Merge branches 'x86/hyperv', 'x86/kdump' and 'x86/misc' into x86/urgent, to pick...
[linux-2.6-microblaze.git] / drivers / dma-buf / dma-fence.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66
67 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
68 {
69         return "stub";
70 }
71
72 static const struct dma_fence_ops dma_fence_stub_ops = {
73         .get_driver_name = dma_fence_stub_get_name,
74         .get_timeline_name = dma_fence_stub_get_name,
75 };
76
77 /**
78  * dma_fence_get_stub - return a signaled fence
79  *
80  * Return a stub fence which is already signaled.
81  */
82 struct dma_fence *dma_fence_get_stub(void)
83 {
84         spin_lock(&dma_fence_stub_lock);
85         if (!dma_fence_stub.ops) {
86                 dma_fence_init(&dma_fence_stub,
87                                &dma_fence_stub_ops,
88                                &dma_fence_stub_lock,
89                                0, 0);
90                 dma_fence_signal_locked(&dma_fence_stub);
91         }
92         spin_unlock(&dma_fence_stub_lock);
93
94         return dma_fence_get(&dma_fence_stub);
95 }
96 EXPORT_SYMBOL(dma_fence_get_stub);
97
98 /**
99  * dma_fence_context_alloc - allocate an array of fence contexts
100  * @num: amount of contexts to allocate
101  *
102  * This function will return the first index of the number of fence contexts
103  * allocated.  The fence context is used for setting &dma_fence.context to a
104  * unique number by passing the context to dma_fence_init().
105  */
106 u64 dma_fence_context_alloc(unsigned num)
107 {
108         WARN_ON(!num);
109         return atomic64_add_return(num, &dma_fence_context_counter) - num;
110 }
111 EXPORT_SYMBOL(dma_fence_context_alloc);
112
113 /**
114  * dma_fence_signal_locked - signal completion of a fence
115  * @fence: the fence to signal
116  *
117  * Signal completion for software callbacks on a fence, this will unblock
118  * dma_fence_wait() calls and run all the callbacks added with
119  * dma_fence_add_callback(). Can be called multiple times, but since a fence
120  * can only go from the unsignaled to the signaled state and not back, it will
121  * only be effective the first time.
122  *
123  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
124  * held.
125  *
126  * Returns 0 on success and a negative error value when @fence has been
127  * signalled already.
128  */
129 int dma_fence_signal_locked(struct dma_fence *fence)
130 {
131         struct dma_fence_cb *cur, *tmp;
132         struct list_head cb_list;
133
134         lockdep_assert_held(fence->lock);
135
136         if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
137                                       &fence->flags)))
138                 return -EINVAL;
139
140         /* Stash the cb_list before replacing it with the timestamp */
141         list_replace(&fence->cb_list, &cb_list);
142
143         fence->timestamp = ktime_get();
144         set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
145         trace_dma_fence_signaled(fence);
146
147         list_for_each_entry_safe(cur, tmp, &cb_list, node) {
148                 INIT_LIST_HEAD(&cur->node);
149                 cur->func(fence, cur);
150         }
151
152         return 0;
153 }
154 EXPORT_SYMBOL(dma_fence_signal_locked);
155
156 /**
157  * dma_fence_signal - signal completion of a fence
158  * @fence: the fence to signal
159  *
160  * Signal completion for software callbacks on a fence, this will unblock
161  * dma_fence_wait() calls and run all the callbacks added with
162  * dma_fence_add_callback(). Can be called multiple times, but since a fence
163  * can only go from the unsignaled to the signaled state and not back, it will
164  * only be effective the first time.
165  *
166  * Returns 0 on success and a negative error value when @fence has been
167  * signalled already.
168  */
169 int dma_fence_signal(struct dma_fence *fence)
170 {
171         unsigned long flags;
172         int ret;
173
174         if (!fence)
175                 return -EINVAL;
176
177         spin_lock_irqsave(fence->lock, flags);
178         ret = dma_fence_signal_locked(fence);
179         spin_unlock_irqrestore(fence->lock, flags);
180
181         return ret;
182 }
183 EXPORT_SYMBOL(dma_fence_signal);
184
185 /**
186  * dma_fence_wait_timeout - sleep until the fence gets signaled
187  * or until timeout elapses
188  * @fence: the fence to wait on
189  * @intr: if true, do an interruptible wait
190  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
191  *
192  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
193  * remaining timeout in jiffies on success. Other error values may be
194  * returned on custom implementations.
195  *
196  * Performs a synchronous wait on this fence. It is assumed the caller
197  * directly or indirectly (buf-mgr between reservation and committing)
198  * holds a reference to the fence, otherwise the fence might be
199  * freed before return, resulting in undefined behavior.
200  *
201  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
202  */
203 signed long
204 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
205 {
206         signed long ret;
207
208         if (WARN_ON(timeout < 0))
209                 return -EINVAL;
210
211         trace_dma_fence_wait_start(fence);
212         if (fence->ops->wait)
213                 ret = fence->ops->wait(fence, intr, timeout);
214         else
215                 ret = dma_fence_default_wait(fence, intr, timeout);
216         trace_dma_fence_wait_end(fence);
217         return ret;
218 }
219 EXPORT_SYMBOL(dma_fence_wait_timeout);
220
221 /**
222  * dma_fence_release - default relese function for fences
223  * @kref: &dma_fence.recfount
224  *
225  * This is the default release functions for &dma_fence. Drivers shouldn't call
226  * this directly, but instead call dma_fence_put().
227  */
228 void dma_fence_release(struct kref *kref)
229 {
230         struct dma_fence *fence =
231                 container_of(kref, struct dma_fence, refcount);
232
233         trace_dma_fence_destroy(fence);
234
235         if (WARN(!list_empty(&fence->cb_list) &&
236                  !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
237                  "Fence %s:%s:%llx:%llx released with pending signals!\n",
238                  fence->ops->get_driver_name(fence),
239                  fence->ops->get_timeline_name(fence),
240                  fence->context, fence->seqno)) {
241                 unsigned long flags;
242
243                 /*
244                  * Failed to signal before release, likely a refcounting issue.
245                  *
246                  * This should never happen, but if it does make sure that we
247                  * don't leave chains dangling. We set the error flag first
248                  * so that the callbacks know this signal is due to an error.
249                  */
250                 spin_lock_irqsave(fence->lock, flags);
251                 fence->error = -EDEADLK;
252                 dma_fence_signal_locked(fence);
253                 spin_unlock_irqrestore(fence->lock, flags);
254         }
255
256         if (fence->ops->release)
257                 fence->ops->release(fence);
258         else
259                 dma_fence_free(fence);
260 }
261 EXPORT_SYMBOL(dma_fence_release);
262
263 /**
264  * dma_fence_free - default release function for &dma_fence.
265  * @fence: fence to release
266  *
267  * This is the default implementation for &dma_fence_ops.release. It calls
268  * kfree_rcu() on @fence.
269  */
270 void dma_fence_free(struct dma_fence *fence)
271 {
272         kfree_rcu(fence, rcu);
273 }
274 EXPORT_SYMBOL(dma_fence_free);
275
276 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
277 {
278         bool was_set;
279
280         lockdep_assert_held(fence->lock);
281
282         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
283                                    &fence->flags);
284
285         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
286                 return false;
287
288         if (!was_set && fence->ops->enable_signaling) {
289                 trace_dma_fence_enable_signal(fence);
290
291                 if (!fence->ops->enable_signaling(fence)) {
292                         dma_fence_signal_locked(fence);
293                         return false;
294                 }
295         }
296
297         return true;
298 }
299
300 /**
301  * dma_fence_enable_sw_signaling - enable signaling on fence
302  * @fence: the fence to enable
303  *
304  * This will request for sw signaling to be enabled, to make the fence
305  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
306  * internally.
307  */
308 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
309 {
310         unsigned long flags;
311
312         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
313                 return;
314
315         spin_lock_irqsave(fence->lock, flags);
316         __dma_fence_enable_signaling(fence);
317         spin_unlock_irqrestore(fence->lock, flags);
318 }
319 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
320
321 /**
322  * dma_fence_add_callback - add a callback to be called when the fence
323  * is signaled
324  * @fence: the fence to wait on
325  * @cb: the callback to register
326  * @func: the function to call
327  *
328  * @cb will be initialized by dma_fence_add_callback(), no initialization
329  * by the caller is required. Any number of callbacks can be registered
330  * to a fence, but a callback can only be registered to one fence at a time.
331  *
332  * Note that the callback can be called from an atomic context.  If
333  * fence is already signaled, this function will return -ENOENT (and
334  * *not* call the callback).
335  *
336  * Add a software callback to the fence. Same restrictions apply to
337  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
338  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
339  * when software access is enabled, the creator of the fence is required to keep
340  * the fence alive until after it signals with dma_fence_signal(). The callback
341  * itself can be called from irq context.
342  *
343  * Returns 0 in case of success, -ENOENT if the fence is already signaled
344  * and -EINVAL in case of error.
345  */
346 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
347                            dma_fence_func_t func)
348 {
349         unsigned long flags;
350         int ret = 0;
351
352         if (WARN_ON(!fence || !func))
353                 return -EINVAL;
354
355         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
356                 INIT_LIST_HEAD(&cb->node);
357                 return -ENOENT;
358         }
359
360         spin_lock_irqsave(fence->lock, flags);
361
362         if (__dma_fence_enable_signaling(fence)) {
363                 cb->func = func;
364                 list_add_tail(&cb->node, &fence->cb_list);
365         } else {
366                 INIT_LIST_HEAD(&cb->node);
367                 ret = -ENOENT;
368         }
369
370         spin_unlock_irqrestore(fence->lock, flags);
371
372         return ret;
373 }
374 EXPORT_SYMBOL(dma_fence_add_callback);
375
376 /**
377  * dma_fence_get_status - returns the status upon completion
378  * @fence: the dma_fence to query
379  *
380  * This wraps dma_fence_get_status_locked() to return the error status
381  * condition on a signaled fence. See dma_fence_get_status_locked() for more
382  * details.
383  *
384  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
385  * been signaled without an error condition, or a negative error code
386  * if the fence has been completed in err.
387  */
388 int dma_fence_get_status(struct dma_fence *fence)
389 {
390         unsigned long flags;
391         int status;
392
393         spin_lock_irqsave(fence->lock, flags);
394         status = dma_fence_get_status_locked(fence);
395         spin_unlock_irqrestore(fence->lock, flags);
396
397         return status;
398 }
399 EXPORT_SYMBOL(dma_fence_get_status);
400
401 /**
402  * dma_fence_remove_callback - remove a callback from the signaling list
403  * @fence: the fence to wait on
404  * @cb: the callback to remove
405  *
406  * Remove a previously queued callback from the fence. This function returns
407  * true if the callback is successfully removed, or false if the fence has
408  * already been signaled.
409  *
410  * *WARNING*:
411  * Cancelling a callback should only be done if you really know what you're
412  * doing, since deadlocks and race conditions could occur all too easily. For
413  * this reason, it should only ever be done on hardware lockup recovery,
414  * with a reference held to the fence.
415  *
416  * Behaviour is undefined if @cb has not been added to @fence using
417  * dma_fence_add_callback() beforehand.
418  */
419 bool
420 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
421 {
422         unsigned long flags;
423         bool ret;
424
425         spin_lock_irqsave(fence->lock, flags);
426
427         ret = !list_empty(&cb->node);
428         if (ret)
429                 list_del_init(&cb->node);
430
431         spin_unlock_irqrestore(fence->lock, flags);
432
433         return ret;
434 }
435 EXPORT_SYMBOL(dma_fence_remove_callback);
436
437 struct default_wait_cb {
438         struct dma_fence_cb base;
439         struct task_struct *task;
440 };
441
442 static void
443 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
444 {
445         struct default_wait_cb *wait =
446                 container_of(cb, struct default_wait_cb, base);
447
448         wake_up_state(wait->task, TASK_NORMAL);
449 }
450
451 /**
452  * dma_fence_default_wait - default sleep until the fence gets signaled
453  * or until timeout elapses
454  * @fence: the fence to wait on
455  * @intr: if true, do an interruptible wait
456  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
457  *
458  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
459  * remaining timeout in jiffies on success. If timeout is zero the value one is
460  * returned if the fence is already signaled for consistency with other
461  * functions taking a jiffies timeout.
462  */
463 signed long
464 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
465 {
466         struct default_wait_cb cb;
467         unsigned long flags;
468         signed long ret = timeout ? timeout : 1;
469
470         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
471                 return ret;
472
473         spin_lock_irqsave(fence->lock, flags);
474
475         if (intr && signal_pending(current)) {
476                 ret = -ERESTARTSYS;
477                 goto out;
478         }
479
480         if (!__dma_fence_enable_signaling(fence))
481                 goto out;
482
483         if (!timeout) {
484                 ret = 0;
485                 goto out;
486         }
487
488         cb.base.func = dma_fence_default_wait_cb;
489         cb.task = current;
490         list_add(&cb.base.node, &fence->cb_list);
491
492         while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
493                 if (intr)
494                         __set_current_state(TASK_INTERRUPTIBLE);
495                 else
496                         __set_current_state(TASK_UNINTERRUPTIBLE);
497                 spin_unlock_irqrestore(fence->lock, flags);
498
499                 ret = schedule_timeout(ret);
500
501                 spin_lock_irqsave(fence->lock, flags);
502                 if (ret > 0 && intr && signal_pending(current))
503                         ret = -ERESTARTSYS;
504         }
505
506         if (!list_empty(&cb.base.node))
507                 list_del(&cb.base.node);
508         __set_current_state(TASK_RUNNING);
509
510 out:
511         spin_unlock_irqrestore(fence->lock, flags);
512         return ret;
513 }
514 EXPORT_SYMBOL(dma_fence_default_wait);
515
516 static bool
517 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
518                             uint32_t *idx)
519 {
520         int i;
521
522         for (i = 0; i < count; ++i) {
523                 struct dma_fence *fence = fences[i];
524                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
525                         if (idx)
526                                 *idx = i;
527                         return true;
528                 }
529         }
530         return false;
531 }
532
533 /**
534  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
535  * or until timeout elapses
536  * @fences: array of fences to wait on
537  * @count: number of fences to wait on
538  * @intr: if true, do an interruptible wait
539  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
540  * @idx: used to store the first signaled fence index, meaningful only on
541  *      positive return
542  *
543  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
544  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
545  * on success.
546  *
547  * Synchronous waits for the first fence in the array to be signaled. The
548  * caller needs to hold a reference to all fences in the array, otherwise a
549  * fence might be freed before return, resulting in undefined behavior.
550  *
551  * See also dma_fence_wait() and dma_fence_wait_timeout().
552  */
553 signed long
554 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
555                            bool intr, signed long timeout, uint32_t *idx)
556 {
557         struct default_wait_cb *cb;
558         signed long ret = timeout;
559         unsigned i;
560
561         if (WARN_ON(!fences || !count || timeout < 0))
562                 return -EINVAL;
563
564         if (timeout == 0) {
565                 for (i = 0; i < count; ++i)
566                         if (dma_fence_is_signaled(fences[i])) {
567                                 if (idx)
568                                         *idx = i;
569                                 return 1;
570                         }
571
572                 return 0;
573         }
574
575         cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
576         if (cb == NULL) {
577                 ret = -ENOMEM;
578                 goto err_free_cb;
579         }
580
581         for (i = 0; i < count; ++i) {
582                 struct dma_fence *fence = fences[i];
583
584                 cb[i].task = current;
585                 if (dma_fence_add_callback(fence, &cb[i].base,
586                                            dma_fence_default_wait_cb)) {
587                         /* This fence is already signaled */
588                         if (idx)
589                                 *idx = i;
590                         goto fence_rm_cb;
591                 }
592         }
593
594         while (ret > 0) {
595                 if (intr)
596                         set_current_state(TASK_INTERRUPTIBLE);
597                 else
598                         set_current_state(TASK_UNINTERRUPTIBLE);
599
600                 if (dma_fence_test_signaled_any(fences, count, idx))
601                         break;
602
603                 ret = schedule_timeout(ret);
604
605                 if (ret > 0 && intr && signal_pending(current))
606                         ret = -ERESTARTSYS;
607         }
608
609         __set_current_state(TASK_RUNNING);
610
611 fence_rm_cb:
612         while (i-- > 0)
613                 dma_fence_remove_callback(fences[i], &cb[i].base);
614
615 err_free_cb:
616         kfree(cb);
617
618         return ret;
619 }
620 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
621
622 /**
623  * dma_fence_init - Initialize a custom fence.
624  * @fence: the fence to initialize
625  * @ops: the dma_fence_ops for operations on this fence
626  * @lock: the irqsafe spinlock to use for locking this fence
627  * @context: the execution context this fence is run on
628  * @seqno: a linear increasing sequence number for this context
629  *
630  * Initializes an allocated fence, the caller doesn't have to keep its
631  * refcount after committing with this fence, but it will need to hold a
632  * refcount again if &dma_fence_ops.enable_signaling gets called.
633  *
634  * context and seqno are used for easy comparison between fences, allowing
635  * to check which fence is later by simply using dma_fence_later().
636  */
637 void
638 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
639                spinlock_t *lock, u64 context, u64 seqno)
640 {
641         BUG_ON(!lock);
642         BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
643
644         kref_init(&fence->refcount);
645         fence->ops = ops;
646         INIT_LIST_HEAD(&fence->cb_list);
647         fence->lock = lock;
648         fence->context = context;
649         fence->seqno = seqno;
650         fence->flags = 0UL;
651         fence->error = 0;
652
653         trace_dma_fence_init(fence);
654 }
655 EXPORT_SYMBOL(dma_fence_init);