Merge branch 'net-enhancements-to-sk_user_data-field'
[linux-2.6-microblaze.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *      apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58         return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62                                      unsigned int len)
63 {
64         struct mem_ctl_info *mci = dimm->mci;
65         int i, n, count = 0;
66         char *p = buf;
67
68         for (i = 0; i < mci->n_layers; i++) {
69                 n = scnprintf(p, len, "%s %d ",
70                               edac_layer_name[mci->layers[i].type],
71                               dimm->location[i]);
72                 p += n;
73                 len -= n;
74                 count += n;
75         }
76
77         return count;
78 }
79
80 #ifdef CONFIG_EDAC_DEBUG
81
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85         edac_dbg(4, "    channel = %p\n", chan);
86         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92         char location[80];
93
94         if (!dimm->nr_pages)
95                 return;
96
97         edac_dimm_info_location(dimm, location, sizeof(location));
98
99         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100                  dimm->mci->csbased ? "rank" : "dimm",
101                  dimm->idx, location, dimm->csrow, dimm->cschannel);
102         edac_dbg(4, "  dimm = %p\n", dimm);
103         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108
109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112         edac_dbg(4, "  csrow = %p\n", csrow);
113         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
114         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
115         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
116         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
117         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
118         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
119 }
120
121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123         edac_dbg(3, "\tmci = %p\n", mci);
124         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129                  mci->nr_csrows, mci->csrows);
130         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131                  mci->tot_dimms, mci->dimms);
132         edac_dbg(3, "\tdev = %p\n", mci->pdev);
133         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134                  mci->mod_name, mci->ctl_name);
135         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137
138 #endif                          /* CONFIG_EDAC_DEBUG */
139
140 const char * const edac_mem_types[] = {
141         [MEM_EMPTY]     = "Empty",
142         [MEM_RESERVED]  = "Reserved",
143         [MEM_UNKNOWN]   = "Unknown",
144         [MEM_FPM]       = "FPM",
145         [MEM_EDO]       = "EDO",
146         [MEM_BEDO]      = "BEDO",
147         [MEM_SDR]       = "Unbuffered-SDR",
148         [MEM_RDR]       = "Registered-SDR",
149         [MEM_DDR]       = "Unbuffered-DDR",
150         [MEM_RDDR]      = "Registered-DDR",
151         [MEM_RMBS]      = "RMBS",
152         [MEM_DDR2]      = "Unbuffered-DDR2",
153         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
154         [MEM_RDDR2]     = "Registered-DDR2",
155         [MEM_XDR]       = "XDR",
156         [MEM_DDR3]      = "Unbuffered-DDR3",
157         [MEM_RDDR3]     = "Registered-DDR3",
158         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
159         [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
160         [MEM_DDR4]      = "Unbuffered-DDR4",
161         [MEM_RDDR4]     = "Registered-DDR4",
162         [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
163         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
164         [MEM_DDR5]      = "Unbuffered-DDR5",
165         [MEM_RDDR5]     = "Registered-DDR5",
166         [MEM_LRDDR5]    = "Load-Reduced-DDR5-RAM",
167         [MEM_NVDIMM]    = "Non-volatile-RAM",
168         [MEM_WIO2]      = "Wide-IO-2",
169         [MEM_HBM2]      = "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172
173 static void _edac_mc_free(struct mem_ctl_info *mci)
174 {
175         put_device(&mci->dev);
176 }
177
178 static void mci_release(struct device *dev)
179 {
180         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
181         struct csrow_info *csr;
182         int i, chn, row;
183
184         if (mci->dimms) {
185                 for (i = 0; i < mci->tot_dimms; i++)
186                         kfree(mci->dimms[i]);
187                 kfree(mci->dimms);
188         }
189
190         if (mci->csrows) {
191                 for (row = 0; row < mci->nr_csrows; row++) {
192                         csr = mci->csrows[row];
193                         if (!csr)
194                                 continue;
195
196                         if (csr->channels) {
197                                 for (chn = 0; chn < mci->num_cschannel; chn++)
198                                         kfree(csr->channels[chn]);
199                                 kfree(csr->channels);
200                         }
201                         kfree(csr);
202                 }
203                 kfree(mci->csrows);
204         }
205         kfree(mci->pvt_info);
206         kfree(mci->layers);
207         kfree(mci);
208 }
209
210 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
211 {
212         unsigned int tot_channels = mci->num_cschannel;
213         unsigned int tot_csrows = mci->nr_csrows;
214         unsigned int row, chn;
215
216         /*
217          * Alocate and fill the csrow/channels structs
218          */
219         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
220         if (!mci->csrows)
221                 return -ENOMEM;
222
223         for (row = 0; row < tot_csrows; row++) {
224                 struct csrow_info *csr;
225
226                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
227                 if (!csr)
228                         return -ENOMEM;
229
230                 mci->csrows[row] = csr;
231                 csr->csrow_idx = row;
232                 csr->mci = mci;
233                 csr->nr_channels = tot_channels;
234                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
235                                         GFP_KERNEL);
236                 if (!csr->channels)
237                         return -ENOMEM;
238
239                 for (chn = 0; chn < tot_channels; chn++) {
240                         struct rank_info *chan;
241
242                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
243                         if (!chan)
244                                 return -ENOMEM;
245
246                         csr->channels[chn] = chan;
247                         chan->chan_idx = chn;
248                         chan->csrow = csr;
249                 }
250         }
251
252         return 0;
253 }
254
255 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
256 {
257         unsigned int pos[EDAC_MAX_LAYERS];
258         unsigned int row, chn, idx;
259         int layer;
260         void *p;
261
262         /*
263          * Allocate and fill the dimm structs
264          */
265         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
266         if (!mci->dimms)
267                 return -ENOMEM;
268
269         memset(&pos, 0, sizeof(pos));
270         row = 0;
271         chn = 0;
272         for (idx = 0; idx < mci->tot_dimms; idx++) {
273                 struct dimm_info *dimm;
274                 struct rank_info *chan;
275                 int n, len;
276
277                 chan = mci->csrows[row]->channels[chn];
278
279                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
280                 if (!dimm)
281                         return -ENOMEM;
282                 mci->dimms[idx] = dimm;
283                 dimm->mci = mci;
284                 dimm->idx = idx;
285
286                 /*
287                  * Copy DIMM location and initialize it.
288                  */
289                 len = sizeof(dimm->label);
290                 p = dimm->label;
291                 n = scnprintf(p, len, "mc#%u", mci->mc_idx);
292                 p += n;
293                 len -= n;
294                 for (layer = 0; layer < mci->n_layers; layer++) {
295                         n = scnprintf(p, len, "%s#%u",
296                                       edac_layer_name[mci->layers[layer].type],
297                                       pos[layer]);
298                         p += n;
299                         len -= n;
300                         dimm->location[layer] = pos[layer];
301                 }
302
303                 /* Link it to the csrows old API data */
304                 chan->dimm = dimm;
305                 dimm->csrow = row;
306                 dimm->cschannel = chn;
307
308                 /* Increment csrow location */
309                 if (mci->layers[0].is_virt_csrow) {
310                         chn++;
311                         if (chn == mci->num_cschannel) {
312                                 chn = 0;
313                                 row++;
314                         }
315                 } else {
316                         row++;
317                         if (row == mci->nr_csrows) {
318                                 row = 0;
319                                 chn++;
320                         }
321                 }
322
323                 /* Increment dimm location */
324                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
325                         pos[layer]++;
326                         if (pos[layer] < mci->layers[layer].size)
327                                 break;
328                         pos[layer] = 0;
329                 }
330         }
331
332         return 0;
333 }
334
335 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
336                                    unsigned int n_layers,
337                                    struct edac_mc_layer *layers,
338                                    unsigned int sz_pvt)
339 {
340         struct mem_ctl_info *mci;
341         struct edac_mc_layer *layer;
342         unsigned int idx, tot_dimms = 1;
343         unsigned int tot_csrows = 1, tot_channels = 1;
344         bool per_rank = false;
345
346         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
347                 return NULL;
348
349         /*
350          * Calculate the total amount of dimms and csrows/cschannels while
351          * in the old API emulation mode
352          */
353         for (idx = 0; idx < n_layers; idx++) {
354                 tot_dimms *= layers[idx].size;
355
356                 if (layers[idx].is_virt_csrow)
357                         tot_csrows *= layers[idx].size;
358                 else
359                         tot_channels *= layers[idx].size;
360
361                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
362                         per_rank = true;
363         }
364
365         mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
366         if (!mci)
367                 return NULL;
368
369         mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
370         if (!mci->layers)
371                 goto error;
372
373         mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
374         if (!mci->pvt_info)
375                 goto error;
376
377         mci->dev.release = mci_release;
378         device_initialize(&mci->dev);
379
380         /* setup index and various internal pointers */
381         mci->mc_idx = mc_num;
382         mci->tot_dimms = tot_dimms;
383         mci->n_layers = n_layers;
384         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
385         mci->nr_csrows = tot_csrows;
386         mci->num_cschannel = tot_channels;
387         mci->csbased = per_rank;
388
389         if (edac_mc_alloc_csrows(mci))
390                 goto error;
391
392         if (edac_mc_alloc_dimms(mci))
393                 goto error;
394
395         mci->op_state = OP_ALLOC;
396
397         return mci;
398
399 error:
400         _edac_mc_free(mci);
401
402         return NULL;
403 }
404 EXPORT_SYMBOL_GPL(edac_mc_alloc);
405
406 void edac_mc_free(struct mem_ctl_info *mci)
407 {
408         edac_dbg(1, "\n");
409
410         _edac_mc_free(mci);
411 }
412 EXPORT_SYMBOL_GPL(edac_mc_free);
413
414 bool edac_has_mcs(void)
415 {
416         bool ret;
417
418         mutex_lock(&mem_ctls_mutex);
419
420         ret = list_empty(&mc_devices);
421
422         mutex_unlock(&mem_ctls_mutex);
423
424         return !ret;
425 }
426 EXPORT_SYMBOL_GPL(edac_has_mcs);
427
428 /* Caller must hold mem_ctls_mutex */
429 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
430 {
431         struct mem_ctl_info *mci;
432         struct list_head *item;
433
434         edac_dbg(3, "\n");
435
436         list_for_each(item, &mc_devices) {
437                 mci = list_entry(item, struct mem_ctl_info, link);
438
439                 if (mci->pdev == dev)
440                         return mci;
441         }
442
443         return NULL;
444 }
445
446 /**
447  * find_mci_by_dev
448  *
449  *      scan list of controllers looking for the one that manages
450  *      the 'dev' device
451  * @dev: pointer to a struct device related with the MCI
452  */
453 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
454 {
455         struct mem_ctl_info *ret;
456
457         mutex_lock(&mem_ctls_mutex);
458         ret = __find_mci_by_dev(dev);
459         mutex_unlock(&mem_ctls_mutex);
460
461         return ret;
462 }
463 EXPORT_SYMBOL_GPL(find_mci_by_dev);
464
465 /*
466  * edac_mc_workq_function
467  *      performs the operation scheduled by a workq request
468  */
469 static void edac_mc_workq_function(struct work_struct *work_req)
470 {
471         struct delayed_work *d_work = to_delayed_work(work_req);
472         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
473
474         mutex_lock(&mem_ctls_mutex);
475
476         if (mci->op_state != OP_RUNNING_POLL) {
477                 mutex_unlock(&mem_ctls_mutex);
478                 return;
479         }
480
481         if (edac_op_state == EDAC_OPSTATE_POLL)
482                 mci->edac_check(mci);
483
484         mutex_unlock(&mem_ctls_mutex);
485
486         /* Queue ourselves again. */
487         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
488 }
489
490 /*
491  * edac_mc_reset_delay_period(unsigned long value)
492  *
493  *      user space has updated our poll period value, need to
494  *      reset our workq delays
495  */
496 void edac_mc_reset_delay_period(unsigned long value)
497 {
498         struct mem_ctl_info *mci;
499         struct list_head *item;
500
501         mutex_lock(&mem_ctls_mutex);
502
503         list_for_each(item, &mc_devices) {
504                 mci = list_entry(item, struct mem_ctl_info, link);
505
506                 if (mci->op_state == OP_RUNNING_POLL)
507                         edac_mod_work(&mci->work, value);
508         }
509         mutex_unlock(&mem_ctls_mutex);
510 }
511
512
513
514 /* Return 0 on success, 1 on failure.
515  * Before calling this function, caller must
516  * assign a unique value to mci->mc_idx.
517  *
518  *      locking model:
519  *
520  *              called with the mem_ctls_mutex lock held
521  */
522 static int add_mc_to_global_list(struct mem_ctl_info *mci)
523 {
524         struct list_head *item, *insert_before;
525         struct mem_ctl_info *p;
526
527         insert_before = &mc_devices;
528
529         p = __find_mci_by_dev(mci->pdev);
530         if (unlikely(p != NULL))
531                 goto fail0;
532
533         list_for_each(item, &mc_devices) {
534                 p = list_entry(item, struct mem_ctl_info, link);
535
536                 if (p->mc_idx >= mci->mc_idx) {
537                         if (unlikely(p->mc_idx == mci->mc_idx))
538                                 goto fail1;
539
540                         insert_before = item;
541                         break;
542                 }
543         }
544
545         list_add_tail_rcu(&mci->link, insert_before);
546         return 0;
547
548 fail0:
549         edac_printk(KERN_WARNING, EDAC_MC,
550                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
551                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
552         return 1;
553
554 fail1:
555         edac_printk(KERN_WARNING, EDAC_MC,
556                 "bug in low-level driver: attempt to assign\n"
557                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
558         return 1;
559 }
560
561 static int del_mc_from_global_list(struct mem_ctl_info *mci)
562 {
563         list_del_rcu(&mci->link);
564
565         /* these are for safe removal of devices from global list while
566          * NMI handlers may be traversing list
567          */
568         synchronize_rcu();
569         INIT_LIST_HEAD(&mci->link);
570
571         return list_empty(&mc_devices);
572 }
573
574 struct mem_ctl_info *edac_mc_find(int idx)
575 {
576         struct mem_ctl_info *mci;
577         struct list_head *item;
578
579         mutex_lock(&mem_ctls_mutex);
580
581         list_for_each(item, &mc_devices) {
582                 mci = list_entry(item, struct mem_ctl_info, link);
583                 if (mci->mc_idx == idx)
584                         goto unlock;
585         }
586
587         mci = NULL;
588 unlock:
589         mutex_unlock(&mem_ctls_mutex);
590         return mci;
591 }
592 EXPORT_SYMBOL(edac_mc_find);
593
594 const char *edac_get_owner(void)
595 {
596         return edac_mc_owner;
597 }
598 EXPORT_SYMBOL_GPL(edac_get_owner);
599
600 /* FIXME - should a warning be printed if no error detection? correction? */
601 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
602                                const struct attribute_group **groups)
603 {
604         int ret = -EINVAL;
605         edac_dbg(0, "\n");
606
607 #ifdef CONFIG_EDAC_DEBUG
608         if (edac_debug_level >= 3)
609                 edac_mc_dump_mci(mci);
610
611         if (edac_debug_level >= 4) {
612                 struct dimm_info *dimm;
613                 int i;
614
615                 for (i = 0; i < mci->nr_csrows; i++) {
616                         struct csrow_info *csrow = mci->csrows[i];
617                         u32 nr_pages = 0;
618                         int j;
619
620                         for (j = 0; j < csrow->nr_channels; j++)
621                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
622                         if (!nr_pages)
623                                 continue;
624                         edac_mc_dump_csrow(csrow);
625                         for (j = 0; j < csrow->nr_channels; j++)
626                                 if (csrow->channels[j]->dimm->nr_pages)
627                                         edac_mc_dump_channel(csrow->channels[j]);
628                 }
629
630                 mci_for_each_dimm(mci, dimm)
631                         edac_mc_dump_dimm(dimm);
632         }
633 #endif
634         mutex_lock(&mem_ctls_mutex);
635
636         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
637                 ret = -EPERM;
638                 goto fail0;
639         }
640
641         if (add_mc_to_global_list(mci))
642                 goto fail0;
643
644         /* set load time so that error rate can be tracked */
645         mci->start_time = jiffies;
646
647         mci->bus = edac_get_sysfs_subsys();
648
649         if (edac_create_sysfs_mci_device(mci, groups)) {
650                 edac_mc_printk(mci, KERN_WARNING,
651                         "failed to create sysfs device\n");
652                 goto fail1;
653         }
654
655         if (mci->edac_check) {
656                 mci->op_state = OP_RUNNING_POLL;
657
658                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
659                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
660
661         } else {
662                 mci->op_state = OP_RUNNING_INTERRUPT;
663         }
664
665         /* Report action taken */
666         edac_mc_printk(mci, KERN_INFO,
667                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
668                 mci->mod_name, mci->ctl_name, mci->dev_name,
669                 edac_op_state_to_string(mci->op_state));
670
671         edac_mc_owner = mci->mod_name;
672
673         mutex_unlock(&mem_ctls_mutex);
674         return 0;
675
676 fail1:
677         del_mc_from_global_list(mci);
678
679 fail0:
680         mutex_unlock(&mem_ctls_mutex);
681         return ret;
682 }
683 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
684
685 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
686 {
687         struct mem_ctl_info *mci;
688
689         edac_dbg(0, "\n");
690
691         mutex_lock(&mem_ctls_mutex);
692
693         /* find the requested mci struct in the global list */
694         mci = __find_mci_by_dev(dev);
695         if (mci == NULL) {
696                 mutex_unlock(&mem_ctls_mutex);
697                 return NULL;
698         }
699
700         /* mark MCI offline: */
701         mci->op_state = OP_OFFLINE;
702
703         if (del_mc_from_global_list(mci))
704                 edac_mc_owner = NULL;
705
706         mutex_unlock(&mem_ctls_mutex);
707
708         if (mci->edac_check)
709                 edac_stop_work(&mci->work);
710
711         /* remove from sysfs */
712         edac_remove_sysfs_mci_device(mci);
713
714         edac_printk(KERN_INFO, EDAC_MC,
715                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
716                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
717
718         return mci;
719 }
720 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
721
722 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
723                                 u32 size)
724 {
725         struct page *pg;
726         void *virt_addr;
727         unsigned long flags = 0;
728
729         edac_dbg(3, "\n");
730
731         /* ECC error page was not in our memory. Ignore it. */
732         if (!pfn_valid(page))
733                 return;
734
735         /* Find the actual page structure then map it and fix */
736         pg = pfn_to_page(page);
737
738         if (PageHighMem(pg))
739                 local_irq_save(flags);
740
741         virt_addr = kmap_atomic(pg);
742
743         /* Perform architecture specific atomic scrub operation */
744         edac_atomic_scrub(virt_addr + offset, size);
745
746         /* Unmap and complete */
747         kunmap_atomic(virt_addr);
748
749         if (PageHighMem(pg))
750                 local_irq_restore(flags);
751 }
752
753 /* FIXME - should return -1 */
754 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
755 {
756         struct csrow_info **csrows = mci->csrows;
757         int row, i, j, n;
758
759         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
760         row = -1;
761
762         for (i = 0; i < mci->nr_csrows; i++) {
763                 struct csrow_info *csrow = csrows[i];
764                 n = 0;
765                 for (j = 0; j < csrow->nr_channels; j++) {
766                         struct dimm_info *dimm = csrow->channels[j]->dimm;
767                         n += dimm->nr_pages;
768                 }
769                 if (n == 0)
770                         continue;
771
772                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
773                          mci->mc_idx,
774                          csrow->first_page, page, csrow->last_page,
775                          csrow->page_mask);
776
777                 if ((page >= csrow->first_page) &&
778                     (page <= csrow->last_page) &&
779                     ((page & csrow->page_mask) ==
780                      (csrow->first_page & csrow->page_mask))) {
781                         row = i;
782                         break;
783                 }
784         }
785
786         if (row == -1)
787                 edac_mc_printk(mci, KERN_ERR,
788                         "could not look up page error address %lx\n",
789                         (unsigned long)page);
790
791         return row;
792 }
793 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
794
795 const char *edac_layer_name[] = {
796         [EDAC_MC_LAYER_BRANCH] = "branch",
797         [EDAC_MC_LAYER_CHANNEL] = "channel",
798         [EDAC_MC_LAYER_SLOT] = "slot",
799         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
800         [EDAC_MC_LAYER_ALL_MEM] = "memory",
801 };
802 EXPORT_SYMBOL_GPL(edac_layer_name);
803
804 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
805 {
806         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
807         struct mem_ctl_info *mci = error_desc_to_mci(e);
808         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
809
810         mci->ce_mc += e->error_count;
811
812         if (dimm)
813                 dimm->ce_count += e->error_count;
814         else
815                 mci->ce_noinfo_count += e->error_count;
816 }
817
818 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
819 {
820         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
821         struct mem_ctl_info *mci = error_desc_to_mci(e);
822         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
823
824         mci->ue_mc += e->error_count;
825
826         if (dimm)
827                 dimm->ue_count += e->error_count;
828         else
829                 mci->ue_noinfo_count += e->error_count;
830 }
831
832 static void edac_ce_error(struct edac_raw_error_desc *e)
833 {
834         struct mem_ctl_info *mci = error_desc_to_mci(e);
835         unsigned long remapped_page;
836
837         if (edac_mc_get_log_ce()) {
838                 edac_mc_printk(mci, KERN_WARNING,
839                         "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
840                         e->error_count, e->msg,
841                         *e->msg ? " " : "",
842                         e->label, e->location, e->page_frame_number, e->offset_in_page,
843                         e->grain, e->syndrome,
844                         *e->other_detail ? " - " : "",
845                         e->other_detail);
846         }
847
848         edac_inc_ce_error(e);
849
850         if (mci->scrub_mode == SCRUB_SW_SRC) {
851                 /*
852                         * Some memory controllers (called MCs below) can remap
853                         * memory so that it is still available at a different
854                         * address when PCI devices map into memory.
855                         * MC's that can't do this, lose the memory where PCI
856                         * devices are mapped. This mapping is MC-dependent
857                         * and so we call back into the MC driver for it to
858                         * map the MC page to a physical (CPU) page which can
859                         * then be mapped to a virtual page - which can then
860                         * be scrubbed.
861                         */
862                 remapped_page = mci->ctl_page_to_phys ?
863                         mci->ctl_page_to_phys(mci, e->page_frame_number) :
864                         e->page_frame_number;
865
866                 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
867         }
868 }
869
870 static void edac_ue_error(struct edac_raw_error_desc *e)
871 {
872         struct mem_ctl_info *mci = error_desc_to_mci(e);
873
874         if (edac_mc_get_log_ue()) {
875                 edac_mc_printk(mci, KERN_WARNING,
876                         "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
877                         e->error_count, e->msg,
878                         *e->msg ? " " : "",
879                         e->label, e->location, e->page_frame_number, e->offset_in_page,
880                         e->grain,
881                         *e->other_detail ? " - " : "",
882                         e->other_detail);
883         }
884
885         edac_inc_ue_error(e);
886
887         if (edac_mc_get_panic_on_ue()) {
888                 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
889                         e->msg,
890                         *e->msg ? " " : "",
891                         e->label, e->location, e->page_frame_number, e->offset_in_page,
892                         e->grain,
893                         *e->other_detail ? " - " : "",
894                         e->other_detail);
895         }
896 }
897
898 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
899 {
900         struct mem_ctl_info *mci = error_desc_to_mci(e);
901         enum hw_event_mc_err_type type = e->type;
902         u16 count = e->error_count;
903
904         if (row < 0)
905                 return;
906
907         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
908
909         if (type == HW_EVENT_ERR_CORRECTED) {
910                 mci->csrows[row]->ce_count += count;
911                 if (chan >= 0)
912                         mci->csrows[row]->channels[chan]->ce_count += count;
913         } else {
914                 mci->csrows[row]->ue_count += count;
915         }
916 }
917
918 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
919 {
920         struct mem_ctl_info *mci = error_desc_to_mci(e);
921         u8 grain_bits;
922
923         /* Sanity-check driver-supplied grain value. */
924         if (WARN_ON_ONCE(!e->grain))
925                 e->grain = 1;
926
927         grain_bits = fls_long(e->grain - 1);
928
929         /* Report the error via the trace interface */
930         if (IS_ENABLED(CONFIG_RAS))
931                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
932                                mci->mc_idx, e->top_layer, e->mid_layer,
933                                e->low_layer,
934                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
935                                grain_bits, e->syndrome, e->other_detail);
936
937         if (e->type == HW_EVENT_ERR_CORRECTED)
938                 edac_ce_error(e);
939         else
940                 edac_ue_error(e);
941 }
942 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
943
944 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
945                           struct mem_ctl_info *mci,
946                           const u16 error_count,
947                           const unsigned long page_frame_number,
948                           const unsigned long offset_in_page,
949                           const unsigned long syndrome,
950                           const int top_layer,
951                           const int mid_layer,
952                           const int low_layer,
953                           const char *msg,
954                           const char *other_detail)
955 {
956         struct dimm_info *dimm;
957         char *p, *end;
958         int row = -1, chan = -1;
959         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
960         int i, n_labels = 0;
961         struct edac_raw_error_desc *e = &mci->error_desc;
962         bool any_memory = true;
963         const char *prefix;
964
965         edac_dbg(3, "MC%d\n", mci->mc_idx);
966
967         /* Fills the error report buffer */
968         memset(e, 0, sizeof (*e));
969         e->error_count = error_count;
970         e->type = type;
971         e->top_layer = top_layer;
972         e->mid_layer = mid_layer;
973         e->low_layer = low_layer;
974         e->page_frame_number = page_frame_number;
975         e->offset_in_page = offset_in_page;
976         e->syndrome = syndrome;
977         /* need valid strings here for both: */
978         e->msg = msg ?: "";
979         e->other_detail = other_detail ?: "";
980
981         /*
982          * Check if the event report is consistent and if the memory location is
983          * known. If it is, the DIMM(s) label info will be filled and the DIMM's
984          * error counters will be incremented.
985          */
986         for (i = 0; i < mci->n_layers; i++) {
987                 if (pos[i] >= (int)mci->layers[i].size) {
988
989                         edac_mc_printk(mci, KERN_ERR,
990                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
991                                        edac_layer_name[mci->layers[i].type],
992                                        pos[i], mci->layers[i].size);
993                         /*
994                          * Instead of just returning it, let's use what's
995                          * known about the error. The increment routines and
996                          * the DIMM filter logic will do the right thing by
997                          * pointing the likely damaged DIMMs.
998                          */
999                         pos[i] = -1;
1000                 }
1001                 if (pos[i] >= 0)
1002                         any_memory = false;
1003         }
1004
1005         /*
1006          * Get the dimm label/grain that applies to the match criteria.
1007          * As the error algorithm may not be able to point to just one memory
1008          * stick, the logic here will get all possible labels that could
1009          * pottentially be affected by the error.
1010          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1011          * to have only the MC channel and the MC dimm (also called "branch")
1012          * but the channel is not known, as the memory is arranged in pairs,
1013          * where each memory belongs to a separate channel within the same
1014          * branch.
1015          */
1016         p = e->label;
1017         *p = '\0';
1018         end = p + sizeof(e->label);
1019         prefix = "";
1020
1021         mci_for_each_dimm(mci, dimm) {
1022                 if (top_layer >= 0 && top_layer != dimm->location[0])
1023                         continue;
1024                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1025                         continue;
1026                 if (low_layer >= 0 && low_layer != dimm->location[2])
1027                         continue;
1028
1029                 /* get the max grain, over the error match range */
1030                 if (dimm->grain > e->grain)
1031                         e->grain = dimm->grain;
1032
1033                 /*
1034                  * If the error is memory-controller wide, there's no need to
1035                  * seek for the affected DIMMs because the whole channel/memory
1036                  * controller/... may be affected. Also, don't show errors for
1037                  * empty DIMM slots.
1038                  */
1039                 if (!dimm->nr_pages)
1040                         continue;
1041
1042                 n_labels++;
1043                 if (n_labels > EDAC_MAX_LABELS) {
1044                         p = e->label;
1045                         *p = '\0';
1046                 } else {
1047                         p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1048                         prefix = OTHER_LABEL;
1049                 }
1050
1051                 /*
1052                  * get csrow/channel of the DIMM, in order to allow
1053                  * incrementing the compat API counters
1054                  */
1055                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1056                         mci->csbased ? "rank" : "dimm",
1057                         dimm->csrow, dimm->cschannel);
1058                 if (row == -1)
1059                         row = dimm->csrow;
1060                 else if (row >= 0 && row != dimm->csrow)
1061                         row = -2;
1062
1063                 if (chan == -1)
1064                         chan = dimm->cschannel;
1065                 else if (chan >= 0 && chan != dimm->cschannel)
1066                         chan = -2;
1067         }
1068
1069         if (any_memory)
1070                 strscpy(e->label, "any memory", sizeof(e->label));
1071         else if (!*e->label)
1072                 strscpy(e->label, "unknown memory", sizeof(e->label));
1073
1074         edac_inc_csrow(e, row, chan);
1075
1076         /* Fill the RAM location data */
1077         p = e->location;
1078         end = p + sizeof(e->location);
1079         prefix = "";
1080
1081         for (i = 0; i < mci->n_layers; i++) {
1082                 if (pos[i] < 0)
1083                         continue;
1084
1085                 p += scnprintf(p, end - p, "%s%s:%d", prefix,
1086                                edac_layer_name[mci->layers[i].type], pos[i]);
1087                 prefix = " ";
1088         }
1089
1090         edac_raw_mc_handle_error(e);
1091 }
1092 EXPORT_SYMBOL_GPL(edac_mc_handle_error);