Merge tag 'mailbox-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/jassibrar...
[linux-2.6-microblaze.git] / drivers / dma / xgene-dma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Applied Micro X-Gene SoC DMA engine Driver
4  *
5  * Copyright (c) 2015, Applied Micro Circuits Corporation
6  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7  *          Loc Ho <lho@apm.com>
8  *
9  * NOTE: PM support is currently not available.
10  */
11
12 #include <linux/acpi.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24
25 #include "dmaengine.h"
26
27 /* X-Gene DMA ring csr registers and bit definations */
28 #define XGENE_DMA_RING_CONFIG                   0x04
29 #define XGENE_DMA_RING_ENABLE                   BIT(31)
30 #define XGENE_DMA_RING_ID                       0x08
31 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
32 #define XGENE_DMA_RING_ID_BUF                   0x0C
33 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
34 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
35 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
36 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
37 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
38 #define XGENE_DMA_RING_HYSTERESIS               0x68
39 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
40 #define XGENE_DMA_RING_STATE                    0x6C
41 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
42 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
43 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
44         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
45 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
46         ((m) &= (~BIT(31 - (v))))
47 #define XGENE_DMA_RING_CLKEN                    0xC208
48 #define XGENE_DMA_RING_SRST                     0xC200
49 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
50 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
51 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
52 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
53 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
54 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
55 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
56 #define XGENE_DMA_RING_COHERENT_SET(m)          \
57         (((u32 *)(m))[2] |= BIT(4))
58 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
59         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
60 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
61         (((u32 *)(m))[3] |= ((v) >> 35))
62 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
63         (((u32 *)(m))[3] |= BIT(19))
64 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
65         (((u32 *)(m))[3] |= ((v) << 23))
66 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
67         (((u32 *)(m))[3] |= BIT(27))
68 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
69         (((u32 *)(m))[3] |= (0x7 << 28))
70 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
71         (((u32 *)(m))[4] |= 0x3)
72 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
73         (((u32 *)(m))[4] |= BIT(3))
74 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
75         (((u32 *)(m))[4] |= ((v) << 19))
76
77 /* X-Gene DMA device csr registers and bit definitions */
78 #define XGENE_DMA_IPBRR                         0x0
79 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
80 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
81 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
82 #define XGENE_DMA_GCR                           0x10
83 #define XGENE_DMA_CH_SETUP(v)                   \
84         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
85 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
86 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
87 #define XGENE_DMA_RAID6_CONT                    0x14
88 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
89 #define XGENE_DMA_INT                           0x70
90 #define XGENE_DMA_INT_MASK                      0x74
91 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
92 #define XGENE_DMA_INT_ALL_UNMASK                0x0
93 #define XGENE_DMA_INT_MASK_SHIFT                0x14
94 #define XGENE_DMA_RING_INT0_MASK                0x90A0
95 #define XGENE_DMA_RING_INT1_MASK                0x90A8
96 #define XGENE_DMA_RING_INT2_MASK                0x90B0
97 #define XGENE_DMA_RING_INT3_MASK                0x90B8
98 #define XGENE_DMA_RING_INT4_MASK                0x90C0
99 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
100 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
101 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
102 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
103 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
104 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
105
106 /* X-Gene SoC EFUSE csr register and bit defination */
107 #define XGENE_SOC_JTAG1_SHADOW                  0x18
108 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
109
110 /* X-Gene DMA Descriptor format */
111 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
112 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
113 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
114 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
115 #define XGENE_DMA_DESC_ELERR_POS                46
116 #define XGENE_DMA_DESC_RTYPE_POS                56
117 #define XGENE_DMA_DESC_LERR_POS                 60
118 #define XGENE_DMA_DESC_BUFLEN_POS               48
119 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
120 #define XGENE_DMA_DESC_ELERR_RD(m)              \
121         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
122 #define XGENE_DMA_DESC_LERR_RD(m)               \
123         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
124 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
125         (((elerr) << 4) | (lerr))
126
127 /* X-Gene DMA descriptor empty s/w signature */
128 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
129
130 /* X-Gene DMA configurable parameters defines */
131 #define XGENE_DMA_RING_NUM              512
132 #define XGENE_DMA_BUFNUM                0x0
133 #define XGENE_DMA_CPU_BUFNUM            0x18
134 #define XGENE_DMA_RING_OWNER_DMA        0x03
135 #define XGENE_DMA_RING_OWNER_CPU        0x0F
136 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
137 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
138 #define XGENE_DMA_RING_NUM_CONFIG       5
139 #define XGENE_DMA_MAX_CHANNEL           4
140 #define XGENE_DMA_XOR_CHANNEL           0
141 #define XGENE_DMA_PQ_CHANNEL            1
142 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
143 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
144 #define XGENE_DMA_MAX_XOR_SRC           5
145 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
146 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
147
148 /* X-Gene DMA descriptor error codes */
149 #define ERR_DESC_AXI                    0x01
150 #define ERR_BAD_DESC                    0x02
151 #define ERR_READ_DATA_AXI               0x03
152 #define ERR_WRITE_DATA_AXI              0x04
153 #define ERR_FBP_TIMEOUT                 0x05
154 #define ERR_ECC                         0x06
155 #define ERR_DIFF_SIZE                   0x08
156 #define ERR_SCT_GAT_LEN                 0x09
157 #define ERR_CRC_ERR                     0x11
158 #define ERR_CHKSUM                      0x12
159 #define ERR_DIF                         0x13
160
161 /* X-Gene DMA error interrupt codes */
162 #define ERR_DIF_SIZE_INT                0x0
163 #define ERR_GS_ERR_INT                  0x1
164 #define ERR_FPB_TIMEO_INT               0x2
165 #define ERR_WFIFO_OVF_INT               0x3
166 #define ERR_RFIFO_OVF_INT               0x4
167 #define ERR_WR_TIMEO_INT                0x5
168 #define ERR_RD_TIMEO_INT                0x6
169 #define ERR_WR_ERR_INT                  0x7
170 #define ERR_RD_ERR_INT                  0x8
171 #define ERR_BAD_DESC_INT                0x9
172 #define ERR_DESC_DST_INT                0xA
173 #define ERR_DESC_SRC_INT                0xB
174
175 /* X-Gene DMA flyby operation code */
176 #define FLYBY_2SRC_XOR                  0x80
177 #define FLYBY_3SRC_XOR                  0x90
178 #define FLYBY_4SRC_XOR                  0xA0
179 #define FLYBY_5SRC_XOR                  0xB0
180
181 /* X-Gene DMA SW descriptor flags */
182 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
183
184 /* Define to dump X-Gene DMA descriptor */
185 #define XGENE_DMA_DESC_DUMP(desc, m)    \
186         print_hex_dump(KERN_ERR, (m),   \
187                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
188
189 #define to_dma_desc_sw(tx)              \
190         container_of(tx, struct xgene_dma_desc_sw, tx)
191 #define to_dma_chan(dchan)              \
192         container_of(dchan, struct xgene_dma_chan, dma_chan)
193
194 #define chan_dbg(chan, fmt, arg...)     \
195         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
196 #define chan_err(chan, fmt, arg...)     \
197         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
198
199 struct xgene_dma_desc_hw {
200         __le64 m0;
201         __le64 m1;
202         __le64 m2;
203         __le64 m3;
204 };
205
206 enum xgene_dma_ring_cfgsize {
207         XGENE_DMA_RING_CFG_SIZE_512B,
208         XGENE_DMA_RING_CFG_SIZE_2KB,
209         XGENE_DMA_RING_CFG_SIZE_16KB,
210         XGENE_DMA_RING_CFG_SIZE_64KB,
211         XGENE_DMA_RING_CFG_SIZE_512KB,
212         XGENE_DMA_RING_CFG_SIZE_INVALID
213 };
214
215 struct xgene_dma_ring {
216         struct xgene_dma *pdma;
217         u8 buf_num;
218         u16 id;
219         u16 num;
220         u16 head;
221         u16 owner;
222         u16 slots;
223         u16 dst_ring_num;
224         u32 size;
225         void __iomem *cmd;
226         void __iomem *cmd_base;
227         dma_addr_t desc_paddr;
228         u32 state[XGENE_DMA_RING_NUM_CONFIG];
229         enum xgene_dma_ring_cfgsize cfgsize;
230         union {
231                 void *desc_vaddr;
232                 struct xgene_dma_desc_hw *desc_hw;
233         };
234 };
235
236 struct xgene_dma_desc_sw {
237         struct xgene_dma_desc_hw desc1;
238         struct xgene_dma_desc_hw desc2;
239         u32 flags;
240         struct list_head node;
241         struct list_head tx_list;
242         struct dma_async_tx_descriptor tx;
243 };
244
245 /**
246  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
247  * @dma_chan: dmaengine channel object member
248  * @pdma: X-Gene DMA device structure reference
249  * @dev: struct device reference for dma mapping api
250  * @id: raw id of this channel
251  * @rx_irq: channel IRQ
252  * @name: name of X-Gene DMA channel
253  * @lock: serializes enqueue/dequeue operations to the descriptor pool
254  * @pending: number of transaction request pushed to DMA controller for
255  *      execution, but still waiting for completion,
256  * @max_outstanding: max number of outstanding request we can push to channel
257  * @ld_pending: descriptors which are queued to run, but have not yet been
258  *      submitted to the hardware for execution
259  * @ld_running: descriptors which are currently being executing by the hardware
260  * @ld_completed: descriptors which have finished execution by the hardware.
261  *      These descriptors have already had their cleanup actions run. They
262  *      are waiting for the ACK bit to be set by the async tx API.
263  * @desc_pool: descriptor pool for DMA operations
264  * @tasklet: bottom half where all completed descriptors cleans
265  * @tx_ring: transmit ring descriptor that we use to prepare actual
266  *      descriptors for further executions
267  * @rx_ring: receive ring descriptor that we use to get completed DMA
268  *      descriptors during cleanup time
269  */
270 struct xgene_dma_chan {
271         struct dma_chan dma_chan;
272         struct xgene_dma *pdma;
273         struct device *dev;
274         int id;
275         int rx_irq;
276         char name[10];
277         spinlock_t lock;
278         int pending;
279         int max_outstanding;
280         struct list_head ld_pending;
281         struct list_head ld_running;
282         struct list_head ld_completed;
283         struct dma_pool *desc_pool;
284         struct tasklet_struct tasklet;
285         struct xgene_dma_ring tx_ring;
286         struct xgene_dma_ring rx_ring;
287 };
288
289 /**
290  * struct xgene_dma - internal representation of an X-Gene DMA device
291  * @dev: reference to this device's struct device
292  * @clk: reference to this device's clock
293  * @err_irq: DMA error irq number
294  * @ring_num: start id number for DMA ring
295  * @csr_dma: base for DMA register access
296  * @csr_ring: base for DMA ring register access
297  * @csr_ring_cmd: base for DMA ring command register access
298  * @csr_efuse: base for efuse register access
299  * @dma_dev: embedded struct dma_device
300  * @chan: reference to X-Gene DMA channels
301  */
302 struct xgene_dma {
303         struct device *dev;
304         struct clk *clk;
305         int err_irq;
306         int ring_num;
307         void __iomem *csr_dma;
308         void __iomem *csr_ring;
309         void __iomem *csr_ring_cmd;
310         void __iomem *csr_efuse;
311         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
312         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
313 };
314
315 static const char * const xgene_dma_desc_err[] = {
316         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
317         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
318         [ERR_READ_DATA_AXI] = "AXI error when reading data",
319         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
320         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
321         [ERR_ECC] = "ECC double bit error",
322         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
323         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
324         [ERR_CRC_ERR] = "CRC error",
325         [ERR_CHKSUM] = "Checksum error",
326         [ERR_DIF] = "DIF error",
327 };
328
329 static const char * const xgene_dma_err[] = {
330         [ERR_DIF_SIZE_INT] = "DIF size error",
331         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
332         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
333         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
334         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
335         [ERR_WR_TIMEO_INT] = "Write time out error",
336         [ERR_RD_TIMEO_INT] = "Read time out error",
337         [ERR_WR_ERR_INT] = "HBF bus write error",
338         [ERR_RD_ERR_INT] = "HBF bus read error",
339         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
340         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
341         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
342 };
343
344 static bool is_pq_enabled(struct xgene_dma *pdma)
345 {
346         u32 val;
347
348         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
349         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
350 }
351
352 static u64 xgene_dma_encode_len(size_t len)
353 {
354         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
355                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
356                 XGENE_DMA_16K_BUFFER_LEN_CODE;
357 }
358
359 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
360 {
361         static u8 flyby_type[] = {
362                 FLYBY_2SRC_XOR, /* Dummy */
363                 FLYBY_2SRC_XOR, /* Dummy */
364                 FLYBY_2SRC_XOR,
365                 FLYBY_3SRC_XOR,
366                 FLYBY_4SRC_XOR,
367                 FLYBY_5SRC_XOR
368         };
369
370         return flyby_type[src_cnt];
371 }
372
373 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
374                                      dma_addr_t *paddr)
375 {
376         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
377                         *len : XGENE_DMA_MAX_BYTE_CNT;
378
379         *ext8 |= cpu_to_le64(*paddr);
380         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
381         *len -= nbytes;
382         *paddr += nbytes;
383 }
384
385 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
386 {
387         switch (idx) {
388         case 0:
389                 return &desc->m1;
390         case 1:
391                 return &desc->m0;
392         case 2:
393                 return &desc->m3;
394         case 3:
395                 return &desc->m2;
396         default:
397                 pr_err("Invalid dma descriptor index\n");
398         }
399
400         return NULL;
401 }
402
403 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
404                                 u16 dst_ring_num)
405 {
406         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
407         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
408                                 XGENE_DMA_DESC_RTYPE_POS);
409         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
410         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
411                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
412 }
413
414 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
415                                     struct xgene_dma_desc_sw *desc_sw,
416                                     dma_addr_t *dst, dma_addr_t *src,
417                                     u32 src_cnt, size_t *nbytes,
418                                     const u8 *scf)
419 {
420         struct xgene_dma_desc_hw *desc1, *desc2;
421         size_t len = *nbytes;
422         int i;
423
424         desc1 = &desc_sw->desc1;
425         desc2 = &desc_sw->desc2;
426
427         /* Initialize DMA descriptor */
428         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
429
430         /* Set destination address */
431         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
432         desc1->m3 |= cpu_to_le64(*dst);
433
434         /* We have multiple source addresses, so need to set NV bit*/
435         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
436
437         /* Set flyby opcode */
438         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
439
440         /* Set 1st to 5th source addresses */
441         for (i = 0; i < src_cnt; i++) {
442                 len = *nbytes;
443                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
444                                          xgene_dma_lookup_ext8(desc2, i - 1),
445                                          &len, &src[i]);
446                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
447         }
448
449         /* Update meta data */
450         *nbytes = len;
451         *dst += XGENE_DMA_MAX_BYTE_CNT;
452
453         /* We need always 64B descriptor to perform xor or pq operations */
454         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
455 }
456
457 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
458 {
459         struct xgene_dma_desc_sw *desc;
460         struct xgene_dma_chan *chan;
461         dma_cookie_t cookie;
462
463         if (unlikely(!tx))
464                 return -EINVAL;
465
466         chan = to_dma_chan(tx->chan);
467         desc = to_dma_desc_sw(tx);
468
469         spin_lock_bh(&chan->lock);
470
471         cookie = dma_cookie_assign(tx);
472
473         /* Add this transaction list onto the tail of the pending queue */
474         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
475
476         spin_unlock_bh(&chan->lock);
477
478         return cookie;
479 }
480
481 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
482                                        struct xgene_dma_desc_sw *desc)
483 {
484         list_del(&desc->node);
485         chan_dbg(chan, "LD %p free\n", desc);
486         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
487 }
488
489 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
490                                  struct xgene_dma_chan *chan)
491 {
492         struct xgene_dma_desc_sw *desc;
493         dma_addr_t phys;
494
495         desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
496         if (!desc) {
497                 chan_err(chan, "Failed to allocate LDs\n");
498                 return NULL;
499         }
500
501         INIT_LIST_HEAD(&desc->tx_list);
502         desc->tx.phys = phys;
503         desc->tx.tx_submit = xgene_dma_tx_submit;
504         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
505
506         chan_dbg(chan, "LD %p allocated\n", desc);
507
508         return desc;
509 }
510
511 /**
512  * xgene_dma_clean_completed_descriptor - free all descriptors which
513  * has been completed and acked
514  * @chan: X-Gene DMA channel
515  *
516  * This function is used on all completed and acked descriptors.
517  */
518 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
519 {
520         struct xgene_dma_desc_sw *desc, *_desc;
521
522         /* Run the callback for each descriptor, in order */
523         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
524                 if (async_tx_test_ack(&desc->tx))
525                         xgene_dma_clean_descriptor(chan, desc);
526         }
527 }
528
529 /**
530  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
531  * @chan: X-Gene DMA channel
532  * @desc: descriptor to cleanup and free
533  *
534  * This function is used on a descriptor which has been executed by the DMA
535  * controller. It will run any callbacks, submit any dependencies.
536  */
537 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
538                                               struct xgene_dma_desc_sw *desc)
539 {
540         struct dma_async_tx_descriptor *tx = &desc->tx;
541
542         /*
543          * If this is not the last transaction in the group,
544          * then no need to complete cookie and run any callback as
545          * this is not the tx_descriptor which had been sent to caller
546          * of this DMA request
547          */
548
549         if (tx->cookie == 0)
550                 return;
551
552         dma_cookie_complete(tx);
553         dma_descriptor_unmap(tx);
554
555         /* Run the link descriptor callback function */
556         dmaengine_desc_get_callback_invoke(tx, NULL);
557
558         /* Run any dependencies */
559         dma_run_dependencies(tx);
560 }
561
562 /**
563  * xgene_dma_clean_running_descriptor - move the completed descriptor from
564  * ld_running to ld_completed
565  * @chan: X-Gene DMA channel
566  * @desc: the descriptor which is completed
567  *
568  * Free the descriptor directly if acked by async_tx api,
569  * else move it to queue ld_completed.
570  */
571 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
572                                                struct xgene_dma_desc_sw *desc)
573 {
574         /* Remove from the list of running transactions */
575         list_del(&desc->node);
576
577         /*
578          * the client is allowed to attach dependent operations
579          * until 'ack' is set
580          */
581         if (!async_tx_test_ack(&desc->tx)) {
582                 /*
583                  * Move this descriptor to the list of descriptors which is
584                  * completed, but still awaiting the 'ack' bit to be set.
585                  */
586                 list_add_tail(&desc->node, &chan->ld_completed);
587                 return;
588         }
589
590         chan_dbg(chan, "LD %p free\n", desc);
591         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
592 }
593
594 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
595                                     struct xgene_dma_desc_sw *desc_sw)
596 {
597         struct xgene_dma_ring *ring = &chan->tx_ring;
598         struct xgene_dma_desc_hw *desc_hw;
599
600         /* Get hw descriptor from DMA tx ring */
601         desc_hw = &ring->desc_hw[ring->head];
602
603         /*
604          * Increment the head count to point next
605          * descriptor for next time
606          */
607         if (++ring->head == ring->slots)
608                 ring->head = 0;
609
610         /* Copy prepared sw descriptor data to hw descriptor */
611         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
612
613         /*
614          * Check if we have prepared 64B descriptor,
615          * in this case we need one more hw descriptor
616          */
617         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
618                 desc_hw = &ring->desc_hw[ring->head];
619
620                 if (++ring->head == ring->slots)
621                         ring->head = 0;
622
623                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
624         }
625
626         /* Increment the pending transaction count */
627         chan->pending += ((desc_sw->flags &
628                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
629
630         /* Notify the hw that we have descriptor ready for execution */
631         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
632                   2 : 1, ring->cmd);
633 }
634
635 /**
636  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
637  * @chan : X-Gene DMA channel
638  *
639  * LOCKING: must hold chan->lock
640  */
641 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
642 {
643         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
644
645         /*
646          * If the list of pending descriptors is empty, then we
647          * don't need to do any work at all
648          */
649         if (list_empty(&chan->ld_pending)) {
650                 chan_dbg(chan, "No pending LDs\n");
651                 return;
652         }
653
654         /*
655          * Move elements from the queue of pending transactions onto the list
656          * of running transactions and push it to hw for further executions
657          */
658         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
659                 /*
660                  * Check if have pushed max number of transactions to hw
661                  * as capable, so let's stop here and will push remaining
662                  * elements from pening ld queue after completing some
663                  * descriptors that we have already pushed
664                  */
665                 if (chan->pending >= chan->max_outstanding)
666                         return;
667
668                 xgene_chan_xfer_request(chan, desc_sw);
669
670                 /*
671                  * Delete this element from ld pending queue and append it to
672                  * ld running queue
673                  */
674                 list_move_tail(&desc_sw->node, &chan->ld_running);
675         }
676 }
677
678 /**
679  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
680  * and move them to ld_completed to free until flag 'ack' is set
681  * @chan: X-Gene DMA channel
682  *
683  * This function is used on descriptors which have been executed by the DMA
684  * controller. It will run any callbacks, submit any dependencies, then
685  * free these descriptors if flag 'ack' is set.
686  */
687 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
688 {
689         struct xgene_dma_ring *ring = &chan->rx_ring;
690         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
691         struct xgene_dma_desc_hw *desc_hw;
692         struct list_head ld_completed;
693         u8 status;
694
695         INIT_LIST_HEAD(&ld_completed);
696
697         spin_lock(&chan->lock);
698
699         /* Clean already completed and acked descriptors */
700         xgene_dma_clean_completed_descriptor(chan);
701
702         /* Move all completed descriptors to ld completed queue, in order */
703         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
704                 /* Get subsequent hw descriptor from DMA rx ring */
705                 desc_hw = &ring->desc_hw[ring->head];
706
707                 /* Check if this descriptor has been completed */
708                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
709                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
710                         break;
711
712                 if (++ring->head == ring->slots)
713                         ring->head = 0;
714
715                 /* Check if we have any error with DMA transactions */
716                 status = XGENE_DMA_DESC_STATUS(
717                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
718                                                         desc_hw->m0)),
719                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
720                                                        desc_hw->m0)));
721                 if (status) {
722                         /* Print the DMA error type */
723                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
724
725                         /*
726                          * We have DMA transactions error here. Dump DMA Tx
727                          * and Rx descriptors for this request */
728                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
729                                             "X-Gene DMA TX DESC1: ");
730
731                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
732                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
733                                                     "X-Gene DMA TX DESC2: ");
734
735                         XGENE_DMA_DESC_DUMP(desc_hw,
736                                             "X-Gene DMA RX ERR DESC: ");
737                 }
738
739                 /* Notify the hw about this completed descriptor */
740                 iowrite32(-1, ring->cmd);
741
742                 /* Mark this hw descriptor as processed */
743                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
744
745                 /*
746                  * Decrement the pending transaction count
747                  * as we have processed one
748                  */
749                 chan->pending -= ((desc_sw->flags &
750                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
751
752                 /*
753                  * Delete this node from ld running queue and append it to
754                  * ld completed queue for further processing
755                  */
756                 list_move_tail(&desc_sw->node, &ld_completed);
757         }
758
759         /*
760          * Start any pending transactions automatically
761          * In the ideal case, we keep the DMA controller busy while we go
762          * ahead and free the descriptors below.
763          */
764         xgene_chan_xfer_ld_pending(chan);
765
766         spin_unlock(&chan->lock);
767
768         /* Run the callback for each descriptor, in order */
769         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
770                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
771                 xgene_dma_clean_running_descriptor(chan, desc_sw);
772         }
773 }
774
775 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
776 {
777         struct xgene_dma_chan *chan = to_dma_chan(dchan);
778
779         /* Has this channel already been allocated? */
780         if (chan->desc_pool)
781                 return 1;
782
783         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
784                                           sizeof(struct xgene_dma_desc_sw),
785                                           0, 0);
786         if (!chan->desc_pool) {
787                 chan_err(chan, "Failed to allocate descriptor pool\n");
788                 return -ENOMEM;
789         }
790
791         chan_dbg(chan, "Allocate descriptor pool\n");
792
793         return 1;
794 }
795
796 /**
797  * xgene_dma_free_desc_list - Free all descriptors in a queue
798  * @chan: X-Gene DMA channel
799  * @list: the list to free
800  *
801  * LOCKING: must hold chan->lock
802  */
803 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
804                                      struct list_head *list)
805 {
806         struct xgene_dma_desc_sw *desc, *_desc;
807
808         list_for_each_entry_safe(desc, _desc, list, node)
809                 xgene_dma_clean_descriptor(chan, desc);
810 }
811
812 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
813 {
814         struct xgene_dma_chan *chan = to_dma_chan(dchan);
815
816         chan_dbg(chan, "Free all resources\n");
817
818         if (!chan->desc_pool)
819                 return;
820
821         /* Process all running descriptor */
822         xgene_dma_cleanup_descriptors(chan);
823
824         spin_lock_bh(&chan->lock);
825
826         /* Clean all link descriptor queues */
827         xgene_dma_free_desc_list(chan, &chan->ld_pending);
828         xgene_dma_free_desc_list(chan, &chan->ld_running);
829         xgene_dma_free_desc_list(chan, &chan->ld_completed);
830
831         spin_unlock_bh(&chan->lock);
832
833         /* Delete this channel DMA pool */
834         dma_pool_destroy(chan->desc_pool);
835         chan->desc_pool = NULL;
836 }
837
838 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
839         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
840         u32 src_cnt, size_t len, unsigned long flags)
841 {
842         struct xgene_dma_desc_sw *first = NULL, *new;
843         struct xgene_dma_chan *chan;
844         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
845                                 0x01, 0x01, 0x01, 0x01, 0x01};
846
847         if (unlikely(!dchan || !len))
848                 return NULL;
849
850         chan = to_dma_chan(dchan);
851
852         do {
853                 /* Allocate the link descriptor from DMA pool */
854                 new = xgene_dma_alloc_descriptor(chan);
855                 if (!new)
856                         goto fail;
857
858                 /* Prepare xor DMA descriptor */
859                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
860                                         src_cnt, &len, multi);
861
862                 if (!first)
863                         first = new;
864
865                 new->tx.cookie = 0;
866                 async_tx_ack(&new->tx);
867
868                 /* Insert the link descriptor to the LD ring */
869                 list_add_tail(&new->node, &first->tx_list);
870         } while (len);
871
872         new->tx.flags = flags; /* client is in control of this ack */
873         new->tx.cookie = -EBUSY;
874         list_splice(&first->tx_list, &new->tx_list);
875
876         return &new->tx;
877
878 fail:
879         if (!first)
880                 return NULL;
881
882         xgene_dma_free_desc_list(chan, &first->tx_list);
883         return NULL;
884 }
885
886 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
887         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
888         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
889 {
890         struct xgene_dma_desc_sw *first = NULL, *new;
891         struct xgene_dma_chan *chan;
892         size_t _len = len;
893         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
894         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
895
896         if (unlikely(!dchan || !len))
897                 return NULL;
898
899         chan = to_dma_chan(dchan);
900
901         /*
902          * Save source addresses on local variable, may be we have to
903          * prepare two descriptor to generate P and Q if both enabled
904          * in the flags by client
905          */
906         memcpy(_src, src, sizeof(*src) * src_cnt);
907
908         if (flags & DMA_PREP_PQ_DISABLE_P)
909                 len = 0;
910
911         if (flags & DMA_PREP_PQ_DISABLE_Q)
912                 _len = 0;
913
914         do {
915                 /* Allocate the link descriptor from DMA pool */
916                 new = xgene_dma_alloc_descriptor(chan);
917                 if (!new)
918                         goto fail;
919
920                 if (!first)
921                         first = new;
922
923                 new->tx.cookie = 0;
924                 async_tx_ack(&new->tx);
925
926                 /* Insert the link descriptor to the LD ring */
927                 list_add_tail(&new->node, &first->tx_list);
928
929                 /*
930                  * Prepare DMA descriptor to generate P,
931                  * if DMA_PREP_PQ_DISABLE_P flag is not set
932                  */
933                 if (len) {
934                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
935                                                 src_cnt, &len, multi);
936                         continue;
937                 }
938
939                 /*
940                  * Prepare DMA descriptor to generate Q,
941                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
942                  */
943                 if (_len) {
944                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
945                                                 src_cnt, &_len, scf);
946                 }
947         } while (len || _len);
948
949         new->tx.flags = flags; /* client is in control of this ack */
950         new->tx.cookie = -EBUSY;
951         list_splice(&first->tx_list, &new->tx_list);
952
953         return &new->tx;
954
955 fail:
956         if (!first)
957                 return NULL;
958
959         xgene_dma_free_desc_list(chan, &first->tx_list);
960         return NULL;
961 }
962
963 static void xgene_dma_issue_pending(struct dma_chan *dchan)
964 {
965         struct xgene_dma_chan *chan = to_dma_chan(dchan);
966
967         spin_lock_bh(&chan->lock);
968         xgene_chan_xfer_ld_pending(chan);
969         spin_unlock_bh(&chan->lock);
970 }
971
972 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
973                                            dma_cookie_t cookie,
974                                            struct dma_tx_state *txstate)
975 {
976         return dma_cookie_status(dchan, cookie, txstate);
977 }
978
979 static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
980 {
981         struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
982
983         /* Run all cleanup for descriptors which have been completed */
984         xgene_dma_cleanup_descriptors(chan);
985
986         /* Re-enable DMA channel IRQ */
987         enable_irq(chan->rx_irq);
988 }
989
990 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
991 {
992         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
993
994         BUG_ON(!chan);
995
996         /*
997          * Disable DMA channel IRQ until we process completed
998          * descriptors
999          */
1000         disable_irq_nosync(chan->rx_irq);
1001
1002         /*
1003          * Schedule the tasklet to handle all cleanup of the current
1004          * transaction. It will start a new transaction if there is
1005          * one pending.
1006          */
1007         tasklet_schedule(&chan->tasklet);
1008
1009         return IRQ_HANDLED;
1010 }
1011
1012 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1013 {
1014         struct xgene_dma *pdma = (struct xgene_dma *)id;
1015         unsigned long int_mask;
1016         u32 val, i;
1017
1018         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1019
1020         /* Clear DMA interrupts */
1021         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1022
1023         /* Print DMA error info */
1024         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1025         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1026                 dev_err(pdma->dev,
1027                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1028
1029         return IRQ_HANDLED;
1030 }
1031
1032 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1033 {
1034         int i;
1035
1036         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1037
1038         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1039                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1040                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1041 }
1042
1043 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1044 {
1045         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1046         xgene_dma_wr_ring_state(ring);
1047 }
1048
1049 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1050 {
1051         void *ring_cfg = ring->state;
1052         u64 addr = ring->desc_paddr;
1053         u32 i, val;
1054
1055         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1056
1057         /* Clear DMA ring state */
1058         xgene_dma_clr_ring_state(ring);
1059
1060         /* Set DMA ring type */
1061         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1062
1063         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1064                 /* Set recombination buffer and timeout */
1065                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1066                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1067                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1068         }
1069
1070         /* Initialize DMA ring state */
1071         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1072         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1073         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1074         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1075         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1076         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1077
1078         /* Write DMA ring configurations */
1079         xgene_dma_wr_ring_state(ring);
1080
1081         /* Set DMA ring id */
1082         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1083                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1084
1085         /* Set DMA ring buffer */
1086         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1087                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1088
1089         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1090                 return;
1091
1092         /* Set empty signature to DMA Rx ring descriptors */
1093         for (i = 0; i < ring->slots; i++) {
1094                 struct xgene_dma_desc_hw *desc;
1095
1096                 desc = &ring->desc_hw[i];
1097                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1098         }
1099
1100         /* Enable DMA Rx ring interrupt */
1101         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1102         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1103         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1104 }
1105
1106 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1107 {
1108         u32 ring_id, val;
1109
1110         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1111                 /* Disable DMA Rx ring interrupt */
1112                 val = ioread32(ring->pdma->csr_ring +
1113                                XGENE_DMA_RING_NE_INT_MODE);
1114                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1115                 iowrite32(val, ring->pdma->csr_ring +
1116                           XGENE_DMA_RING_NE_INT_MODE);
1117         }
1118
1119         /* Clear DMA ring state */
1120         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1121         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1122
1123         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1124         xgene_dma_clr_ring_state(ring);
1125 }
1126
1127 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1128 {
1129         ring->cmd_base = ring->pdma->csr_ring_cmd +
1130                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1131                                                           XGENE_DMA_RING_NUM));
1132
1133         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1134 }
1135
1136 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1137                                    enum xgene_dma_ring_cfgsize cfgsize)
1138 {
1139         int size;
1140
1141         switch (cfgsize) {
1142         case XGENE_DMA_RING_CFG_SIZE_512B:
1143                 size = 0x200;
1144                 break;
1145         case XGENE_DMA_RING_CFG_SIZE_2KB:
1146                 size = 0x800;
1147                 break;
1148         case XGENE_DMA_RING_CFG_SIZE_16KB:
1149                 size = 0x4000;
1150                 break;
1151         case XGENE_DMA_RING_CFG_SIZE_64KB:
1152                 size = 0x10000;
1153                 break;
1154         case XGENE_DMA_RING_CFG_SIZE_512KB:
1155                 size = 0x80000;
1156                 break;
1157         default:
1158                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1159                 return -EINVAL;
1160         }
1161
1162         return size;
1163 }
1164
1165 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1166 {
1167         /* Clear DMA ring configurations */
1168         xgene_dma_clear_ring(ring);
1169
1170         /* De-allocate DMA ring descriptor */
1171         if (ring->desc_vaddr) {
1172                 dma_free_coherent(ring->pdma->dev, ring->size,
1173                                   ring->desc_vaddr, ring->desc_paddr);
1174                 ring->desc_vaddr = NULL;
1175         }
1176 }
1177
1178 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1179 {
1180         xgene_dma_delete_ring_one(&chan->rx_ring);
1181         xgene_dma_delete_ring_one(&chan->tx_ring);
1182 }
1183
1184 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1185                                      struct xgene_dma_ring *ring,
1186                                      enum xgene_dma_ring_cfgsize cfgsize)
1187 {
1188         int ret;
1189
1190         /* Setup DMA ring descriptor variables */
1191         ring->pdma = chan->pdma;
1192         ring->cfgsize = cfgsize;
1193         ring->num = chan->pdma->ring_num++;
1194         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1195
1196         ret = xgene_dma_get_ring_size(chan, cfgsize);
1197         if (ret <= 0)
1198                 return ret;
1199         ring->size = ret;
1200
1201         /* Allocate memory for DMA ring descriptor */
1202         ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1203                                               &ring->desc_paddr, GFP_KERNEL);
1204         if (!ring->desc_vaddr) {
1205                 chan_err(chan, "Failed to allocate ring desc\n");
1206                 return -ENOMEM;
1207         }
1208
1209         /* Configure and enable DMA ring */
1210         xgene_dma_set_ring_cmd(ring);
1211         xgene_dma_setup_ring(ring);
1212
1213         return 0;
1214 }
1215
1216 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1217 {
1218         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1219         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1220         int ret;
1221
1222         /* Create DMA Rx ring descriptor */
1223         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1224         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1225
1226         ret = xgene_dma_create_ring_one(chan, rx_ring,
1227                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1228         if (ret)
1229                 return ret;
1230
1231         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1232                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1233
1234         /* Create DMA Tx ring descriptor */
1235         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1236         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1237
1238         ret = xgene_dma_create_ring_one(chan, tx_ring,
1239                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1240         if (ret) {
1241                 xgene_dma_delete_ring_one(rx_ring);
1242                 return ret;
1243         }
1244
1245         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1246
1247         chan_dbg(chan,
1248                  "Tx ring id 0x%X num %d desc 0x%p\n",
1249                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1250
1251         /* Set the max outstanding request possible to this channel */
1252         chan->max_outstanding = tx_ring->slots;
1253
1254         return ret;
1255 }
1256
1257 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1258 {
1259         int ret, i, j;
1260
1261         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1262                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1263                 if (ret) {
1264                         for (j = 0; j < i; j++)
1265                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1266                         return ret;
1267                 }
1268         }
1269
1270         return ret;
1271 }
1272
1273 static void xgene_dma_enable(struct xgene_dma *pdma)
1274 {
1275         u32 val;
1276
1277         /* Configure and enable DMA engine */
1278         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1279         XGENE_DMA_CH_SETUP(val);
1280         XGENE_DMA_ENABLE(val);
1281         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1282 }
1283
1284 static void xgene_dma_disable(struct xgene_dma *pdma)
1285 {
1286         u32 val;
1287
1288         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1289         XGENE_DMA_DISABLE(val);
1290         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291 }
1292
1293 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1294 {
1295         /*
1296          * Mask DMA ring overflow, underflow and
1297          * AXI write/read error interrupts
1298          */
1299         iowrite32(XGENE_DMA_INT_ALL_MASK,
1300                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1301         iowrite32(XGENE_DMA_INT_ALL_MASK,
1302                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1303         iowrite32(XGENE_DMA_INT_ALL_MASK,
1304                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1305         iowrite32(XGENE_DMA_INT_ALL_MASK,
1306                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1307         iowrite32(XGENE_DMA_INT_ALL_MASK,
1308                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1309
1310         /* Mask DMA error interrupts */
1311         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1312 }
1313
1314 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1315 {
1316         /*
1317          * Unmask DMA ring overflow, underflow and
1318          * AXI write/read error interrupts
1319          */
1320         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1321                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1322         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1323                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1324         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1325                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1326         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1327                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1328         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1329                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1330
1331         /* Unmask DMA error interrupts */
1332         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1333                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1334 }
1335
1336 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1337 {
1338         u32 val;
1339
1340         /* Associate DMA ring to corresponding ring HW */
1341         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1342                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1343
1344         /* Configure RAID6 polynomial control setting */
1345         if (is_pq_enabled(pdma))
1346                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1347                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1348         else
1349                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1350
1351         xgene_dma_enable(pdma);
1352         xgene_dma_unmask_interrupts(pdma);
1353
1354         /* Get DMA id and version info */
1355         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1356
1357         /* DMA device info */
1358         dev_info(pdma->dev,
1359                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1360                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1361                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1362 }
1363
1364 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1365 {
1366         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1367             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1368                 return 0;
1369
1370         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1371         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1372
1373         /* Bring up memory */
1374         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1375
1376         /* Force a barrier */
1377         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1378
1379         /* reset may take up to 1ms */
1380         usleep_range(1000, 1100);
1381
1382         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1383                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1384                 dev_err(pdma->dev,
1385                         "Failed to release ring mngr memory from shutdown\n");
1386                 return -ENODEV;
1387         }
1388
1389         /* program threshold set 1 and all hysteresis */
1390         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1391                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1392         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1393                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1394         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1395                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1396
1397         /* Enable QPcore and assign error queue */
1398         iowrite32(XGENE_DMA_RING_ENABLE,
1399                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1400
1401         return 0;
1402 }
1403
1404 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1405 {
1406         int ret;
1407
1408         ret = xgene_dma_init_ring_mngr(pdma);
1409         if (ret)
1410                 return ret;
1411
1412         /* Bring up memory */
1413         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1414
1415         /* Force a barrier */
1416         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1417
1418         /* reset may take up to 1ms */
1419         usleep_range(1000, 1100);
1420
1421         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1422                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1423                 dev_err(pdma->dev,
1424                         "Failed to release DMA memory from shutdown\n");
1425                 return -ENODEV;
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1432 {
1433         struct xgene_dma_chan *chan;
1434         int ret, i, j;
1435
1436         /* Register DMA error irq */
1437         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1438                                0, "dma_error", pdma);
1439         if (ret) {
1440                 dev_err(pdma->dev,
1441                         "Failed to register error IRQ %d\n", pdma->err_irq);
1442                 return ret;
1443         }
1444
1445         /* Register DMA channel rx irq */
1446         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1447                 chan = &pdma->chan[i];
1448                 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1449                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1450                                        xgene_dma_chan_ring_isr,
1451                                        0, chan->name, chan);
1452                 if (ret) {
1453                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1454                                  chan->rx_irq);
1455                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1456
1457                         for (j = 0; j < i; j++) {
1458                                 chan = &pdma->chan[i];
1459                                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1460                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1461                         }
1462
1463                         return ret;
1464                 }
1465         }
1466
1467         return 0;
1468 }
1469
1470 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1471 {
1472         struct xgene_dma_chan *chan;
1473         int i;
1474
1475         /* Free DMA device error irq */
1476         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1477
1478         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1479                 chan = &pdma->chan[i];
1480                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1481                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1482         }
1483 }
1484
1485 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1486                                struct dma_device *dma_dev)
1487 {
1488         /* Initialize DMA device capability mask */
1489         dma_cap_zero(dma_dev->cap_mask);
1490
1491         /* Set DMA device capability */
1492
1493         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1494          * and channel 1 supports XOR, PQ both. First thing here is we have
1495          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1496          * we can make sure this by reading SoC Efuse register.
1497          * Second thing, we have hw errata that if we run channel 0 and
1498          * channel 1 simultaneously with executing XOR and PQ request,
1499          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1500          * if XOR and PQ supports on channel 1 is disabled.
1501          */
1502         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1503             is_pq_enabled(chan->pdma)) {
1504                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1505                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1506         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1507                    !is_pq_enabled(chan->pdma)) {
1508                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1509         }
1510
1511         /* Set base and prep routines */
1512         dma_dev->dev = chan->dev;
1513         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1514         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1515         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1516         dma_dev->device_tx_status = xgene_dma_tx_status;
1517
1518         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1519                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1520                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1521                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1522         }
1523
1524         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1525                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1526                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1527                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1528         }
1529 }
1530
1531 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1532 {
1533         struct xgene_dma_chan *chan = &pdma->chan[id];
1534         struct dma_device *dma_dev = &pdma->dma_dev[id];
1535         int ret;
1536
1537         chan->dma_chan.device = dma_dev;
1538
1539         spin_lock_init(&chan->lock);
1540         INIT_LIST_HEAD(&chan->ld_pending);
1541         INIT_LIST_HEAD(&chan->ld_running);
1542         INIT_LIST_HEAD(&chan->ld_completed);
1543         tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
1544
1545         chan->pending = 0;
1546         chan->desc_pool = NULL;
1547         dma_cookie_init(&chan->dma_chan);
1548
1549         /* Setup dma device capabilities and prep routines */
1550         xgene_dma_set_caps(chan, dma_dev);
1551
1552         /* Initialize DMA device list head */
1553         INIT_LIST_HEAD(&dma_dev->channels);
1554         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1555
1556         /* Register with Linux async DMA framework*/
1557         ret = dma_async_device_register(dma_dev);
1558         if (ret) {
1559                 chan_err(chan, "Failed to register async device %d", ret);
1560                 tasklet_kill(&chan->tasklet);
1561
1562                 return ret;
1563         }
1564
1565         /* DMA capability info */
1566         dev_info(pdma->dev,
1567                  "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1568                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1569                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1570
1571         return 0;
1572 }
1573
1574 static int xgene_dma_init_async(struct xgene_dma *pdma)
1575 {
1576         int ret, i, j;
1577
1578         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1579                 ret = xgene_dma_async_register(pdma, i);
1580                 if (ret) {
1581                         for (j = 0; j < i; j++) {
1582                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1583                                 tasklet_kill(&pdma->chan[j].tasklet);
1584                         }
1585
1586                         return ret;
1587                 }
1588         }
1589
1590         return ret;
1591 }
1592
1593 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1594 {
1595         int i;
1596
1597         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1598                 dma_async_device_unregister(&pdma->dma_dev[i]);
1599 }
1600
1601 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1602 {
1603         struct xgene_dma_chan *chan;
1604         int i;
1605
1606         pdma->ring_num = XGENE_DMA_RING_NUM;
1607
1608         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1609                 chan = &pdma->chan[i];
1610                 chan->dev = pdma->dev;
1611                 chan->pdma = pdma;
1612                 chan->id = i;
1613                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1614         }
1615 }
1616
1617 static int xgene_dma_get_resources(struct platform_device *pdev,
1618                                    struct xgene_dma *pdma)
1619 {
1620         struct resource *res;
1621         int irq, i;
1622
1623         /* Get DMA csr region */
1624         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1625         if (!res) {
1626                 dev_err(&pdev->dev, "Failed to get csr region\n");
1627                 return -ENXIO;
1628         }
1629
1630         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1631                                      resource_size(res));
1632         if (!pdma->csr_dma) {
1633                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1634                 return -ENOMEM;
1635         }
1636
1637         /* Get DMA ring csr region */
1638         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1639         if (!res) {
1640                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1641                 return -ENXIO;
1642         }
1643
1644         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1645                                        resource_size(res));
1646         if (!pdma->csr_ring) {
1647                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1648                 return -ENOMEM;
1649         }
1650
1651         /* Get DMA ring cmd csr region */
1652         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1653         if (!res) {
1654                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1655                 return -ENXIO;
1656         }
1657
1658         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1659                                           resource_size(res));
1660         if (!pdma->csr_ring_cmd) {
1661                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1662                 return -ENOMEM;
1663         }
1664
1665         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1666
1667         /* Get efuse csr region */
1668         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1669         if (!res) {
1670                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1671                 return -ENXIO;
1672         }
1673
1674         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1675                                        resource_size(res));
1676         if (!pdma->csr_efuse) {
1677                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1678                 return -ENOMEM;
1679         }
1680
1681         /* Get DMA error interrupt */
1682         irq = platform_get_irq(pdev, 0);
1683         if (irq <= 0)
1684                 return -ENXIO;
1685
1686         pdma->err_irq = irq;
1687
1688         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1689         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1690                 irq = platform_get_irq(pdev, i);
1691                 if (irq <= 0)
1692                         return -ENXIO;
1693
1694                 pdma->chan[i - 1].rx_irq = irq;
1695         }
1696
1697         return 0;
1698 }
1699
1700 static int xgene_dma_probe(struct platform_device *pdev)
1701 {
1702         struct xgene_dma *pdma;
1703         int ret, i;
1704
1705         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1706         if (!pdma)
1707                 return -ENOMEM;
1708
1709         pdma->dev = &pdev->dev;
1710         platform_set_drvdata(pdev, pdma);
1711
1712         ret = xgene_dma_get_resources(pdev, pdma);
1713         if (ret)
1714                 return ret;
1715
1716         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1717         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1718                 dev_err(&pdev->dev, "Failed to get clk\n");
1719                 return PTR_ERR(pdma->clk);
1720         }
1721
1722         /* Enable clk before accessing registers */
1723         if (!IS_ERR(pdma->clk)) {
1724                 ret = clk_prepare_enable(pdma->clk);
1725                 if (ret) {
1726                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1727                         return ret;
1728                 }
1729         }
1730
1731         /* Remove DMA RAM out of shutdown */
1732         ret = xgene_dma_init_mem(pdma);
1733         if (ret)
1734                 goto err_clk_enable;
1735
1736         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1737         if (ret) {
1738                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1739                 goto err_dma_mask;
1740         }
1741
1742         /* Initialize DMA channels software state */
1743         xgene_dma_init_channels(pdma);
1744
1745         /* Configue DMA rings */
1746         ret = xgene_dma_init_rings(pdma);
1747         if (ret)
1748                 goto err_clk_enable;
1749
1750         ret = xgene_dma_request_irqs(pdma);
1751         if (ret)
1752                 goto err_request_irq;
1753
1754         /* Configure and enable DMA engine */
1755         xgene_dma_init_hw(pdma);
1756
1757         /* Register DMA device with linux async framework */
1758         ret = xgene_dma_init_async(pdma);
1759         if (ret)
1760                 goto err_async_init;
1761
1762         return 0;
1763
1764 err_async_init:
1765         xgene_dma_free_irqs(pdma);
1766
1767 err_request_irq:
1768         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1769                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1770
1771 err_dma_mask:
1772 err_clk_enable:
1773         if (!IS_ERR(pdma->clk))
1774                 clk_disable_unprepare(pdma->clk);
1775
1776         return ret;
1777 }
1778
1779 static void xgene_dma_remove(struct platform_device *pdev)
1780 {
1781         struct xgene_dma *pdma = platform_get_drvdata(pdev);
1782         struct xgene_dma_chan *chan;
1783         int i;
1784
1785         xgene_dma_async_unregister(pdma);
1786
1787         /* Mask interrupts and disable DMA engine */
1788         xgene_dma_mask_interrupts(pdma);
1789         xgene_dma_disable(pdma);
1790         xgene_dma_free_irqs(pdma);
1791
1792         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1793                 chan = &pdma->chan[i];
1794                 tasklet_kill(&chan->tasklet);
1795                 xgene_dma_delete_chan_rings(chan);
1796         }
1797
1798         if (!IS_ERR(pdma->clk))
1799                 clk_disable_unprepare(pdma->clk);
1800 }
1801
1802 #ifdef CONFIG_ACPI
1803 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1804         {"APMC0D43", 0},
1805         {},
1806 };
1807 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1808 #endif
1809
1810 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1811         {.compatible = "apm,xgene-storm-dma",},
1812         {},
1813 };
1814 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1815
1816 static struct platform_driver xgene_dma_driver = {
1817         .probe = xgene_dma_probe,
1818         .remove_new = xgene_dma_remove,
1819         .driver = {
1820                 .name = "X-Gene-DMA",
1821                 .of_match_table = xgene_dma_of_match_ptr,
1822                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1823         },
1824 };
1825
1826 module_platform_driver(xgene_dma_driver);
1827
1828 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1829 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1830 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1831 MODULE_LICENSE("GPL");
1832 MODULE_VERSION("1.0");