Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *      apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57
58 int edac_get_report_status(void)
59 {
60         return edac_report;
61 }
62 EXPORT_SYMBOL_GPL(edac_get_report_status);
63
64 void edac_set_report_status(int new)
65 {
66         if (new == EDAC_REPORTING_ENABLED ||
67             new == EDAC_REPORTING_DISABLED ||
68             new == EDAC_REPORTING_FORCE)
69                 edac_report = new;
70 }
71 EXPORT_SYMBOL_GPL(edac_set_report_status);
72
73 static int edac_report_set(const char *str, const struct kernel_param *kp)
74 {
75         if (!str)
76                 return -EINVAL;
77
78         if (!strncmp(str, "on", 2))
79                 edac_report = EDAC_REPORTING_ENABLED;
80         else if (!strncmp(str, "off", 3))
81                 edac_report = EDAC_REPORTING_DISABLED;
82         else if (!strncmp(str, "force", 5))
83                 edac_report = EDAC_REPORTING_FORCE;
84
85         return 0;
86 }
87
88 static int edac_report_get(char *buffer, const struct kernel_param *kp)
89 {
90         int ret = 0;
91
92         switch (edac_report) {
93         case EDAC_REPORTING_ENABLED:
94                 ret = sprintf(buffer, "on");
95                 break;
96         case EDAC_REPORTING_DISABLED:
97                 ret = sprintf(buffer, "off");
98                 break;
99         case EDAC_REPORTING_FORCE:
100                 ret = sprintf(buffer, "force");
101                 break;
102         default:
103                 ret = -EINVAL;
104                 break;
105         }
106
107         return ret;
108 }
109
110 static const struct kernel_param_ops edac_report_ops = {
111         .set = edac_report_set,
112         .get = edac_report_get,
113 };
114
115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
116
117 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
118                                  unsigned len)
119 {
120         struct mem_ctl_info *mci = dimm->mci;
121         int i, n, count = 0;
122         char *p = buf;
123
124         for (i = 0; i < mci->n_layers; i++) {
125                 n = snprintf(p, len, "%s %d ",
126                               edac_layer_name[mci->layers[i].type],
127                               dimm->location[i]);
128                 p += n;
129                 len -= n;
130                 count += n;
131                 if (!len)
132                         break;
133         }
134
135         return count;
136 }
137
138 #ifdef CONFIG_EDAC_DEBUG
139
140 static void edac_mc_dump_channel(struct rank_info *chan)
141 {
142         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
143         edac_dbg(4, "    channel = %p\n", chan);
144         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
145         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
146 }
147
148 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
149 {
150         char location[80];
151
152         edac_dimm_info_location(dimm, location, sizeof(location));
153
154         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
155                  dimm->mci->csbased ? "rank" : "dimm",
156                  number, location, dimm->csrow, dimm->cschannel);
157         edac_dbg(4, "  dimm = %p\n", dimm);
158         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
159         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
160         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
161         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 }
163
164 static void edac_mc_dump_csrow(struct csrow_info *csrow)
165 {
166         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
167         edac_dbg(4, "  csrow = %p\n", csrow);
168         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
169         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
170         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
171         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
172         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
173         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
174 }
175
176 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
177 {
178         edac_dbg(3, "\tmci = %p\n", mci);
179         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
180         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
181         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
182         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
183         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
184                  mci->nr_csrows, mci->csrows);
185         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
186                  mci->tot_dimms, mci->dimms);
187         edac_dbg(3, "\tdev = %p\n", mci->pdev);
188         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
189                  mci->mod_name, mci->ctl_name);
190         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
191 }
192
193 #endif                          /* CONFIG_EDAC_DEBUG */
194
195 const char * const edac_mem_types[] = {
196         [MEM_EMPTY]     = "Empty",
197         [MEM_RESERVED]  = "Reserved",
198         [MEM_UNKNOWN]   = "Unknown",
199         [MEM_FPM]       = "FPM",
200         [MEM_EDO]       = "EDO",
201         [MEM_BEDO]      = "BEDO",
202         [MEM_SDR]       = "Unbuffered-SDR",
203         [MEM_RDR]       = "Registered-SDR",
204         [MEM_DDR]       = "Unbuffered-DDR",
205         [MEM_RDDR]      = "Registered-DDR",
206         [MEM_RMBS]      = "RMBS",
207         [MEM_DDR2]      = "Unbuffered-DDR2",
208         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
209         [MEM_RDDR2]     = "Registered-DDR2",
210         [MEM_XDR]       = "XDR",
211         [MEM_DDR3]      = "Unbuffered-DDR3",
212         [MEM_RDDR3]     = "Registered-DDR3",
213         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
214         [MEM_DDR4]      = "Unbuffered-DDR4",
215         [MEM_RDDR4]     = "Registered-DDR4",
216         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
217         [MEM_NVDIMM]    = "Non-volatile-RAM",
218 };
219 EXPORT_SYMBOL_GPL(edac_mem_types);
220
221 /**
222  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223  * @p:          pointer to a pointer with the memory offset to be used. At
224  *              return, this will be incremented to point to the next offset
225  * @size:       Size of the data structure to be reserved
226  * @n_elems:    Number of elements that should be reserved
227  *
228  * If 'size' is a constant, the compiler will optimize this whole function
229  * down to either a no-op or the addition of a constant to the value of '*p'.
230  *
231  * The 'p' pointer is absolutely needed to keep the proper advancing
232  * further in memory to the proper offsets when allocating the struct along
233  * with its embedded structs, as edac_device_alloc_ctl_info() does it
234  * above, for example.
235  *
236  * At return, the pointer 'p' will be incremented to be used on a next call
237  * to this function.
238  */
239 void *edac_align_ptr(void **p, unsigned size, int n_elems)
240 {
241         unsigned align, r;
242         void *ptr = *p;
243
244         *p += size * n_elems;
245
246         /*
247          * 'p' can possibly be an unaligned item X such that sizeof(X) is
248          * 'size'.  Adjust 'p' so that its alignment is at least as
249          * stringent as what the compiler would provide for X and return
250          * the aligned result.
251          * Here we assume that the alignment of a "long long" is the most
252          * stringent alignment that the compiler will ever provide by default.
253          * As far as I know, this is a reasonable assumption.
254          */
255         if (size > sizeof(long))
256                 align = sizeof(long long);
257         else if (size > sizeof(int))
258                 align = sizeof(long);
259         else if (size > sizeof(short))
260                 align = sizeof(int);
261         else if (size > sizeof(char))
262                 align = sizeof(short);
263         else
264                 return (char *)ptr;
265
266         r = (unsigned long)p % align;
267
268         if (r == 0)
269                 return (char *)ptr;
270
271         *p += align - r;
272
273         return (void *)(((unsigned long)ptr) + align - r);
274 }
275
276 static void _edac_mc_free(struct mem_ctl_info *mci)
277 {
278         int i, chn, row;
279         struct csrow_info *csr;
280         const unsigned int tot_dimms = mci->tot_dimms;
281         const unsigned int tot_channels = mci->num_cschannel;
282         const unsigned int tot_csrows = mci->nr_csrows;
283
284         if (mci->dimms) {
285                 for (i = 0; i < tot_dimms; i++)
286                         kfree(mci->dimms[i]);
287                 kfree(mci->dimms);
288         }
289         if (mci->csrows) {
290                 for (row = 0; row < tot_csrows; row++) {
291                         csr = mci->csrows[row];
292                         if (csr) {
293                                 if (csr->channels) {
294                                         for (chn = 0; chn < tot_channels; chn++)
295                                                 kfree(csr->channels[chn]);
296                                         kfree(csr->channels);
297                                 }
298                                 kfree(csr);
299                         }
300                 }
301                 kfree(mci->csrows);
302         }
303         kfree(mci);
304 }
305
306 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
307                                    unsigned n_layers,
308                                    struct edac_mc_layer *layers,
309                                    unsigned sz_pvt)
310 {
311         struct mem_ctl_info *mci;
312         struct edac_mc_layer *layer;
313         struct csrow_info *csr;
314         struct rank_info *chan;
315         struct dimm_info *dimm;
316         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
317         unsigned pos[EDAC_MAX_LAYERS];
318         unsigned size, tot_dimms = 1, count = 1;
319         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
320         void *pvt, *p, *ptr = NULL;
321         int i, j, row, chn, n, len, off;
322         bool per_rank = false;
323
324         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
325         /*
326          * Calculate the total amount of dimms and csrows/cschannels while
327          * in the old API emulation mode
328          */
329         for (i = 0; i < n_layers; i++) {
330                 tot_dimms *= layers[i].size;
331                 if (layers[i].is_virt_csrow)
332                         tot_csrows *= layers[i].size;
333                 else
334                         tot_channels *= layers[i].size;
335
336                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
337                         per_rank = true;
338         }
339
340         /* Figure out the offsets of the various items from the start of an mc
341          * structure.  We want the alignment of each item to be at least as
342          * stringent as what the compiler would provide if we could simply
343          * hardcode everything into a single struct.
344          */
345         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
346         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
347         for (i = 0; i < n_layers; i++) {
348                 count *= layers[i].size;
349                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
350                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
351                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352                 tot_errcount += 2 * count;
353         }
354
355         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
356         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
357         size = ((unsigned long)pvt) + sz_pvt;
358
359         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
360                  size,
361                  tot_dimms,
362                  per_rank ? "ranks" : "dimms",
363                  tot_csrows * tot_channels);
364
365         mci = kzalloc(size, GFP_KERNEL);
366         if (mci == NULL)
367                 return NULL;
368
369         /* Adjust pointers so they point within the memory we just allocated
370          * rather than an imaginary chunk of memory located at address 0.
371          */
372         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
373         for (i = 0; i < n_layers; i++) {
374                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
375                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
376         }
377         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
378
379         /* setup index and various internal pointers */
380         mci->mc_idx = mc_num;
381         mci->tot_dimms = tot_dimms;
382         mci->pvt_info = pvt;
383         mci->n_layers = n_layers;
384         mci->layers = layer;
385         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
386         mci->nr_csrows = tot_csrows;
387         mci->num_cschannel = tot_channels;
388         mci->csbased = per_rank;
389
390         /*
391          * Alocate and fill the csrow/channels structs
392          */
393         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
394         if (!mci->csrows)
395                 goto error;
396         for (row = 0; row < tot_csrows; row++) {
397                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
398                 if (!csr)
399                         goto error;
400                 mci->csrows[row] = csr;
401                 csr->csrow_idx = row;
402                 csr->mci = mci;
403                 csr->nr_channels = tot_channels;
404                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
405                                         GFP_KERNEL);
406                 if (!csr->channels)
407                         goto error;
408
409                 for (chn = 0; chn < tot_channels; chn++) {
410                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
411                         if (!chan)
412                                 goto error;
413                         csr->channels[chn] = chan;
414                         chan->chan_idx = chn;
415                         chan->csrow = csr;
416                 }
417         }
418
419         /*
420          * Allocate and fill the dimm structs
421          */
422         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
423         if (!mci->dimms)
424                 goto error;
425
426         memset(&pos, 0, sizeof(pos));
427         row = 0;
428         chn = 0;
429         for (i = 0; i < tot_dimms; i++) {
430                 chan = mci->csrows[row]->channels[chn];
431                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
432                 if (off < 0 || off >= tot_dimms) {
433                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
434                         goto error;
435                 }
436
437                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438                 if (!dimm)
439                         goto error;
440                 mci->dimms[off] = dimm;
441                 dimm->mci = mci;
442
443                 /*
444                  * Copy DIMM location and initialize it.
445                  */
446                 len = sizeof(dimm->label);
447                 p = dimm->label;
448                 n = snprintf(p, len, "mc#%u", mc_num);
449                 p += n;
450                 len -= n;
451                 for (j = 0; j < n_layers; j++) {
452                         n = snprintf(p, len, "%s#%u",
453                                      edac_layer_name[layers[j].type],
454                                      pos[j]);
455                         p += n;
456                         len -= n;
457                         dimm->location[j] = pos[j];
458
459                         if (len <= 0)
460                                 break;
461                 }
462
463                 /* Link it to the csrows old API data */
464                 chan->dimm = dimm;
465                 dimm->csrow = row;
466                 dimm->cschannel = chn;
467
468                 /* Increment csrow location */
469                 if (layers[0].is_virt_csrow) {
470                         chn++;
471                         if (chn == tot_channels) {
472                                 chn = 0;
473                                 row++;
474                         }
475                 } else {
476                         row++;
477                         if (row == tot_csrows) {
478                                 row = 0;
479                                 chn++;
480                         }
481                 }
482
483                 /* Increment dimm location */
484                 for (j = n_layers - 1; j >= 0; j--) {
485                         pos[j]++;
486                         if (pos[j] < layers[j].size)
487                                 break;
488                         pos[j] = 0;
489                 }
490         }
491
492         mci->op_state = OP_ALLOC;
493
494         return mci;
495
496 error:
497         _edac_mc_free(mci);
498
499         return NULL;
500 }
501 EXPORT_SYMBOL_GPL(edac_mc_alloc);
502
503 void edac_mc_free(struct mem_ctl_info *mci)
504 {
505         edac_dbg(1, "\n");
506
507         /* If we're not yet registered with sysfs free only what was allocated
508          * in edac_mc_alloc().
509          */
510         if (!device_is_registered(&mci->dev)) {
511                 _edac_mc_free(mci);
512                 return;
513         }
514
515         /* the mci instance is freed here, when the sysfs object is dropped */
516         edac_unregister_sysfs(mci);
517 }
518 EXPORT_SYMBOL_GPL(edac_mc_free);
519
520 bool edac_has_mcs(void)
521 {
522         bool ret;
523
524         mutex_lock(&mem_ctls_mutex);
525
526         ret = list_empty(&mc_devices);
527
528         mutex_unlock(&mem_ctls_mutex);
529
530         return !ret;
531 }
532 EXPORT_SYMBOL_GPL(edac_has_mcs);
533
534 /* Caller must hold mem_ctls_mutex */
535 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
536 {
537         struct mem_ctl_info *mci;
538         struct list_head *item;
539
540         edac_dbg(3, "\n");
541
542         list_for_each(item, &mc_devices) {
543                 mci = list_entry(item, struct mem_ctl_info, link);
544
545                 if (mci->pdev == dev)
546                         return mci;
547         }
548
549         return NULL;
550 }
551
552 /**
553  * find_mci_by_dev
554  *
555  *      scan list of controllers looking for the one that manages
556  *      the 'dev' device
557  * @dev: pointer to a struct device related with the MCI
558  */
559 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
560 {
561         struct mem_ctl_info *ret;
562
563         mutex_lock(&mem_ctls_mutex);
564         ret = __find_mci_by_dev(dev);
565         mutex_unlock(&mem_ctls_mutex);
566
567         return ret;
568 }
569 EXPORT_SYMBOL_GPL(find_mci_by_dev);
570
571 /*
572  * edac_mc_workq_function
573  *      performs the operation scheduled by a workq request
574  */
575 static void edac_mc_workq_function(struct work_struct *work_req)
576 {
577         struct delayed_work *d_work = to_delayed_work(work_req);
578         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
579
580         mutex_lock(&mem_ctls_mutex);
581
582         if (mci->op_state != OP_RUNNING_POLL) {
583                 mutex_unlock(&mem_ctls_mutex);
584                 return;
585         }
586
587         if (edac_op_state == EDAC_OPSTATE_POLL)
588                 mci->edac_check(mci);
589
590         mutex_unlock(&mem_ctls_mutex);
591
592         /* Queue ourselves again. */
593         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
594 }
595
596 /*
597  * edac_mc_reset_delay_period(unsigned long value)
598  *
599  *      user space has updated our poll period value, need to
600  *      reset our workq delays
601  */
602 void edac_mc_reset_delay_period(unsigned long value)
603 {
604         struct mem_ctl_info *mci;
605         struct list_head *item;
606
607         mutex_lock(&mem_ctls_mutex);
608
609         list_for_each(item, &mc_devices) {
610                 mci = list_entry(item, struct mem_ctl_info, link);
611
612                 if (mci->op_state == OP_RUNNING_POLL)
613                         edac_mod_work(&mci->work, value);
614         }
615         mutex_unlock(&mem_ctls_mutex);
616 }
617
618
619
620 /* Return 0 on success, 1 on failure.
621  * Before calling this function, caller must
622  * assign a unique value to mci->mc_idx.
623  *
624  *      locking model:
625  *
626  *              called with the mem_ctls_mutex lock held
627  */
628 static int add_mc_to_global_list(struct mem_ctl_info *mci)
629 {
630         struct list_head *item, *insert_before;
631         struct mem_ctl_info *p;
632
633         insert_before = &mc_devices;
634
635         p = __find_mci_by_dev(mci->pdev);
636         if (unlikely(p != NULL))
637                 goto fail0;
638
639         list_for_each(item, &mc_devices) {
640                 p = list_entry(item, struct mem_ctl_info, link);
641
642                 if (p->mc_idx >= mci->mc_idx) {
643                         if (unlikely(p->mc_idx == mci->mc_idx))
644                                 goto fail1;
645
646                         insert_before = item;
647                         break;
648                 }
649         }
650
651         list_add_tail_rcu(&mci->link, insert_before);
652         return 0;
653
654 fail0:
655         edac_printk(KERN_WARNING, EDAC_MC,
656                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
657                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
658         return 1;
659
660 fail1:
661         edac_printk(KERN_WARNING, EDAC_MC,
662                 "bug in low-level driver: attempt to assign\n"
663                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
664         return 1;
665 }
666
667 static int del_mc_from_global_list(struct mem_ctl_info *mci)
668 {
669         list_del_rcu(&mci->link);
670
671         /* these are for safe removal of devices from global list while
672          * NMI handlers may be traversing list
673          */
674         synchronize_rcu();
675         INIT_LIST_HEAD(&mci->link);
676
677         return list_empty(&mc_devices);
678 }
679
680 struct mem_ctl_info *edac_mc_find(int idx)
681 {
682         struct mem_ctl_info *mci;
683         struct list_head *item;
684
685         mutex_lock(&mem_ctls_mutex);
686
687         list_for_each(item, &mc_devices) {
688                 mci = list_entry(item, struct mem_ctl_info, link);
689                 if (mci->mc_idx == idx)
690                         goto unlock;
691         }
692
693         mci = NULL;
694 unlock:
695         mutex_unlock(&mem_ctls_mutex);
696         return mci;
697 }
698 EXPORT_SYMBOL(edac_mc_find);
699
700 const char *edac_get_owner(void)
701 {
702         return edac_mc_owner;
703 }
704 EXPORT_SYMBOL_GPL(edac_get_owner);
705
706 /* FIXME - should a warning be printed if no error detection? correction? */
707 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
708                                const struct attribute_group **groups)
709 {
710         int ret = -EINVAL;
711         edac_dbg(0, "\n");
712
713 #ifdef CONFIG_EDAC_DEBUG
714         if (edac_debug_level >= 3)
715                 edac_mc_dump_mci(mci);
716
717         if (edac_debug_level >= 4) {
718                 int i;
719
720                 for (i = 0; i < mci->nr_csrows; i++) {
721                         struct csrow_info *csrow = mci->csrows[i];
722                         u32 nr_pages = 0;
723                         int j;
724
725                         for (j = 0; j < csrow->nr_channels; j++)
726                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
727                         if (!nr_pages)
728                                 continue;
729                         edac_mc_dump_csrow(csrow);
730                         for (j = 0; j < csrow->nr_channels; j++)
731                                 if (csrow->channels[j]->dimm->nr_pages)
732                                         edac_mc_dump_channel(csrow->channels[j]);
733                 }
734                 for (i = 0; i < mci->tot_dimms; i++)
735                         if (mci->dimms[i]->nr_pages)
736                                 edac_mc_dump_dimm(mci->dimms[i], i);
737         }
738 #endif
739         mutex_lock(&mem_ctls_mutex);
740
741         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
742                 ret = -EPERM;
743                 goto fail0;
744         }
745
746         if (add_mc_to_global_list(mci))
747                 goto fail0;
748
749         /* set load time so that error rate can be tracked */
750         mci->start_time = jiffies;
751
752         mci->bus = edac_get_sysfs_subsys();
753
754         if (edac_create_sysfs_mci_device(mci, groups)) {
755                 edac_mc_printk(mci, KERN_WARNING,
756                         "failed to create sysfs device\n");
757                 goto fail1;
758         }
759
760         if (mci->edac_check) {
761                 mci->op_state = OP_RUNNING_POLL;
762
763                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
764                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
765
766         } else {
767                 mci->op_state = OP_RUNNING_INTERRUPT;
768         }
769
770         /* Report action taken */
771         edac_mc_printk(mci, KERN_INFO,
772                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
773                 mci->mod_name, mci->ctl_name, mci->dev_name,
774                 edac_op_state_to_string(mci->op_state));
775
776         edac_mc_owner = mci->mod_name;
777
778         mutex_unlock(&mem_ctls_mutex);
779         return 0;
780
781 fail1:
782         del_mc_from_global_list(mci);
783
784 fail0:
785         mutex_unlock(&mem_ctls_mutex);
786         return ret;
787 }
788 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
789
790 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
791 {
792         struct mem_ctl_info *mci;
793
794         edac_dbg(0, "\n");
795
796         mutex_lock(&mem_ctls_mutex);
797
798         /* find the requested mci struct in the global list */
799         mci = __find_mci_by_dev(dev);
800         if (mci == NULL) {
801                 mutex_unlock(&mem_ctls_mutex);
802                 return NULL;
803         }
804
805         /* mark MCI offline: */
806         mci->op_state = OP_OFFLINE;
807
808         if (del_mc_from_global_list(mci))
809                 edac_mc_owner = NULL;
810
811         mutex_unlock(&mem_ctls_mutex);
812
813         if (mci->edac_check)
814                 edac_stop_work(&mci->work);
815
816         /* remove from sysfs */
817         edac_remove_sysfs_mci_device(mci);
818
819         edac_printk(KERN_INFO, EDAC_MC,
820                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
821                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
822
823         return mci;
824 }
825 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
826
827 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
828                                 u32 size)
829 {
830         struct page *pg;
831         void *virt_addr;
832         unsigned long flags = 0;
833
834         edac_dbg(3, "\n");
835
836         /* ECC error page was not in our memory. Ignore it. */
837         if (!pfn_valid(page))
838                 return;
839
840         /* Find the actual page structure then map it and fix */
841         pg = pfn_to_page(page);
842
843         if (PageHighMem(pg))
844                 local_irq_save(flags);
845
846         virt_addr = kmap_atomic(pg);
847
848         /* Perform architecture specific atomic scrub operation */
849         edac_atomic_scrub(virt_addr + offset, size);
850
851         /* Unmap and complete */
852         kunmap_atomic(virt_addr);
853
854         if (PageHighMem(pg))
855                 local_irq_restore(flags);
856 }
857
858 /* FIXME - should return -1 */
859 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
860 {
861         struct csrow_info **csrows = mci->csrows;
862         int row, i, j, n;
863
864         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
865         row = -1;
866
867         for (i = 0; i < mci->nr_csrows; i++) {
868                 struct csrow_info *csrow = csrows[i];
869                 n = 0;
870                 for (j = 0; j < csrow->nr_channels; j++) {
871                         struct dimm_info *dimm = csrow->channels[j]->dimm;
872                         n += dimm->nr_pages;
873                 }
874                 if (n == 0)
875                         continue;
876
877                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
878                          mci->mc_idx,
879                          csrow->first_page, page, csrow->last_page,
880                          csrow->page_mask);
881
882                 if ((page >= csrow->first_page) &&
883                     (page <= csrow->last_page) &&
884                     ((page & csrow->page_mask) ==
885                      (csrow->first_page & csrow->page_mask))) {
886                         row = i;
887                         break;
888                 }
889         }
890
891         if (row == -1)
892                 edac_mc_printk(mci, KERN_ERR,
893                         "could not look up page error address %lx\n",
894                         (unsigned long)page);
895
896         return row;
897 }
898 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
899
900 const char *edac_layer_name[] = {
901         [EDAC_MC_LAYER_BRANCH] = "branch",
902         [EDAC_MC_LAYER_CHANNEL] = "channel",
903         [EDAC_MC_LAYER_SLOT] = "slot",
904         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
905         [EDAC_MC_LAYER_ALL_MEM] = "memory",
906 };
907 EXPORT_SYMBOL_GPL(edac_layer_name);
908
909 static void edac_inc_ce_error(struct mem_ctl_info *mci,
910                               bool enable_per_layer_report,
911                               const int pos[EDAC_MAX_LAYERS],
912                               const u16 count)
913 {
914         int i, index = 0;
915
916         mci->ce_mc += count;
917
918         if (!enable_per_layer_report) {
919                 mci->ce_noinfo_count += count;
920                 return;
921         }
922
923         for (i = 0; i < mci->n_layers; i++) {
924                 if (pos[i] < 0)
925                         break;
926                 index += pos[i];
927                 mci->ce_per_layer[i][index] += count;
928
929                 if (i < mci->n_layers - 1)
930                         index *= mci->layers[i + 1].size;
931         }
932 }
933
934 static void edac_inc_ue_error(struct mem_ctl_info *mci,
935                                     bool enable_per_layer_report,
936                                     const int pos[EDAC_MAX_LAYERS],
937                                     const u16 count)
938 {
939         int i, index = 0;
940
941         mci->ue_mc += count;
942
943         if (!enable_per_layer_report) {
944                 mci->ue_noinfo_count += count;
945                 return;
946         }
947
948         for (i = 0; i < mci->n_layers; i++) {
949                 if (pos[i] < 0)
950                         break;
951                 index += pos[i];
952                 mci->ue_per_layer[i][index] += count;
953
954                 if (i < mci->n_layers - 1)
955                         index *= mci->layers[i + 1].size;
956         }
957 }
958
959 static void edac_ce_error(struct mem_ctl_info *mci,
960                           const u16 error_count,
961                           const int pos[EDAC_MAX_LAYERS],
962                           const char *msg,
963                           const char *location,
964                           const char *label,
965                           const char *detail,
966                           const char *other_detail,
967                           const bool enable_per_layer_report,
968                           const unsigned long page_frame_number,
969                           const unsigned long offset_in_page,
970                           long grain)
971 {
972         unsigned long remapped_page;
973         char *msg_aux = "";
974
975         if (*msg)
976                 msg_aux = " ";
977
978         if (edac_mc_get_log_ce()) {
979                 if (other_detail && *other_detail)
980                         edac_mc_printk(mci, KERN_WARNING,
981                                        "%d CE %s%son %s (%s %s - %s)\n",
982                                        error_count, msg, msg_aux, label,
983                                        location, detail, other_detail);
984                 else
985                         edac_mc_printk(mci, KERN_WARNING,
986                                        "%d CE %s%son %s (%s %s)\n",
987                                        error_count, msg, msg_aux, label,
988                                        location, detail);
989         }
990         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
991
992         if (mci->scrub_mode == SCRUB_SW_SRC) {
993                 /*
994                         * Some memory controllers (called MCs below) can remap
995                         * memory so that it is still available at a different
996                         * address when PCI devices map into memory.
997                         * MC's that can't do this, lose the memory where PCI
998                         * devices are mapped. This mapping is MC-dependent
999                         * and so we call back into the MC driver for it to
1000                         * map the MC page to a physical (CPU) page which can
1001                         * then be mapped to a virtual page - which can then
1002                         * be scrubbed.
1003                         */
1004                 remapped_page = mci->ctl_page_to_phys ?
1005                         mci->ctl_page_to_phys(mci, page_frame_number) :
1006                         page_frame_number;
1007
1008                 edac_mc_scrub_block(remapped_page,
1009                                         offset_in_page, grain);
1010         }
1011 }
1012
1013 static void edac_ue_error(struct mem_ctl_info *mci,
1014                           const u16 error_count,
1015                           const int pos[EDAC_MAX_LAYERS],
1016                           const char *msg,
1017                           const char *location,
1018                           const char *label,
1019                           const char *detail,
1020                           const char *other_detail,
1021                           const bool enable_per_layer_report)
1022 {
1023         char *msg_aux = "";
1024
1025         if (*msg)
1026                 msg_aux = " ";
1027
1028         if (edac_mc_get_log_ue()) {
1029                 if (other_detail && *other_detail)
1030                         edac_mc_printk(mci, KERN_WARNING,
1031                                        "%d UE %s%son %s (%s %s - %s)\n",
1032                                        error_count, msg, msg_aux, label,
1033                                        location, detail, other_detail);
1034                 else
1035                         edac_mc_printk(mci, KERN_WARNING,
1036                                        "%d UE %s%son %s (%s %s)\n",
1037                                        error_count, msg, msg_aux, label,
1038                                        location, detail);
1039         }
1040
1041         if (edac_mc_get_panic_on_ue()) {
1042                 if (other_detail && *other_detail)
1043                         panic("UE %s%son %s (%s%s - %s)\n",
1044                               msg, msg_aux, label, location, detail, other_detail);
1045                 else
1046                         panic("UE %s%son %s (%s%s)\n",
1047                               msg, msg_aux, label, location, detail);
1048         }
1049
1050         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1051 }
1052
1053 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1054                               struct mem_ctl_info *mci,
1055                               struct edac_raw_error_desc *e)
1056 {
1057         char detail[80];
1058         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1059
1060         /* Memory type dependent details about the error */
1061         if (type == HW_EVENT_ERR_CORRECTED) {
1062                 snprintf(detail, sizeof(detail),
1063                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1064                         e->page_frame_number, e->offset_in_page,
1065                         e->grain, e->syndrome);
1066                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1067                               detail, e->other_detail, e->enable_per_layer_report,
1068                               e->page_frame_number, e->offset_in_page, e->grain);
1069         } else {
1070                 snprintf(detail, sizeof(detail),
1071                         "page:0x%lx offset:0x%lx grain:%ld",
1072                         e->page_frame_number, e->offset_in_page, e->grain);
1073
1074                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1075                               detail, e->other_detail, e->enable_per_layer_report);
1076         }
1077
1078
1079 }
1080 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1081
1082 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1083                           struct mem_ctl_info *mci,
1084                           const u16 error_count,
1085                           const unsigned long page_frame_number,
1086                           const unsigned long offset_in_page,
1087                           const unsigned long syndrome,
1088                           const int top_layer,
1089                           const int mid_layer,
1090                           const int low_layer,
1091                           const char *msg,
1092                           const char *other_detail)
1093 {
1094         char *p;
1095         int row = -1, chan = -1;
1096         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1097         int i, n_labels = 0;
1098         u8 grain_bits;
1099         struct edac_raw_error_desc *e = &mci->error_desc;
1100
1101         edac_dbg(3, "MC%d\n", mci->mc_idx);
1102
1103         /* Fills the error report buffer */
1104         memset(e, 0, sizeof (*e));
1105         e->error_count = error_count;
1106         e->top_layer = top_layer;
1107         e->mid_layer = mid_layer;
1108         e->low_layer = low_layer;
1109         e->page_frame_number = page_frame_number;
1110         e->offset_in_page = offset_in_page;
1111         e->syndrome = syndrome;
1112         e->msg = msg;
1113         e->other_detail = other_detail;
1114
1115         /*
1116          * Check if the event report is consistent and if the memory
1117          * location is known. If it is known, enable_per_layer_report will be
1118          * true, the DIMM(s) label info will be filled and the per-layer
1119          * error counters will be incremented.
1120          */
1121         for (i = 0; i < mci->n_layers; i++) {
1122                 if (pos[i] >= (int)mci->layers[i].size) {
1123
1124                         edac_mc_printk(mci, KERN_ERR,
1125                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1126                                        edac_layer_name[mci->layers[i].type],
1127                                        pos[i], mci->layers[i].size);
1128                         /*
1129                          * Instead of just returning it, let's use what's
1130                          * known about the error. The increment routines and
1131                          * the DIMM filter logic will do the right thing by
1132                          * pointing the likely damaged DIMMs.
1133                          */
1134                         pos[i] = -1;
1135                 }
1136                 if (pos[i] >= 0)
1137                         e->enable_per_layer_report = true;
1138         }
1139
1140         /*
1141          * Get the dimm label/grain that applies to the match criteria.
1142          * As the error algorithm may not be able to point to just one memory
1143          * stick, the logic here will get all possible labels that could
1144          * pottentially be affected by the error.
1145          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1146          * to have only the MC channel and the MC dimm (also called "branch")
1147          * but the channel is not known, as the memory is arranged in pairs,
1148          * where each memory belongs to a separate channel within the same
1149          * branch.
1150          */
1151         p = e->label;
1152         *p = '\0';
1153
1154         for (i = 0; i < mci->tot_dimms; i++) {
1155                 struct dimm_info *dimm = mci->dimms[i];
1156
1157                 if (top_layer >= 0 && top_layer != dimm->location[0])
1158                         continue;
1159                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1160                         continue;
1161                 if (low_layer >= 0 && low_layer != dimm->location[2])
1162                         continue;
1163
1164                 /* get the max grain, over the error match range */
1165                 if (dimm->grain > e->grain)
1166                         e->grain = dimm->grain;
1167
1168                 /*
1169                  * If the error is memory-controller wide, there's no need to
1170                  * seek for the affected DIMMs because the whole
1171                  * channel/memory controller/...  may be affected.
1172                  * Also, don't show errors for empty DIMM slots.
1173                  */
1174                 if (e->enable_per_layer_report && dimm->nr_pages) {
1175                         if (n_labels >= EDAC_MAX_LABELS) {
1176                                 e->enable_per_layer_report = false;
1177                                 break;
1178                         }
1179                         n_labels++;
1180                         if (p != e->label) {
1181                                 strcpy(p, OTHER_LABEL);
1182                                 p += strlen(OTHER_LABEL);
1183                         }
1184                         strcpy(p, dimm->label);
1185                         p += strlen(p);
1186                         *p = '\0';
1187
1188                         /*
1189                          * get csrow/channel of the DIMM, in order to allow
1190                          * incrementing the compat API counters
1191                          */
1192                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1193                                  mci->csbased ? "rank" : "dimm",
1194                                  dimm->csrow, dimm->cschannel);
1195                         if (row == -1)
1196                                 row = dimm->csrow;
1197                         else if (row >= 0 && row != dimm->csrow)
1198                                 row = -2;
1199
1200                         if (chan == -1)
1201                                 chan = dimm->cschannel;
1202                         else if (chan >= 0 && chan != dimm->cschannel)
1203                                 chan = -2;
1204                 }
1205         }
1206
1207         if (!e->enable_per_layer_report) {
1208                 strcpy(e->label, "any memory");
1209         } else {
1210                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1211                 if (p == e->label)
1212                         strcpy(e->label, "unknown memory");
1213                 if (type == HW_EVENT_ERR_CORRECTED) {
1214                         if (row >= 0) {
1215                                 mci->csrows[row]->ce_count += error_count;
1216                                 if (chan >= 0)
1217                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1218                         }
1219                 } else
1220                         if (row >= 0)
1221                                 mci->csrows[row]->ue_count += error_count;
1222         }
1223
1224         /* Fill the RAM location data */
1225         p = e->location;
1226
1227         for (i = 0; i < mci->n_layers; i++) {
1228                 if (pos[i] < 0)
1229                         continue;
1230
1231                 p += sprintf(p, "%s:%d ",
1232                              edac_layer_name[mci->layers[i].type],
1233                              pos[i]);
1234         }
1235         if (p > e->location)
1236                 *(p - 1) = '\0';
1237
1238         /* Report the error via the trace interface */
1239         grain_bits = fls_long(e->grain) + 1;
1240
1241         if (IS_ENABLED(CONFIG_RAS))
1242                 trace_mc_event(type, e->msg, e->label, e->error_count,
1243                                mci->mc_idx, e->top_layer, e->mid_layer,
1244                                e->low_layer,
1245                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1246                                grain_bits, e->syndrome, e->other_detail);
1247
1248         edac_raw_mc_handle_error(type, mci, e);
1249 }
1250 EXPORT_SYMBOL_GPL(edac_mc_handle_error);