Merge tag 'rtc-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-microblaze.git] / drivers / dma-buf / dma-fence.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66
67 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
68 {
69         return "stub";
70 }
71
72 static const struct dma_fence_ops dma_fence_stub_ops = {
73         .get_driver_name = dma_fence_stub_get_name,
74         .get_timeline_name = dma_fence_stub_get_name,
75 };
76
77 /**
78  * dma_fence_get_stub - return a signaled fence
79  *
80  * Return a stub fence which is already signaled.
81  */
82 struct dma_fence *dma_fence_get_stub(void)
83 {
84         spin_lock(&dma_fence_stub_lock);
85         if (!dma_fence_stub.ops) {
86                 dma_fence_init(&dma_fence_stub,
87                                &dma_fence_stub_ops,
88                                &dma_fence_stub_lock,
89                                0, 0);
90                 dma_fence_signal_locked(&dma_fence_stub);
91         }
92         spin_unlock(&dma_fence_stub_lock);
93
94         return dma_fence_get(&dma_fence_stub);
95 }
96 EXPORT_SYMBOL(dma_fence_get_stub);
97
98 /**
99  * dma_fence_context_alloc - allocate an array of fence contexts
100  * @num: amount of contexts to allocate
101  *
102  * This function will return the first index of the number of fence contexts
103  * allocated.  The fence context is used for setting &dma_fence.context to a
104  * unique number by passing the context to dma_fence_init().
105  */
106 u64 dma_fence_context_alloc(unsigned num)
107 {
108         WARN_ON(!num);
109         return atomic64_add_return(num, &dma_fence_context_counter) - num;
110 }
111 EXPORT_SYMBOL(dma_fence_context_alloc);
112
113 /**
114  * dma_fence_signal_locked - signal completion of a fence
115  * @fence: the fence to signal
116  *
117  * Signal completion for software callbacks on a fence, this will unblock
118  * dma_fence_wait() calls and run all the callbacks added with
119  * dma_fence_add_callback(). Can be called multiple times, but since a fence
120  * can only go from the unsignaled to the signaled state and not back, it will
121  * only be effective the first time.
122  *
123  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
124  * held.
125  *
126  * Returns 0 on success and a negative error value when @fence has been
127  * signalled already.
128  */
129 int dma_fence_signal_locked(struct dma_fence *fence)
130 {
131         struct dma_fence_cb *cur, *tmp;
132         struct list_head cb_list;
133
134         lockdep_assert_held(fence->lock);
135
136         if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
137                                       &fence->flags)))
138                 return -EINVAL;
139
140         /* Stash the cb_list before replacing it with the timestamp */
141         list_replace(&fence->cb_list, &cb_list);
142
143         fence->timestamp = ktime_get();
144         set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
145         trace_dma_fence_signaled(fence);
146
147         list_for_each_entry_safe(cur, tmp, &cb_list, node) {
148                 INIT_LIST_HEAD(&cur->node);
149                 cur->func(fence, cur);
150         }
151
152         return 0;
153 }
154 EXPORT_SYMBOL(dma_fence_signal_locked);
155
156 /**
157  * dma_fence_signal - signal completion of a fence
158  * @fence: the fence to signal
159  *
160  * Signal completion for software callbacks on a fence, this will unblock
161  * dma_fence_wait() calls and run all the callbacks added with
162  * dma_fence_add_callback(). Can be called multiple times, but since a fence
163  * can only go from the unsignaled to the signaled state and not back, it will
164  * only be effective the first time.
165  *
166  * Returns 0 on success and a negative error value when @fence has been
167  * signalled already.
168  */
169 int dma_fence_signal(struct dma_fence *fence)
170 {
171         unsigned long flags;
172         int ret;
173
174         if (!fence)
175                 return -EINVAL;
176
177         spin_lock_irqsave(fence->lock, flags);
178         ret = dma_fence_signal_locked(fence);
179         spin_unlock_irqrestore(fence->lock, flags);
180
181         return ret;
182 }
183 EXPORT_SYMBOL(dma_fence_signal);
184
185 /**
186  * dma_fence_wait_timeout - sleep until the fence gets signaled
187  * or until timeout elapses
188  * @fence: the fence to wait on
189  * @intr: if true, do an interruptible wait
190  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
191  *
192  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
193  * remaining timeout in jiffies on success. Other error values may be
194  * returned on custom implementations.
195  *
196  * Performs a synchronous wait on this fence. It is assumed the caller
197  * directly or indirectly (buf-mgr between reservation and committing)
198  * holds a reference to the fence, otherwise the fence might be
199  * freed before return, resulting in undefined behavior.
200  *
201  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
202  */
203 signed long
204 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
205 {
206         signed long ret;
207
208         if (WARN_ON(timeout < 0))
209                 return -EINVAL;
210
211         trace_dma_fence_wait_start(fence);
212         if (fence->ops->wait)
213                 ret = fence->ops->wait(fence, intr, timeout);
214         else
215                 ret = dma_fence_default_wait(fence, intr, timeout);
216         trace_dma_fence_wait_end(fence);
217         return ret;
218 }
219 EXPORT_SYMBOL(dma_fence_wait_timeout);
220
221 /**
222  * dma_fence_release - default relese function for fences
223  * @kref: &dma_fence.recfount
224  *
225  * This is the default release functions for &dma_fence. Drivers shouldn't call
226  * this directly, but instead call dma_fence_put().
227  */
228 void dma_fence_release(struct kref *kref)
229 {
230         struct dma_fence *fence =
231                 container_of(kref, struct dma_fence, refcount);
232
233         trace_dma_fence_destroy(fence);
234
235         if (WARN(!list_empty(&fence->cb_list) &&
236                  !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
237                  "Fence %s:%s:%llx:%llx released with pending signals!\n",
238                  fence->ops->get_driver_name(fence),
239                  fence->ops->get_timeline_name(fence),
240                  fence->context, fence->seqno)) {
241                 unsigned long flags;
242
243                 /*
244                  * Failed to signal before release, likely a refcounting issue.
245                  *
246                  * This should never happen, but if it does make sure that we
247                  * don't leave chains dangling. We set the error flag first
248                  * so that the callbacks know this signal is due to an error.
249                  */
250                 spin_lock_irqsave(fence->lock, flags);
251                 fence->error = -EDEADLK;
252                 dma_fence_signal_locked(fence);
253                 spin_unlock_irqrestore(fence->lock, flags);
254         }
255
256         if (fence->ops->release)
257                 fence->ops->release(fence);
258         else
259                 dma_fence_free(fence);
260 }
261 EXPORT_SYMBOL(dma_fence_release);
262
263 /**
264  * dma_fence_free - default release function for &dma_fence.
265  * @fence: fence to release
266  *
267  * This is the default implementation for &dma_fence_ops.release. It calls
268  * kfree_rcu() on @fence.
269  */
270 void dma_fence_free(struct dma_fence *fence)
271 {
272         kfree_rcu(fence, rcu);
273 }
274 EXPORT_SYMBOL(dma_fence_free);
275
276 /**
277  * dma_fence_enable_sw_signaling - enable signaling on fence
278  * @fence: the fence to enable
279  *
280  * This will request for sw signaling to be enabled, to make the fence
281  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
282  * internally.
283  */
284 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
285 {
286         unsigned long flags;
287
288         if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
289                               &fence->flags) &&
290             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
291             fence->ops->enable_signaling) {
292                 trace_dma_fence_enable_signal(fence);
293
294                 spin_lock_irqsave(fence->lock, flags);
295
296                 if (!fence->ops->enable_signaling(fence))
297                         dma_fence_signal_locked(fence);
298
299                 spin_unlock_irqrestore(fence->lock, flags);
300         }
301 }
302 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
303
304 /**
305  * dma_fence_add_callback - add a callback to be called when the fence
306  * is signaled
307  * @fence: the fence to wait on
308  * @cb: the callback to register
309  * @func: the function to call
310  *
311  * @cb will be initialized by dma_fence_add_callback(), no initialization
312  * by the caller is required. Any number of callbacks can be registered
313  * to a fence, but a callback can only be registered to one fence at a time.
314  *
315  * Note that the callback can be called from an atomic context.  If
316  * fence is already signaled, this function will return -ENOENT (and
317  * *not* call the callback).
318  *
319  * Add a software callback to the fence. Same restrictions apply to
320  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
321  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
322  * when software access is enabled, the creator of the fence is required to keep
323  * the fence alive until after it signals with dma_fence_signal(). The callback
324  * itself can be called from irq context.
325  *
326  * Returns 0 in case of success, -ENOENT if the fence is already signaled
327  * and -EINVAL in case of error.
328  */
329 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
330                            dma_fence_func_t func)
331 {
332         unsigned long flags;
333         int ret = 0;
334         bool was_set;
335
336         if (WARN_ON(!fence || !func))
337                 return -EINVAL;
338
339         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
340                 INIT_LIST_HEAD(&cb->node);
341                 return -ENOENT;
342         }
343
344         spin_lock_irqsave(fence->lock, flags);
345
346         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
347                                    &fence->flags);
348
349         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
350                 ret = -ENOENT;
351         else if (!was_set && fence->ops->enable_signaling) {
352                 trace_dma_fence_enable_signal(fence);
353
354                 if (!fence->ops->enable_signaling(fence)) {
355                         dma_fence_signal_locked(fence);
356                         ret = -ENOENT;
357                 }
358         }
359
360         if (!ret) {
361                 cb->func = func;
362                 list_add_tail(&cb->node, &fence->cb_list);
363         } else
364                 INIT_LIST_HEAD(&cb->node);
365         spin_unlock_irqrestore(fence->lock, flags);
366
367         return ret;
368 }
369 EXPORT_SYMBOL(dma_fence_add_callback);
370
371 /**
372  * dma_fence_get_status - returns the status upon completion
373  * @fence: the dma_fence to query
374  *
375  * This wraps dma_fence_get_status_locked() to return the error status
376  * condition on a signaled fence. See dma_fence_get_status_locked() for more
377  * details.
378  *
379  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
380  * been signaled without an error condition, or a negative error code
381  * if the fence has been completed in err.
382  */
383 int dma_fence_get_status(struct dma_fence *fence)
384 {
385         unsigned long flags;
386         int status;
387
388         spin_lock_irqsave(fence->lock, flags);
389         status = dma_fence_get_status_locked(fence);
390         spin_unlock_irqrestore(fence->lock, flags);
391
392         return status;
393 }
394 EXPORT_SYMBOL(dma_fence_get_status);
395
396 /**
397  * dma_fence_remove_callback - remove a callback from the signaling list
398  * @fence: the fence to wait on
399  * @cb: the callback to remove
400  *
401  * Remove a previously queued callback from the fence. This function returns
402  * true if the callback is successfully removed, or false if the fence has
403  * already been signaled.
404  *
405  * *WARNING*:
406  * Cancelling a callback should only be done if you really know what you're
407  * doing, since deadlocks and race conditions could occur all too easily. For
408  * this reason, it should only ever be done on hardware lockup recovery,
409  * with a reference held to the fence.
410  *
411  * Behaviour is undefined if @cb has not been added to @fence using
412  * dma_fence_add_callback() beforehand.
413  */
414 bool
415 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
416 {
417         unsigned long flags;
418         bool ret;
419
420         spin_lock_irqsave(fence->lock, flags);
421
422         ret = !list_empty(&cb->node);
423         if (ret)
424                 list_del_init(&cb->node);
425
426         spin_unlock_irqrestore(fence->lock, flags);
427
428         return ret;
429 }
430 EXPORT_SYMBOL(dma_fence_remove_callback);
431
432 struct default_wait_cb {
433         struct dma_fence_cb base;
434         struct task_struct *task;
435 };
436
437 static void
438 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
439 {
440         struct default_wait_cb *wait =
441                 container_of(cb, struct default_wait_cb, base);
442
443         wake_up_state(wait->task, TASK_NORMAL);
444 }
445
446 /**
447  * dma_fence_default_wait - default sleep until the fence gets signaled
448  * or until timeout elapses
449  * @fence: the fence to wait on
450  * @intr: if true, do an interruptible wait
451  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
452  *
453  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
454  * remaining timeout in jiffies on success. If timeout is zero the value one is
455  * returned if the fence is already signaled for consistency with other
456  * functions taking a jiffies timeout.
457  */
458 signed long
459 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
460 {
461         struct default_wait_cb cb;
462         unsigned long flags;
463         signed long ret = timeout ? timeout : 1;
464         bool was_set;
465
466         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
467                 return ret;
468
469         spin_lock_irqsave(fence->lock, flags);
470
471         if (intr && signal_pending(current)) {
472                 ret = -ERESTARTSYS;
473                 goto out;
474         }
475
476         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
477                                    &fence->flags);
478
479         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
480                 goto out;
481
482         if (!was_set && fence->ops->enable_signaling) {
483                 trace_dma_fence_enable_signal(fence);
484
485                 if (!fence->ops->enable_signaling(fence)) {
486                         dma_fence_signal_locked(fence);
487                         goto out;
488                 }
489         }
490
491         if (!timeout) {
492                 ret = 0;
493                 goto out;
494         }
495
496         cb.base.func = dma_fence_default_wait_cb;
497         cb.task = current;
498         list_add(&cb.base.node, &fence->cb_list);
499
500         while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
501                 if (intr)
502                         __set_current_state(TASK_INTERRUPTIBLE);
503                 else
504                         __set_current_state(TASK_UNINTERRUPTIBLE);
505                 spin_unlock_irqrestore(fence->lock, flags);
506
507                 ret = schedule_timeout(ret);
508
509                 spin_lock_irqsave(fence->lock, flags);
510                 if (ret > 0 && intr && signal_pending(current))
511                         ret = -ERESTARTSYS;
512         }
513
514         if (!list_empty(&cb.base.node))
515                 list_del(&cb.base.node);
516         __set_current_state(TASK_RUNNING);
517
518 out:
519         spin_unlock_irqrestore(fence->lock, flags);
520         return ret;
521 }
522 EXPORT_SYMBOL(dma_fence_default_wait);
523
524 static bool
525 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
526                             uint32_t *idx)
527 {
528         int i;
529
530         for (i = 0; i < count; ++i) {
531                 struct dma_fence *fence = fences[i];
532                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
533                         if (idx)
534                                 *idx = i;
535                         return true;
536                 }
537         }
538         return false;
539 }
540
541 /**
542  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
543  * or until timeout elapses
544  * @fences: array of fences to wait on
545  * @count: number of fences to wait on
546  * @intr: if true, do an interruptible wait
547  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
548  * @idx: used to store the first signaled fence index, meaningful only on
549  *      positive return
550  *
551  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
552  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
553  * on success.
554  *
555  * Synchronous waits for the first fence in the array to be signaled. The
556  * caller needs to hold a reference to all fences in the array, otherwise a
557  * fence might be freed before return, resulting in undefined behavior.
558  *
559  * See also dma_fence_wait() and dma_fence_wait_timeout().
560  */
561 signed long
562 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
563                            bool intr, signed long timeout, uint32_t *idx)
564 {
565         struct default_wait_cb *cb;
566         signed long ret = timeout;
567         unsigned i;
568
569         if (WARN_ON(!fences || !count || timeout < 0))
570                 return -EINVAL;
571
572         if (timeout == 0) {
573                 for (i = 0; i < count; ++i)
574                         if (dma_fence_is_signaled(fences[i])) {
575                                 if (idx)
576                                         *idx = i;
577                                 return 1;
578                         }
579
580                 return 0;
581         }
582
583         cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
584         if (cb == NULL) {
585                 ret = -ENOMEM;
586                 goto err_free_cb;
587         }
588
589         for (i = 0; i < count; ++i) {
590                 struct dma_fence *fence = fences[i];
591
592                 cb[i].task = current;
593                 if (dma_fence_add_callback(fence, &cb[i].base,
594                                            dma_fence_default_wait_cb)) {
595                         /* This fence is already signaled */
596                         if (idx)
597                                 *idx = i;
598                         goto fence_rm_cb;
599                 }
600         }
601
602         while (ret > 0) {
603                 if (intr)
604                         set_current_state(TASK_INTERRUPTIBLE);
605                 else
606                         set_current_state(TASK_UNINTERRUPTIBLE);
607
608                 if (dma_fence_test_signaled_any(fences, count, idx))
609                         break;
610
611                 ret = schedule_timeout(ret);
612
613                 if (ret > 0 && intr && signal_pending(current))
614                         ret = -ERESTARTSYS;
615         }
616
617         __set_current_state(TASK_RUNNING);
618
619 fence_rm_cb:
620         while (i-- > 0)
621                 dma_fence_remove_callback(fences[i], &cb[i].base);
622
623 err_free_cb:
624         kfree(cb);
625
626         return ret;
627 }
628 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
629
630 /**
631  * dma_fence_init - Initialize a custom fence.
632  * @fence: the fence to initialize
633  * @ops: the dma_fence_ops for operations on this fence
634  * @lock: the irqsafe spinlock to use for locking this fence
635  * @context: the execution context this fence is run on
636  * @seqno: a linear increasing sequence number for this context
637  *
638  * Initializes an allocated fence, the caller doesn't have to keep its
639  * refcount after committing with this fence, but it will need to hold a
640  * refcount again if &dma_fence_ops.enable_signaling gets called.
641  *
642  * context and seqno are used for easy comparison between fences, allowing
643  * to check which fence is later by simply using dma_fence_later().
644  */
645 void
646 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
647                spinlock_t *lock, u64 context, u64 seqno)
648 {
649         BUG_ON(!lock);
650         BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
651
652         kref_init(&fence->refcount);
653         fence->ops = ops;
654         INIT_LIST_HEAD(&fence->cb_list);
655         fence->lock = lock;
656         fence->context = context;
657         fence->seqno = seqno;
658         fence->flags = 0UL;
659         fence->error = 0;
660
661         trace_dma_fence_init(fence);
662 }
663 EXPORT_SYMBOL(dma_fence_init);