Merge tag 'iio-fixes-for-5.4a' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / firmware / arm_scmi / clock.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7
8 #include "common.h"
9
10 enum scmi_clock_protocol_cmd {
11         CLOCK_ATTRIBUTES = 0x3,
12         CLOCK_DESCRIBE_RATES = 0x4,
13         CLOCK_RATE_SET = 0x5,
14         CLOCK_RATE_GET = 0x6,
15         CLOCK_CONFIG_SET = 0x7,
16 };
17
18 struct scmi_msg_resp_clock_protocol_attributes {
19         __le16 num_clocks;
20         u8 max_async_req;
21         u8 reserved;
22 };
23
24 struct scmi_msg_resp_clock_attributes {
25         __le32 attributes;
26 #define CLOCK_ENABLE    BIT(0)
27             u8 name[SCMI_MAX_STR_SIZE];
28 };
29
30 struct scmi_clock_set_config {
31         __le32 id;
32         __le32 attributes;
33 };
34
35 struct scmi_msg_clock_describe_rates {
36         __le32 id;
37         __le32 rate_index;
38 };
39
40 struct scmi_msg_resp_clock_describe_rates {
41         __le32 num_rates_flags;
42 #define NUM_RETURNED(x)         ((x) & 0xfff)
43 #define RATE_DISCRETE(x)        !((x) & BIT(12))
44 #define NUM_REMAINING(x)        ((x) >> 16)
45         struct {
46                 __le32 value_low;
47                 __le32 value_high;
48         } rate[0];
49 #define RATE_TO_U64(X)          \
50 ({                              \
51         typeof(X) x = (X);      \
52         le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
53 })
54 };
55
56 struct scmi_clock_set_rate {
57         __le32 flags;
58 #define CLOCK_SET_ASYNC         BIT(0)
59 #define CLOCK_SET_IGNORE_RESP   BIT(1)
60 #define CLOCK_SET_ROUND_UP      BIT(2)
61 #define CLOCK_SET_ROUND_AUTO    BIT(3)
62         __le32 id;
63         __le32 value_low;
64         __le32 value_high;
65 };
66
67 struct clock_info {
68         int num_clocks;
69         int max_async_req;
70         atomic_t cur_async_req;
71         struct scmi_clock_info *clk;
72 };
73
74 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
75                                               struct clock_info *ci)
76 {
77         int ret;
78         struct scmi_xfer *t;
79         struct scmi_msg_resp_clock_protocol_attributes *attr;
80
81         ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
82                                  SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
83         if (ret)
84                 return ret;
85
86         attr = t->rx.buf;
87
88         ret = scmi_do_xfer(handle, t);
89         if (!ret) {
90                 ci->num_clocks = le16_to_cpu(attr->num_clocks);
91                 ci->max_async_req = attr->max_async_req;
92         }
93
94         scmi_xfer_put(handle, t);
95         return ret;
96 }
97
98 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
99                                      u32 clk_id, struct scmi_clock_info *clk)
100 {
101         int ret;
102         struct scmi_xfer *t;
103         struct scmi_msg_resp_clock_attributes *attr;
104
105         ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
106                                  sizeof(clk_id), sizeof(*attr), &t);
107         if (ret)
108                 return ret;
109
110         put_unaligned_le32(clk_id, t->tx.buf);
111         attr = t->rx.buf;
112
113         ret = scmi_do_xfer(handle, t);
114         if (!ret)
115                 strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
116         else
117                 clk->name[0] = '\0';
118
119         scmi_xfer_put(handle, t);
120         return ret;
121 }
122
123 static int
124 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
125                               struct scmi_clock_info *clk)
126 {
127         u64 *rate;
128         int ret, cnt;
129         bool rate_discrete = false;
130         u32 tot_rate_cnt = 0, rates_flag;
131         u16 num_returned, num_remaining;
132         struct scmi_xfer *t;
133         struct scmi_msg_clock_describe_rates *clk_desc;
134         struct scmi_msg_resp_clock_describe_rates *rlist;
135
136         ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
137                                  SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
138         if (ret)
139                 return ret;
140
141         clk_desc = t->tx.buf;
142         rlist = t->rx.buf;
143
144         do {
145                 clk_desc->id = cpu_to_le32(clk_id);
146                 /* Set the number of rates to be skipped/already read */
147                 clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
148
149                 ret = scmi_do_xfer(handle, t);
150                 if (ret)
151                         goto err;
152
153                 rates_flag = le32_to_cpu(rlist->num_rates_flags);
154                 num_remaining = NUM_REMAINING(rates_flag);
155                 rate_discrete = RATE_DISCRETE(rates_flag);
156                 num_returned = NUM_RETURNED(rates_flag);
157
158                 if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
159                         dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
160                         break;
161                 }
162
163                 if (!rate_discrete) {
164                         clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
165                         clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
166                         clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
167                         dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
168                                 clk->range.min_rate, clk->range.max_rate,
169                                 clk->range.step_size);
170                         break;
171                 }
172
173                 rate = &clk->list.rates[tot_rate_cnt];
174                 for (cnt = 0; cnt < num_returned; cnt++, rate++) {
175                         *rate = RATE_TO_U64(rlist->rate[cnt]);
176                         dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
177                 }
178
179                 tot_rate_cnt += num_returned;
180                 /*
181                  * check for both returned and remaining to avoid infinite
182                  * loop due to buggy firmware
183                  */
184         } while (num_returned && num_remaining);
185
186         if (rate_discrete)
187                 clk->list.num_rates = tot_rate_cnt;
188
189         clk->rate_discrete = rate_discrete;
190
191 err:
192         scmi_xfer_put(handle, t);
193         return ret;
194 }
195
196 static int
197 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
198 {
199         int ret;
200         struct scmi_xfer *t;
201
202         ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
203                                  sizeof(__le32), sizeof(u64), &t);
204         if (ret)
205                 return ret;
206
207         put_unaligned_le32(clk_id, t->tx.buf);
208
209         ret = scmi_do_xfer(handle, t);
210         if (!ret)
211                 *value = get_unaligned_le64(t->rx.buf);
212
213         scmi_xfer_put(handle, t);
214         return ret;
215 }
216
217 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
218                                u64 rate)
219 {
220         int ret;
221         u32 flags = 0;
222         struct scmi_xfer *t;
223         struct scmi_clock_set_rate *cfg;
224         struct clock_info *ci = handle->clk_priv;
225
226         ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
227                                  sizeof(*cfg), 0, &t);
228         if (ret)
229                 return ret;
230
231         if (ci->max_async_req &&
232             atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
233                 flags |= CLOCK_SET_ASYNC;
234
235         cfg = t->tx.buf;
236         cfg->flags = cpu_to_le32(flags);
237         cfg->id = cpu_to_le32(clk_id);
238         cfg->value_low = cpu_to_le32(rate & 0xffffffff);
239         cfg->value_high = cpu_to_le32(rate >> 32);
240
241         if (flags & CLOCK_SET_ASYNC)
242                 ret = scmi_do_xfer_with_response(handle, t);
243         else
244                 ret = scmi_do_xfer(handle, t);
245
246         if (ci->max_async_req)
247                 atomic_dec(&ci->cur_async_req);
248
249         scmi_xfer_put(handle, t);
250         return ret;
251 }
252
253 static int
254 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
255 {
256         int ret;
257         struct scmi_xfer *t;
258         struct scmi_clock_set_config *cfg;
259
260         ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
261                                  sizeof(*cfg), 0, &t);
262         if (ret)
263                 return ret;
264
265         cfg = t->tx.buf;
266         cfg->id = cpu_to_le32(clk_id);
267         cfg->attributes = cpu_to_le32(config);
268
269         ret = scmi_do_xfer(handle, t);
270
271         scmi_xfer_put(handle, t);
272         return ret;
273 }
274
275 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
276 {
277         return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
278 }
279
280 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
281 {
282         return scmi_clock_config_set(handle, clk_id, 0);
283 }
284
285 static int scmi_clock_count_get(const struct scmi_handle *handle)
286 {
287         struct clock_info *ci = handle->clk_priv;
288
289         return ci->num_clocks;
290 }
291
292 static const struct scmi_clock_info *
293 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
294 {
295         struct clock_info *ci = handle->clk_priv;
296         struct scmi_clock_info *clk = ci->clk + clk_id;
297
298         if (!clk->name[0])
299                 return NULL;
300
301         return clk;
302 }
303
304 static struct scmi_clk_ops clk_ops = {
305         .count_get = scmi_clock_count_get,
306         .info_get = scmi_clock_info_get,
307         .rate_get = scmi_clock_rate_get,
308         .rate_set = scmi_clock_rate_set,
309         .enable = scmi_clock_enable,
310         .disable = scmi_clock_disable,
311 };
312
313 static int scmi_clock_protocol_init(struct scmi_handle *handle)
314 {
315         u32 version;
316         int clkid, ret;
317         struct clock_info *cinfo;
318
319         scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
320
321         dev_dbg(handle->dev, "Clock Version %d.%d\n",
322                 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
323
324         cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
325         if (!cinfo)
326                 return -ENOMEM;
327
328         scmi_clock_protocol_attributes_get(handle, cinfo);
329
330         cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
331                                   sizeof(*cinfo->clk), GFP_KERNEL);
332         if (!cinfo->clk)
333                 return -ENOMEM;
334
335         for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
336                 struct scmi_clock_info *clk = cinfo->clk + clkid;
337
338                 ret = scmi_clock_attributes_get(handle, clkid, clk);
339                 if (!ret)
340                         scmi_clock_describe_rates_get(handle, clkid, clk);
341         }
342
343         handle->clk_ops = &clk_ops;
344         handle->clk_priv = cinfo;
345
346         return 0;
347 }
348
349 static int __init scmi_clock_init(void)
350 {
351         return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
352                                       &scmi_clock_protocol_init);
353 }
354 subsys_initcall(scmi_clock_init);