scsi: hisi_sas: Reduce HISI_SAS_SGE_PAGE_CNT in size
[linux-2.6-microblaze.git] / drivers / firewire / core-iso.c
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33
34 #include <asm/byteorder.h>
35
36 #include "core.h"
37
38 /*
39  * Isochronous DMA context management
40  */
41
42 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
43 {
44         int i;
45
46         buffer->page_count = 0;
47         buffer->page_count_mapped = 0;
48         buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
49                                       GFP_KERNEL);
50         if (buffer->pages == NULL)
51                 return -ENOMEM;
52
53         for (i = 0; i < page_count; i++) {
54                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
55                 if (buffer->pages[i] == NULL)
56                         break;
57         }
58         buffer->page_count = i;
59         if (i < page_count) {
60                 fw_iso_buffer_destroy(buffer, NULL);
61                 return -ENOMEM;
62         }
63
64         return 0;
65 }
66
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
68                           enum dma_data_direction direction)
69 {
70         dma_addr_t address;
71         int i;
72
73         buffer->direction = direction;
74
75         for (i = 0; i < buffer->page_count; i++) {
76                 address = dma_map_page(card->device, buffer->pages[i],
77                                        0, PAGE_SIZE, direction);
78                 if (dma_mapping_error(card->device, address))
79                         break;
80
81                 set_page_private(buffer->pages[i], address);
82         }
83         buffer->page_count_mapped = i;
84         if (i < buffer->page_count)
85                 return -ENOMEM;
86
87         return 0;
88 }
89
90 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
91                        int page_count, enum dma_data_direction direction)
92 {
93         int ret;
94
95         ret = fw_iso_buffer_alloc(buffer, page_count);
96         if (ret < 0)
97                 return ret;
98
99         ret = fw_iso_buffer_map_dma(buffer, card, direction);
100         if (ret < 0)
101                 fw_iso_buffer_destroy(buffer, card);
102
103         return ret;
104 }
105 EXPORT_SYMBOL(fw_iso_buffer_init);
106
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
108                           struct vm_area_struct *vma)
109 {
110         return vm_map_pages_zero(vma, buffer->pages,
111                                         buffer->page_count);
112 }
113
114 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
115                            struct fw_card *card)
116 {
117         int i;
118         dma_addr_t address;
119
120         for (i = 0; i < buffer->page_count_mapped; i++) {
121                 address = page_private(buffer->pages[i]);
122                 dma_unmap_page(card->device, address,
123                                PAGE_SIZE, buffer->direction);
124         }
125         for (i = 0; i < buffer->page_count; i++)
126                 __free_page(buffer->pages[i]);
127
128         kfree(buffer->pages);
129         buffer->pages = NULL;
130         buffer->page_count = 0;
131         buffer->page_count_mapped = 0;
132 }
133 EXPORT_SYMBOL(fw_iso_buffer_destroy);
134
135 /* Convert DMA address to offset into virtually contiguous buffer. */
136 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
137 {
138         size_t i;
139         dma_addr_t address;
140         ssize_t offset;
141
142         for (i = 0; i < buffer->page_count; i++) {
143                 address = page_private(buffer->pages[i]);
144                 offset = (ssize_t)completed - (ssize_t)address;
145                 if (offset > 0 && offset <= PAGE_SIZE)
146                         return (i << PAGE_SHIFT) + offset;
147         }
148
149         return 0;
150 }
151
152 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
153                 int type, int channel, int speed, size_t header_size,
154                 fw_iso_callback_t callback, void *callback_data)
155 {
156         struct fw_iso_context *ctx;
157
158         ctx = card->driver->allocate_iso_context(card,
159                                                  type, channel, header_size);
160         if (IS_ERR(ctx))
161                 return ctx;
162
163         ctx->card = card;
164         ctx->type = type;
165         ctx->channel = channel;
166         ctx->speed = speed;
167         ctx->header_size = header_size;
168         ctx->callback.sc = callback;
169         ctx->callback_data = callback_data;
170
171         return ctx;
172 }
173 EXPORT_SYMBOL(fw_iso_context_create);
174
175 void fw_iso_context_destroy(struct fw_iso_context *ctx)
176 {
177         ctx->card->driver->free_iso_context(ctx);
178 }
179 EXPORT_SYMBOL(fw_iso_context_destroy);
180
181 int fw_iso_context_start(struct fw_iso_context *ctx,
182                          int cycle, int sync, int tags)
183 {
184         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
185 }
186 EXPORT_SYMBOL(fw_iso_context_start);
187
188 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
189 {
190         return ctx->card->driver->set_iso_channels(ctx, channels);
191 }
192
193 int fw_iso_context_queue(struct fw_iso_context *ctx,
194                          struct fw_iso_packet *packet,
195                          struct fw_iso_buffer *buffer,
196                          unsigned long payload)
197 {
198         return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199 }
200 EXPORT_SYMBOL(fw_iso_context_queue);
201
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203 {
204         ctx->card->driver->flush_queue_iso(ctx);
205 }
206 EXPORT_SYMBOL(fw_iso_context_queue_flush);
207
208 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
209 {
210         return ctx->card->driver->flush_iso_completions(ctx);
211 }
212 EXPORT_SYMBOL(fw_iso_context_flush_completions);
213
214 int fw_iso_context_stop(struct fw_iso_context *ctx)
215 {
216         return ctx->card->driver->stop_iso(ctx);
217 }
218 EXPORT_SYMBOL(fw_iso_context_stop);
219
220 /*
221  * Isochronous bus resource management (channels, bandwidth), client side
222  */
223
224 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
225                             int bandwidth, bool allocate)
226 {
227         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
228         __be32 data[2];
229
230         /*
231          * On a 1394a IRM with low contention, try < 1 is enough.
232          * On a 1394-1995 IRM, we need at least try < 2.
233          * Let's just do try < 5.
234          */
235         for (try = 0; try < 5; try++) {
236                 new = allocate ? old - bandwidth : old + bandwidth;
237                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
238                         return -EBUSY;
239
240                 data[0] = cpu_to_be32(old);
241                 data[1] = cpu_to_be32(new);
242                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
243                                 irm_id, generation, SCODE_100,
244                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
245                                 data, 8)) {
246                 case RCODE_GENERATION:
247                         /* A generation change frees all bandwidth. */
248                         return allocate ? -EAGAIN : bandwidth;
249
250                 case RCODE_COMPLETE:
251                         if (be32_to_cpup(data) == old)
252                                 return bandwidth;
253
254                         old = be32_to_cpup(data);
255                         /* Fall through. */
256                 }
257         }
258
259         return -EIO;
260 }
261
262 static int manage_channel(struct fw_card *card, int irm_id, int generation,
263                 u32 channels_mask, u64 offset, bool allocate)
264 {
265         __be32 bit, all, old;
266         __be32 data[2];
267         int channel, ret = -EIO, retry = 5;
268
269         old = all = allocate ? cpu_to_be32(~0) : 0;
270
271         for (channel = 0; channel < 32; channel++) {
272                 if (!(channels_mask & 1 << channel))
273                         continue;
274
275                 ret = -EBUSY;
276
277                 bit = cpu_to_be32(1 << (31 - channel));
278                 if ((old & bit) != (all & bit))
279                         continue;
280
281                 data[0] = old;
282                 data[1] = old ^ bit;
283                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
284                                            irm_id, generation, SCODE_100,
285                                            offset, data, 8)) {
286                 case RCODE_GENERATION:
287                         /* A generation change frees all channels. */
288                         return allocate ? -EAGAIN : channel;
289
290                 case RCODE_COMPLETE:
291                         if (data[0] == old)
292                                 return channel;
293
294                         old = data[0];
295
296                         /* Is the IRM 1394a-2000 compliant? */
297                         if ((data[0] & bit) == (data[1] & bit))
298                                 continue;
299
300                         /* 1394-1995 IRM, fall through to retry. */
301                 default:
302                         if (retry) {
303                                 retry--;
304                                 channel--;
305                         } else {
306                                 ret = -EIO;
307                         }
308                 }
309         }
310
311         return ret;
312 }
313
314 static void deallocate_channel(struct fw_card *card, int irm_id,
315                                int generation, int channel)
316 {
317         u32 mask;
318         u64 offset;
319
320         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
321         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
322                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
323
324         manage_channel(card, irm_id, generation, mask, offset, false);
325 }
326
327 /**
328  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
329  * @card: card interface for this action
330  * @generation: bus generation
331  * @channels_mask: bitmask for channel allocation
332  * @channel: pointer for returning channel allocation result
333  * @bandwidth: pointer for returning bandwidth allocation result
334  * @allocate: whether to allocate (true) or deallocate (false)
335  *
336  * In parameters: card, generation, channels_mask, bandwidth, allocate
337  * Out parameters: channel, bandwidth
338  *
339  * This function blocks (sleeps) during communication with the IRM.
340  *
341  * Allocates or deallocates at most one channel out of channels_mask.
342  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
343  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
344  * channel 0 and LSB for channel 63.)
345  * Allocates or deallocates as many bandwidth allocation units as specified.
346  *
347  * Returns channel < 0 if no channel was allocated or deallocated.
348  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
349  *
350  * If generation is stale, deallocations succeed but allocations fail with
351  * channel = -EAGAIN.
352  *
353  * If channel allocation fails, no bandwidth will be allocated either.
354  * If bandwidth allocation fails, no channel will be allocated either.
355  * But deallocations of channel and bandwidth are tried independently
356  * of each other's success.
357  */
358 void fw_iso_resource_manage(struct fw_card *card, int generation,
359                             u64 channels_mask, int *channel, int *bandwidth,
360                             bool allocate)
361 {
362         u32 channels_hi = channels_mask;        /* channels 31...0 */
363         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
364         int irm_id, ret, c = -EINVAL;
365
366         spin_lock_irq(&card->lock);
367         irm_id = card->irm_node->node_id;
368         spin_unlock_irq(&card->lock);
369
370         if (channels_hi)
371                 c = manage_channel(card, irm_id, generation, channels_hi,
372                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
373                                 allocate);
374         if (channels_lo && c < 0) {
375                 c = manage_channel(card, irm_id, generation, channels_lo,
376                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
377                                 allocate);
378                 if (c >= 0)
379                         c += 32;
380         }
381         *channel = c;
382
383         if (allocate && channels_mask != 0 && c < 0)
384                 *bandwidth = 0;
385
386         if (*bandwidth == 0)
387                 return;
388
389         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
390         if (ret < 0)
391                 *bandwidth = 0;
392
393         if (allocate && ret < 0) {
394                 if (c >= 0)
395                         deallocate_channel(card, irm_id, generation, c);
396                 *channel = ret;
397         }
398 }
399 EXPORT_SYMBOL(fw_iso_resource_manage);