise we ask the BIOS.
937          */
938         if (boot_params->secure_boot == efi_secureboot_mode_unset)
939                 boot_params->secure_boot = efi_get_secureboot();
940
941         /* Ask the firmware to clear memory on unclean shutdown */
942         efi_enable_reset_attack_mitigation();
943
944         efi_random_get_seed();
945
946         efi_retrieve_tpm2_eventlog();
947
948         setup_graphics(boot_params);
949
950         setup_efi_pci(boot_params);
951
952         setup_quirks(boot_params, bzimage_addr, buffer_end - buffer_start);
953
954         setup_unaccepted_memory();
955
956         status = exit_boot(boot_params, handle);
957         if (status != EFI_SUCCESS) {
958                 efi_err("exit_boot() failed!\n");
959                 goto fail;
960         }
961
962         if (IS_ENABLED(CONFIG_X86_64))
963                 bzimage_addr += startup_64 - startup_32;
964
965         enter_kernel(bzimage_addr, boot_params);
966 fail:
967         efi_err("efi_stub_entry() failed!\n");
968
969         efi_exit(handle, status);
970 }
971
972 #ifdef CONFIG_EFI_HANDOVER_PROTOCOL
973 void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
974                         struct boot_params *boot_params)
975 {
976         extern char _bss[], _ebss[];
977
978         memset(_bss, 0, _ebss - _bss);
979         efi_stub_entry(handle, sys_table_arg, boot_params);
980 }
981
982 #ifndef CONFIG_EFI_MIXED
983 extern __alias(efi_handover_entry)
984 void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
985                       struct boot_params *boot_params);
986
987 extern __alias(efi_handover_entry)
988 void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
989                       struct boot_params *boot_params);
990 #endif
991 #endif