2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 * apei/ghes and i7core_edac to be used at the same time.
54 static const char *edac_mc_owner;
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
58 return container_of(e, struct mem_ctl_info, error_desc);
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
64 struct mem_ctl_info *mci = dimm->mci;
68 for (i = 0; i < mci->n_layers; i++) {
69 n = snprintf(p, len, "%s %d ",
70 edac_layer_name[mci->layers[i].type],
82 #ifdef CONFIG_EDAC_DEBUG
84 static void edac_mc_dump_channel(struct rank_info *chan)
86 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
87 edac_dbg(4, " channel = %p\n", chan);
88 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
89 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
92 static void edac_mc_dump_dimm(struct dimm_info *dimm)
99 edac_dimm_info_location(dimm, location, sizeof(location));
101 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102 dimm->mci->csbased ? "rank" : "dimm",
103 dimm->idx, location, dimm->csrow, dimm->cschannel);
104 edac_dbg(4, " dimm = %p\n", dimm);
105 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
108 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
111 static void edac_mc_dump_csrow(struct csrow_info *csrow)
113 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
114 edac_dbg(4, " csrow = %p\n", csrow);
115 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
116 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
117 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
118 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
119 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
120 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
123 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
125 edac_dbg(3, "\tmci = %p\n", mci);
126 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
127 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
128 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
129 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
130 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131 mci->nr_csrows, mci->csrows);
132 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133 mci->tot_dimms, mci->dimms);
134 edac_dbg(3, "\tdev = %p\n", mci->pdev);
135 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136 mci->mod_name, mci->ctl_name);
137 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
140 #endif /* CONFIG_EDAC_DEBUG */
142 const char * const edac_mem_types[] = {
143 [MEM_EMPTY] = "Empty",
144 [MEM_RESERVED] = "Reserved",
145 [MEM_UNKNOWN] = "Unknown",
149 [MEM_SDR] = "Unbuffered-SDR",
150 [MEM_RDR] = "Registered-SDR",
151 [MEM_DDR] = "Unbuffered-DDR",
152 [MEM_RDDR] = "Registered-DDR",
154 [MEM_DDR2] = "Unbuffered-DDR2",
155 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
156 [MEM_RDDR2] = "Registered-DDR2",
158 [MEM_DDR3] = "Unbuffered-DDR3",
159 [MEM_RDDR3] = "Registered-DDR3",
160 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
161 [MEM_DDR4] = "Unbuffered-DDR4",
162 [MEM_RDDR4] = "Registered-DDR4",
163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
164 [MEM_NVDIMM] = "Non-volatile-RAM",
166 EXPORT_SYMBOL_GPL(edac_mem_types);
169 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
170 * @p: pointer to a pointer with the memory offset to be used. At
171 * return, this will be incremented to point to the next offset
172 * @size: Size of the data structure to be reserved
173 * @n_elems: Number of elements that should be reserved
175 * If 'size' is a constant, the compiler will optimize this whole function
176 * down to either a no-op or the addition of a constant to the value of '*p'.
178 * The 'p' pointer is absolutely needed to keep the proper advancing
179 * further in memory to the proper offsets when allocating the struct along
180 * with its embedded structs, as edac_device_alloc_ctl_info() does it
181 * above, for example.
183 * At return, the pointer 'p' will be incremented to be used on a next call
186 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
188 unsigned int align, r;
191 *p += size * n_elems;
194 * 'p' can possibly be an unaligned item X such that sizeof(X) is
195 * 'size'. Adjust 'p' so that its alignment is at least as
196 * stringent as what the compiler would provide for X and return
197 * the aligned result.
198 * Here we assume that the alignment of a "long long" is the most
199 * stringent alignment that the compiler will ever provide by default.
200 * As far as I know, this is a reasonable assumption.
202 if (size > sizeof(long))
203 align = sizeof(long long);
204 else if (size > sizeof(int))
205 align = sizeof(long);
206 else if (size > sizeof(short))
208 else if (size > sizeof(char))
209 align = sizeof(short);
213 r = (unsigned long)p % align;
220 return (void *)(((unsigned long)ptr) + align - r);
223 static void _edac_mc_free(struct mem_ctl_info *mci)
225 put_device(&mci->dev);
228 static void mci_release(struct device *dev)
230 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
231 struct csrow_info *csr;
235 for (i = 0; i < mci->tot_dimms; i++)
236 kfree(mci->dimms[i]);
241 for (row = 0; row < mci->nr_csrows; row++) {
242 csr = mci->csrows[row];
247 for (chn = 0; chn < mci->num_cschannel; chn++)
248 kfree(csr->channels[chn]);
249 kfree(csr->channels);
258 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
260 unsigned int tot_channels = mci->num_cschannel;
261 unsigned int tot_csrows = mci->nr_csrows;
262 unsigned int row, chn;
265 * Alocate and fill the csrow/channels structs
267 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
271 for (row = 0; row < tot_csrows; row++) {
272 struct csrow_info *csr;
274 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
278 mci->csrows[row] = csr;
279 csr->csrow_idx = row;
281 csr->nr_channels = tot_channels;
282 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
287 for (chn = 0; chn < tot_channels; chn++) {
288 struct rank_info *chan;
290 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
294 csr->channels[chn] = chan;
295 chan->chan_idx = chn;
303 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
305 unsigned int pos[EDAC_MAX_LAYERS];
306 unsigned int row, chn, idx;
311 * Allocate and fill the dimm structs
313 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
317 memset(&pos, 0, sizeof(pos));
320 for (idx = 0; idx < mci->tot_dimms; idx++) {
321 struct dimm_info *dimm;
322 struct rank_info *chan;
325 chan = mci->csrows[row]->channels[chn];
327 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
330 mci->dimms[idx] = dimm;
335 * Copy DIMM location and initialize it.
337 len = sizeof(dimm->label);
339 n = snprintf(p, len, "mc#%u", mci->mc_idx);
342 for (layer = 0; layer < mci->n_layers; layer++) {
343 n = snprintf(p, len, "%s#%u",
344 edac_layer_name[mci->layers[layer].type],
348 dimm->location[layer] = pos[layer];
354 /* Link it to the csrows old API data */
357 dimm->cschannel = chn;
359 /* Increment csrow location */
360 if (mci->layers[0].is_virt_csrow) {
362 if (chn == mci->num_cschannel) {
368 if (row == mci->nr_csrows) {
374 /* Increment dimm location */
375 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
377 if (pos[layer] < mci->layers[layer].size)
386 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
387 unsigned int n_layers,
388 struct edac_mc_layer *layers,
391 struct mem_ctl_info *mci;
392 struct edac_mc_layer *layer;
393 unsigned int idx, size, tot_dimms = 1;
394 unsigned int tot_csrows = 1, tot_channels = 1;
395 void *pvt, *ptr = NULL;
396 bool per_rank = false;
398 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
402 * Calculate the total amount of dimms and csrows/cschannels while
403 * in the old API emulation mode
405 for (idx = 0; idx < n_layers; idx++) {
406 tot_dimms *= layers[idx].size;
408 if (layers[idx].is_virt_csrow)
409 tot_csrows *= layers[idx].size;
411 tot_channels *= layers[idx].size;
413 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
417 /* Figure out the offsets of the various items from the start of an mc
418 * structure. We want the alignment of each item to be at least as
419 * stringent as what the compiler would provide if we could simply
420 * hardcode everything into a single struct.
422 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
423 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
424 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
425 size = ((unsigned long)pvt) + sz_pvt;
427 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
430 per_rank ? "ranks" : "dimms",
431 tot_csrows * tot_channels);
433 mci = kzalloc(size, GFP_KERNEL);
437 mci->dev.release = mci_release;
438 device_initialize(&mci->dev);
440 /* Adjust pointers so they point within the memory we just allocated
441 * rather than an imaginary chunk of memory located at address 0.
443 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
444 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
446 /* setup index and various internal pointers */
447 mci->mc_idx = mc_num;
448 mci->tot_dimms = tot_dimms;
450 mci->n_layers = n_layers;
452 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
453 mci->nr_csrows = tot_csrows;
454 mci->num_cschannel = tot_channels;
455 mci->csbased = per_rank;
457 if (edac_mc_alloc_csrows(mci))
460 if (edac_mc_alloc_dimms(mci))
463 mci->op_state = OP_ALLOC;
472 EXPORT_SYMBOL_GPL(edac_mc_alloc);
474 void edac_mc_free(struct mem_ctl_info *mci)
480 EXPORT_SYMBOL_GPL(edac_mc_free);
482 bool edac_has_mcs(void)
486 mutex_lock(&mem_ctls_mutex);
488 ret = list_empty(&mc_devices);
490 mutex_unlock(&mem_ctls_mutex);
494 EXPORT_SYMBOL_GPL(edac_has_mcs);
496 /* Caller must hold mem_ctls_mutex */
497 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
499 struct mem_ctl_info *mci;
500 struct list_head *item;
504 list_for_each(item, &mc_devices) {
505 mci = list_entry(item, struct mem_ctl_info, link);
507 if (mci->pdev == dev)
517 * scan list of controllers looking for the one that manages
519 * @dev: pointer to a struct device related with the MCI
521 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
523 struct mem_ctl_info *ret;
525 mutex_lock(&mem_ctls_mutex);
526 ret = __find_mci_by_dev(dev);
527 mutex_unlock(&mem_ctls_mutex);
531 EXPORT_SYMBOL_GPL(find_mci_by_dev);
534 * edac_mc_workq_function
535 * performs the operation scheduled by a workq request
537 static void edac_mc_workq_function(struct work_struct *work_req)
539 struct delayed_work *d_work = to_delayed_work(work_req);
540 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
542 mutex_lock(&mem_ctls_mutex);
544 if (mci->op_state != OP_RUNNING_POLL) {
545 mutex_unlock(&mem_ctls_mutex);
549 if (edac_op_state == EDAC_OPSTATE_POLL)
550 mci->edac_check(mci);
552 mutex_unlock(&mem_ctls_mutex);
554 /* Queue ourselves again. */
555 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
559 * edac_mc_reset_delay_period(unsigned long value)
561 * user space has updated our poll period value, need to
562 * reset our workq delays
564 void edac_mc_reset_delay_period(unsigned long value)
566 struct mem_ctl_info *mci;
567 struct list_head *item;
569 mutex_lock(&mem_ctls_mutex);
571 list_for_each(item, &mc_devices) {
572 mci = list_entry(item, struct mem_ctl_info, link);
574 if (mci->op_state == OP_RUNNING_POLL)
575 edac_mod_work(&mci->work, value);
577 mutex_unlock(&mem_ctls_mutex);
582 /* Return 0 on success, 1 on failure.
583 * Before calling this function, caller must
584 * assign a unique value to mci->mc_idx.
588 * called with the mem_ctls_mutex lock held
590 static int add_mc_to_global_list(struct mem_ctl_info *mci)
592 struct list_head *item, *insert_before;
593 struct mem_ctl_info *p;
595 insert_before = &mc_devices;
597 p = __find_mci_by_dev(mci->pdev);
598 if (unlikely(p != NULL))
601 list_for_each(item, &mc_devices) {
602 p = list_entry(item, struct mem_ctl_info, link);
604 if (p->mc_idx >= mci->mc_idx) {
605 if (unlikely(p->mc_idx == mci->mc_idx))
608 insert_before = item;
613 list_add_tail_rcu(&mci->link, insert_before);
617 edac_printk(KERN_WARNING, EDAC_MC,
618 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
619 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
623 edac_printk(KERN_WARNING, EDAC_MC,
624 "bug in low-level driver: attempt to assign\n"
625 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
629 static int del_mc_from_global_list(struct mem_ctl_info *mci)
631 list_del_rcu(&mci->link);
633 /* these are for safe removal of devices from global list while
634 * NMI handlers may be traversing list
637 INIT_LIST_HEAD(&mci->link);
639 return list_empty(&mc_devices);
642 struct mem_ctl_info *edac_mc_find(int idx)
644 struct mem_ctl_info *mci;
645 struct list_head *item;
647 mutex_lock(&mem_ctls_mutex);
649 list_for_each(item, &mc_devices) {
650 mci = list_entry(item, struct mem_ctl_info, link);
651 if (mci->mc_idx == idx)
657 mutex_unlock(&mem_ctls_mutex);
660 EXPORT_SYMBOL(edac_mc_find);
662 const char *edac_get_owner(void)
664 return edac_mc_owner;
666 EXPORT_SYMBOL_GPL(edac_get_owner);
668 /* FIXME - should a warning be printed if no error detection? correction? */
669 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
670 const struct attribute_group **groups)
675 #ifdef CONFIG_EDAC_DEBUG
676 if (edac_debug_level >= 3)
677 edac_mc_dump_mci(mci);
679 if (edac_debug_level >= 4) {
680 struct dimm_info *dimm;
683 for (i = 0; i < mci->nr_csrows; i++) {
684 struct csrow_info *csrow = mci->csrows[i];
688 for (j = 0; j < csrow->nr_channels; j++)
689 nr_pages += csrow->channels[j]->dimm->nr_pages;
692 edac_mc_dump_csrow(csrow);
693 for (j = 0; j < csrow->nr_channels; j++)
694 if (csrow->channels[j]->dimm->nr_pages)
695 edac_mc_dump_channel(csrow->channels[j]);
698 mci_for_each_dimm(mci, dimm)
699 edac_mc_dump_dimm(dimm);
702 mutex_lock(&mem_ctls_mutex);
704 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
709 if (add_mc_to_global_list(mci))
712 /* set load time so that error rate can be tracked */
713 mci->start_time = jiffies;
715 mci->bus = edac_get_sysfs_subsys();
717 if (edac_create_sysfs_mci_device(mci, groups)) {
718 edac_mc_printk(mci, KERN_WARNING,
719 "failed to create sysfs device\n");
723 if (mci->edac_check) {
724 mci->op_state = OP_RUNNING_POLL;
726 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
727 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
730 mci->op_state = OP_RUNNING_INTERRUPT;
733 /* Report action taken */
734 edac_mc_printk(mci, KERN_INFO,
735 "Giving out device to module %s controller %s: DEV %s (%s)\n",
736 mci->mod_name, mci->ctl_name, mci->dev_name,
737 edac_op_state_to_string(mci->op_state));
739 edac_mc_owner = mci->mod_name;
741 mutex_unlock(&mem_ctls_mutex);
745 del_mc_from_global_list(mci);
748 mutex_unlock(&mem_ctls_mutex);
751 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
753 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
755 struct mem_ctl_info *mci;
759 mutex_lock(&mem_ctls_mutex);
761 /* find the requested mci struct in the global list */
762 mci = __find_mci_by_dev(dev);
764 mutex_unlock(&mem_ctls_mutex);
768 /* mark MCI offline: */
769 mci->op_state = OP_OFFLINE;
771 if (del_mc_from_global_list(mci))
772 edac_mc_owner = NULL;
774 mutex_unlock(&mem_ctls_mutex);
777 edac_stop_work(&mci->work);
779 /* remove from sysfs */
780 edac_remove_sysfs_mci_device(mci);
782 edac_printk(KERN_INFO, EDAC_MC,
783 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
784 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
788 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
790 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
795 unsigned long flags = 0;
799 /* ECC error page was not in our memory. Ignore it. */
800 if (!pfn_valid(page))
803 /* Find the actual page structure then map it and fix */
804 pg = pfn_to_page(page);
807 local_irq_save(flags);
809 virt_addr = kmap_atomic(pg);
811 /* Perform architecture specific atomic scrub operation */
812 edac_atomic_scrub(virt_addr + offset, size);
814 /* Unmap and complete */
815 kunmap_atomic(virt_addr);
818 local_irq_restore(flags);
821 /* FIXME - should return -1 */
822 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
824 struct csrow_info **csrows = mci->csrows;
827 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
830 for (i = 0; i < mci->nr_csrows; i++) {
831 struct csrow_info *csrow = csrows[i];
833 for (j = 0; j < csrow->nr_channels; j++) {
834 struct dimm_info *dimm = csrow->channels[j]->dimm;
840 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
842 csrow->first_page, page, csrow->last_page,
845 if ((page >= csrow->first_page) &&
846 (page <= csrow->last_page) &&
847 ((page & csrow->page_mask) ==
848 (csrow->first_page & csrow->page_mask))) {
855 edac_mc_printk(mci, KERN_ERR,
856 "could not look up page error address %lx\n",
857 (unsigned long)page);
861 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
863 const char *edac_layer_name[] = {
864 [EDAC_MC_LAYER_BRANCH] = "branch",
865 [EDAC_MC_LAYER_CHANNEL] = "channel",
866 [EDAC_MC_LAYER_SLOT] = "slot",
867 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
868 [EDAC_MC_LAYER_ALL_MEM] = "memory",
870 EXPORT_SYMBOL_GPL(edac_layer_name);
872 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
874 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
875 struct mem_ctl_info *mci = error_desc_to_mci(e);
876 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
878 mci->ce_mc += e->error_count;
881 dimm->ce_count += e->error_count;
883 mci->ce_noinfo_count += e->error_count;
886 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
888 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
889 struct mem_ctl_info *mci = error_desc_to_mci(e);
890 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
892 mci->ue_mc += e->error_count;
895 dimm->ue_count += e->error_count;
897 mci->ue_noinfo_count += e->error_count;
900 static void edac_ce_error(struct edac_raw_error_desc *e)
902 struct mem_ctl_info *mci = error_desc_to_mci(e);
903 unsigned long remapped_page;
905 if (edac_mc_get_log_ce()) {
906 edac_mc_printk(mci, KERN_WARNING,
907 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
908 e->error_count, e->msg,
910 e->label, e->location, e->page_frame_number, e->offset_in_page,
911 e->grain, e->syndrome,
912 *e->other_detail ? " - " : "",
916 edac_inc_ce_error(e);
918 if (mci->scrub_mode == SCRUB_SW_SRC) {
920 * Some memory controllers (called MCs below) can remap
921 * memory so that it is still available at a different
922 * address when PCI devices map into memory.
923 * MC's that can't do this, lose the memory where PCI
924 * devices are mapped. This mapping is MC-dependent
925 * and so we call back into the MC driver for it to
926 * map the MC page to a physical (CPU) page which can
927 * then be mapped to a virtual page - which can then
930 remapped_page = mci->ctl_page_to_phys ?
931 mci->ctl_page_to_phys(mci, e->page_frame_number) :
932 e->page_frame_number;
934 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
938 static void edac_ue_error(struct edac_raw_error_desc *e)
940 struct mem_ctl_info *mci = error_desc_to_mci(e);
942 if (edac_mc_get_log_ue()) {
943 edac_mc_printk(mci, KERN_WARNING,
944 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
945 e->error_count, e->msg,
947 e->label, e->location, e->page_frame_number, e->offset_in_page,
949 *e->other_detail ? " - " : "",
953 edac_inc_ue_error(e);
955 if (edac_mc_get_panic_on_ue()) {
956 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
959 e->label, e->location, e->page_frame_number, e->offset_in_page,
961 *e->other_detail ? " - " : "",
966 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
968 struct mem_ctl_info *mci = error_desc_to_mci(e);
969 enum hw_event_mc_err_type type = e->type;
970 u16 count = e->error_count;
975 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
977 if (type == HW_EVENT_ERR_CORRECTED) {
978 mci->csrows[row]->ce_count += count;
980 mci->csrows[row]->channels[chan]->ce_count += count;
982 mci->csrows[row]->ue_count += count;
986 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
988 struct mem_ctl_info *mci = error_desc_to_mci(e);
991 /* Sanity-check driver-supplied grain value. */
992 if (WARN_ON_ONCE(!e->grain))
995 grain_bits = fls_long(e->grain - 1);
997 /* Report the error via the trace interface */
998 if (IS_ENABLED(CONFIG_RAS))
999 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1000 mci->mc_idx, e->top_layer, e->mid_layer,
1002 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1003 grain_bits, e->syndrome, e->other_detail);
1005 if (e->type == HW_EVENT_ERR_CORRECTED)
1010 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1012 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1013 struct mem_ctl_info *mci,
1014 const u16 error_count,
1015 const unsigned long page_frame_number,
1016 const unsigned long offset_in_page,
1017 const unsigned long syndrome,
1018 const int top_layer,
1019 const int mid_layer,
1020 const int low_layer,
1022 const char *other_detail)
1024 struct dimm_info *dimm;
1026 int row = -1, chan = -1;
1027 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1028 int i, n_labels = 0;
1029 struct edac_raw_error_desc *e = &mci->error_desc;
1030 bool any_memory = true;
1032 edac_dbg(3, "MC%d\n", mci->mc_idx);
1034 /* Fills the error report buffer */
1035 memset(e, 0, sizeof (*e));
1036 e->error_count = error_count;
1038 e->top_layer = top_layer;
1039 e->mid_layer = mid_layer;
1040 e->low_layer = low_layer;
1041 e->page_frame_number = page_frame_number;
1042 e->offset_in_page = offset_in_page;
1043 e->syndrome = syndrome;
1044 /* need valid strings here for both: */
1046 e->other_detail = other_detail ?: "";
1049 * Check if the event report is consistent and if the memory location is
1050 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1051 * error counters will be incremented.
1053 for (i = 0; i < mci->n_layers; i++) {
1054 if (pos[i] >= (int)mci->layers[i].size) {
1056 edac_mc_printk(mci, KERN_ERR,
1057 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1058 edac_layer_name[mci->layers[i].type],
1059 pos[i], mci->layers[i].size);
1061 * Instead of just returning it, let's use what's
1062 * known about the error. The increment routines and
1063 * the DIMM filter logic will do the right thing by
1064 * pointing the likely damaged DIMMs.
1073 * Get the dimm label/grain that applies to the match criteria.
1074 * As the error algorithm may not be able to point to just one memory
1075 * stick, the logic here will get all possible labels that could
1076 * pottentially be affected by the error.
1077 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1078 * to have only the MC channel and the MC dimm (also called "branch")
1079 * but the channel is not known, as the memory is arranged in pairs,
1080 * where each memory belongs to a separate channel within the same
1086 mci_for_each_dimm(mci, dimm) {
1087 if (top_layer >= 0 && top_layer != dimm->location[0])
1089 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1091 if (low_layer >= 0 && low_layer != dimm->location[2])
1094 /* get the max grain, over the error match range */
1095 if (dimm->grain > e->grain)
1096 e->grain = dimm->grain;
1099 * If the error is memory-controller wide, there's no need to
1100 * seek for the affected DIMMs because the whole channel/memory
1101 * controller/... may be affected. Also, don't show errors for
1104 if (!dimm->nr_pages)
1108 if (n_labels > EDAC_MAX_LABELS) {
1112 if (p != e->label) {
1113 strcpy(p, OTHER_LABEL);
1114 p += strlen(OTHER_LABEL);
1116 strcpy(p, dimm->label);
1121 * get csrow/channel of the DIMM, in order to allow
1122 * incrementing the compat API counters
1124 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1125 mci->csbased ? "rank" : "dimm",
1126 dimm->csrow, dimm->cschannel);
1129 else if (row >= 0 && row != dimm->csrow)
1133 chan = dimm->cschannel;
1134 else if (chan >= 0 && chan != dimm->cschannel)
1139 strcpy(e->label, "any memory");
1140 else if (!*e->label)
1141 strcpy(e->label, "unknown memory");
1143 edac_inc_csrow(e, row, chan);
1145 /* Fill the RAM location data */
1148 for (i = 0; i < mci->n_layers; i++) {
1152 p += sprintf(p, "%s:%d ",
1153 edac_layer_name[mci->layers[i].type],
1156 if (p > e->location)
1159 edac_raw_mc_handle_error(e);
1161 EXPORT_SYMBOL_GPL(edac_mc_handle_error);