can: rcar_can: do not report txerr and rxerr during bus-off
[linux-2.6-microblaze.git] / drivers / dma / tegra20-apb-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28
29 #include "dmaengine.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
33
34 #define TEGRA_APBDMA_GENERAL                    0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE             BIT(31)
36
37 #define TEGRA_APBDMA_CONTROL                    0x010
38 #define TEGRA_APBDMA_IRQ_MASK                   0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET               0x020
40
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR                   0x00
43 #define TEGRA_APBDMA_CSR_ENB                    BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC                 BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD                   BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR                    BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE                   BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW                   BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT          16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK           0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK            0xFFFC
52
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS                0x004
55 #define TEGRA_APBDMA_STATUS_BUSY                BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC             BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT                BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG           BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT         2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK          0xFFFC
61
62 #define TEGRA_APBDMA_CHAN_CSRE                  0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE            BIT(31)
64
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR                0x010
67
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ                0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB            BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8         (0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16        (1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32        (2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64        (3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128       (4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP           BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1             (4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4             (5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8             (6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF             BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT          16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE           0
83
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR                0x018
86
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ                0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8         (0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16        (1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32        (2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64        (3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128       (4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP           BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1         (1 << 16)
96
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT                0x20
99
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER         0x24
101
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME        20
107
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET    0x1000
110
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID   (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112
113 struct tegra_dma;
114
115 /*
116  * tegra_dma_chip_data Tegra chip specific DMA data
117  * @nr_channels: Number of channels available in the controller.
118  * @channel_reg_size: Channel register size/stride.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  * @support_separate_wcount_reg: Support separate word count register.
122  */
123 struct tegra_dma_chip_data {
124         unsigned int nr_channels;
125         unsigned int channel_reg_size;
126         unsigned int max_dma_count;
127         bool support_channel_pause;
128         bool support_separate_wcount_reg;
129 };
130
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133         u32 csr;
134         u32 ahb_ptr;
135         u32 apb_ptr;
136         u32 ahb_seq;
137         u32 apb_seq;
138         u32 wcount;
139 };
140
141 /*
142  * tegra_dma_sg_req: DMA request details to configure hardware. This
143  * contains the details for one transfer to configure DMA hw.
144  * The client's request for data transfer can be broken into multiple
145  * sub-transfer as per requester details and hw support.
146  * This sub transfer get added in the list of transfer and point to Tegra
147  * DMA descriptor which manages the transfer details.
148  */
149 struct tegra_dma_sg_req {
150         struct tegra_dma_channel_regs   ch_regs;
151         unsigned int                    req_len;
152         bool                            configured;
153         bool                            last_sg;
154         struct list_head                node;
155         struct tegra_dma_desc           *dma_desc;
156         unsigned int                    words_xferred;
157 };
158
159 /*
160  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161  * This descriptor keep track of transfer status, callbacks and request
162  * counts etc.
163  */
164 struct tegra_dma_desc {
165         struct dma_async_tx_descriptor  txd;
166         unsigned int                    bytes_requested;
167         unsigned int                    bytes_transferred;
168         enum dma_status                 dma_status;
169         struct list_head                node;
170         struct list_head                tx_list;
171         struct list_head                cb_node;
172         unsigned int                    cb_count;
173 };
174
175 struct tegra_dma_channel;
176
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178                                 bool to_terminate);
179
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182         struct dma_chan         dma_chan;
183         char                    name[12];
184         bool                    config_init;
185         unsigned int            id;
186         void __iomem            *chan_addr;
187         spinlock_t              lock;
188         bool                    busy;
189         struct tegra_dma        *tdma;
190         bool                    cyclic;
191
192         /* Different lists for managing the requests */
193         struct list_head        free_sg_req;
194         struct list_head        pending_sg_req;
195         struct list_head        free_dma_desc;
196         struct list_head        cb_desc;
197
198         /* ISR handler and tasklet for bottom half of isr handling */
199         dma_isr_handler         isr_handler;
200         struct tasklet_struct   tasklet;
201
202         /* Channel-slave specific configuration */
203         unsigned int slave_id;
204         struct dma_slave_config dma_sconfig;
205         struct tegra_dma_channel_regs channel_reg;
206
207         struct wait_queue_head wq;
208 };
209
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212         struct dma_device               dma_dev;
213         struct device                   *dev;
214         struct clk                      *dma_clk;
215         struct reset_control            *rst;
216         spinlock_t                      global_lock;
217         void __iomem                    *base_addr;
218         const struct tegra_dma_chip_data *chip_data;
219
220         /*
221          * Counter for managing global pausing of the DMA controller.
222          * Only applicable for devices that don't support individual
223          * channel pausing.
224          */
225         u32                             global_pause_count;
226
227         /* Last member of the structure */
228         struct tegra_dma_channel channels[];
229 };
230
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233         writel(val, tdma->base_addr + reg);
234 }
235
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237 {
238         return readl(tdma->base_addr + reg);
239 }
240
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242                              u32 reg, u32 val)
243 {
244         writel(val, tdc->chan_addr + reg);
245 }
246
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248 {
249         return readl(tdc->chan_addr + reg);
250 }
251
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253 {
254         return container_of(dc, struct tegra_dma_channel, dma_chan);
255 }
256
257 static inline struct tegra_dma_desc *
258 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
259 {
260         return container_of(td, struct tegra_dma_desc, txd);
261 }
262
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264 {
265         return &tdc->dma_chan.dev->device;
266 }
267
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269
270 /* Get DMA desc from free list, if not there then allocate it.  */
271 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
272 {
273         struct tegra_dma_desc *dma_desc;
274         unsigned long flags;
275
276         spin_lock_irqsave(&tdc->lock, flags);
277
278         /* Do not allocate if desc are waiting for ack */
279         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280                 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281                         list_del(&dma_desc->node);
282                         spin_unlock_irqrestore(&tdc->lock, flags);
283                         dma_desc->txd.flags = 0;
284                         return dma_desc;
285                 }
286         }
287
288         spin_unlock_irqrestore(&tdc->lock, flags);
289
290         /* Allocate DMA desc */
291         dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292         if (!dma_desc)
293                 return NULL;
294
295         dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296         dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297         dma_desc->txd.flags = 0;
298
299         return dma_desc;
300 }
301
302 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303                                struct tegra_dma_desc *dma_desc)
304 {
305         unsigned long flags;
306
307         spin_lock_irqsave(&tdc->lock, flags);
308         if (!list_empty(&dma_desc->tx_list))
309                 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311         spin_unlock_irqrestore(&tdc->lock, flags);
312 }
313
314 static struct tegra_dma_sg_req *
315 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
316 {
317         struct tegra_dma_sg_req *sg_req;
318         unsigned long flags;
319
320         spin_lock_irqsave(&tdc->lock, flags);
321         if (!list_empty(&tdc->free_sg_req)) {
322                 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323                                           node);
324                 list_del(&sg_req->node);
325                 spin_unlock_irqrestore(&tdc->lock, flags);
326                 return sg_req;
327         }
328         spin_unlock_irqrestore(&tdc->lock, flags);
329
330         sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
331
332         return sg_req;
333 }
334
335 static int tegra_dma_slave_config(struct dma_chan *dc,
336                                   struct dma_slave_config *sconfig)
337 {
338         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
339
340         if (!list_empty(&tdc->pending_sg_req)) {
341                 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342                 return -EBUSY;
343         }
344
345         memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346         tdc->config_init = true;
347
348         return 0;
349 }
350
351 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
352                                    bool wait_for_burst_complete)
353 {
354         struct tegra_dma *tdma = tdc->tdma;
355
356         spin_lock(&tdma->global_lock);
357
358         if (tdc->tdma->global_pause_count == 0) {
359                 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
360                 if (wait_for_burst_complete)
361                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
362         }
363
364         tdc->tdma->global_pause_count++;
365
366         spin_unlock(&tdma->global_lock);
367 }
368
369 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
370 {
371         struct tegra_dma *tdma = tdc->tdma;
372
373         spin_lock(&tdma->global_lock);
374
375         if (WARN_ON(tdc->tdma->global_pause_count == 0))
376                 goto out;
377
378         if (--tdc->tdma->global_pause_count == 0)
379                 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
380                            TEGRA_APBDMA_GENERAL_ENABLE);
381
382 out:
383         spin_unlock(&tdma->global_lock);
384 }
385
386 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
387                             bool wait_for_burst_complete)
388 {
389         struct tegra_dma *tdma = tdc->tdma;
390
391         if (tdma->chip_data->support_channel_pause) {
392                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
393                           TEGRA_APBDMA_CHAN_CSRE_PAUSE);
394                 if (wait_for_burst_complete)
395                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
396         } else {
397                 tegra_dma_global_pause(tdc, wait_for_burst_complete);
398         }
399 }
400
401 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
402 {
403         struct tegra_dma *tdma = tdc->tdma;
404
405         if (tdma->chip_data->support_channel_pause)
406                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
407         else
408                 tegra_dma_global_resume(tdc);
409 }
410
411 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
412 {
413         u32 csr, status;
414
415         /* Disable interrupts */
416         csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
417         csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
418         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
419
420         /* Disable DMA */
421         csr &= ~TEGRA_APBDMA_CSR_ENB;
422         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
423
424         /* Clear interrupt status if it is there */
425         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
426         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
427                 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
428                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
429         }
430         tdc->busy = false;
431 }
432
433 static void tegra_dma_start(struct tegra_dma_channel *tdc,
434                             struct tegra_dma_sg_req *sg_req)
435 {
436         struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
437
438         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
439         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
440         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
441         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
442         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
443         if (tdc->tdma->chip_data->support_separate_wcount_reg)
444                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
445
446         /* Start DMA */
447         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
448                   ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
449 }
450
451 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
452                                          struct tegra_dma_sg_req *nsg_req)
453 {
454         unsigned long status;
455
456         /*
457          * The DMA controller reloads the new configuration for next transfer
458          * after last burst of current transfer completes.
459          * If there is no IEC status then this makes sure that last burst
460          * has not be completed. There may be case that last burst is on
461          * flight and so it can complete but because DMA is paused, it
462          * will not generates interrupt as well as not reload the new
463          * configuration.
464          * If there is already IEC status then interrupt handler need to
465          * load new configuration.
466          */
467         tegra_dma_pause(tdc, false);
468         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
469
470         /*
471          * If interrupt is pending then do nothing as the ISR will handle
472          * the programing for new request.
473          */
474         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
475                 dev_err(tdc2dev(tdc),
476                         "Skipping new configuration as interrupt is pending\n");
477                 tegra_dma_resume(tdc);
478                 return;
479         }
480
481         /* Safe to program new configuration */
482         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
483         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
484         if (tdc->tdma->chip_data->support_separate_wcount_reg)
485                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
486                           nsg_req->ch_regs.wcount);
487         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
488                   nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
489         nsg_req->configured = true;
490         nsg_req->words_xferred = 0;
491
492         tegra_dma_resume(tdc);
493 }
494
495 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
496 {
497         struct tegra_dma_sg_req *sg_req;
498
499         sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
500         tegra_dma_start(tdc, sg_req);
501         sg_req->configured = true;
502         sg_req->words_xferred = 0;
503         tdc->busy = true;
504 }
505
506 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
507 {
508         struct tegra_dma_sg_req *hsgreq, *hnsgreq;
509
510         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
511         if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
512                 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
513                                            node);
514                 tegra_dma_configure_for_next(tdc, hnsgreq);
515         }
516 }
517
518 static inline unsigned int
519 get_current_xferred_count(struct tegra_dma_channel *tdc,
520                           struct tegra_dma_sg_req *sg_req,
521                           unsigned long status)
522 {
523         return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
524 }
525
526 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
527 {
528         struct tegra_dma_desc *dma_desc;
529         struct tegra_dma_sg_req *sgreq;
530
531         while (!list_empty(&tdc->pending_sg_req)) {
532                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
533                                          node);
534                 list_move_tail(&sgreq->node, &tdc->free_sg_req);
535                 if (sgreq->last_sg) {
536                         dma_desc = sgreq->dma_desc;
537                         dma_desc->dma_status = DMA_ERROR;
538                         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
539
540                         /* Add in cb list if it is not there. */
541                         if (!dma_desc->cb_count)
542                                 list_add_tail(&dma_desc->cb_node,
543                                               &tdc->cb_desc);
544                         dma_desc->cb_count++;
545                 }
546         }
547         tdc->isr_handler = NULL;
548 }
549
550 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
551                                            bool to_terminate)
552 {
553         struct tegra_dma_sg_req *hsgreq;
554
555         /*
556          * Check that head req on list should be in flight.
557          * If it is not in flight then abort transfer as
558          * looping of transfer can not continue.
559          */
560         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
561         if (!hsgreq->configured) {
562                 tegra_dma_stop(tdc);
563                 pm_runtime_put(tdc->tdma->dev);
564                 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
565                 tegra_dma_abort_all(tdc);
566                 return false;
567         }
568
569         /* Configure next request */
570         if (!to_terminate)
571                 tdc_configure_next_head_desc(tdc);
572
573         return true;
574 }
575
576 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
577                                  bool to_terminate)
578 {
579         struct tegra_dma_desc *dma_desc;
580         struct tegra_dma_sg_req *sgreq;
581
582         tdc->busy = false;
583         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
584         dma_desc = sgreq->dma_desc;
585         dma_desc->bytes_transferred += sgreq->req_len;
586
587         list_del(&sgreq->node);
588         if (sgreq->last_sg) {
589                 dma_desc->dma_status = DMA_COMPLETE;
590                 dma_cookie_complete(&dma_desc->txd);
591                 if (!dma_desc->cb_count)
592                         list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
593                 dma_desc->cb_count++;
594                 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
595         }
596         list_add_tail(&sgreq->node, &tdc->free_sg_req);
597
598         /* Do not start DMA if it is going to be terminate */
599         if (to_terminate)
600                 return;
601
602         if (list_empty(&tdc->pending_sg_req)) {
603                 pm_runtime_put(tdc->tdma->dev);
604                 return;
605         }
606
607         tdc_start_head_req(tdc);
608 }
609
610 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
611                                             bool to_terminate)
612 {
613         struct tegra_dma_desc *dma_desc;
614         struct tegra_dma_sg_req *sgreq;
615         bool st;
616
617         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
618         dma_desc = sgreq->dma_desc;
619         /* if we dma for long enough the transfer count will wrap */
620         dma_desc->bytes_transferred =
621                 (dma_desc->bytes_transferred + sgreq->req_len) %
622                 dma_desc->bytes_requested;
623
624         /* Callback need to be call */
625         if (!dma_desc->cb_count)
626                 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
627         dma_desc->cb_count++;
628
629         sgreq->words_xferred = 0;
630
631         /* If not last req then put at end of pending list */
632         if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
633                 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
634                 sgreq->configured = false;
635                 st = handle_continuous_head_request(tdc, to_terminate);
636                 if (!st)
637                         dma_desc->dma_status = DMA_ERROR;
638         }
639 }
640
641 static void tegra_dma_tasklet(struct tasklet_struct *t)
642 {
643         struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
644         struct dmaengine_desc_callback cb;
645         struct tegra_dma_desc *dma_desc;
646         unsigned int cb_count;
647         unsigned long flags;
648
649         spin_lock_irqsave(&tdc->lock, flags);
650         while (!list_empty(&tdc->cb_desc)) {
651                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
652                                             cb_node);
653                 list_del(&dma_desc->cb_node);
654                 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
655                 cb_count = dma_desc->cb_count;
656                 dma_desc->cb_count = 0;
657                 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
658                                             cb.callback);
659                 spin_unlock_irqrestore(&tdc->lock, flags);
660                 while (cb_count--)
661                         dmaengine_desc_callback_invoke(&cb, NULL);
662                 spin_lock_irqsave(&tdc->lock, flags);
663         }
664         spin_unlock_irqrestore(&tdc->lock, flags);
665 }
666
667 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
668 {
669         struct tegra_dma_channel *tdc = dev_id;
670         u32 status;
671
672         spin_lock(&tdc->lock);
673
674         trace_tegra_dma_isr(&tdc->dma_chan, irq);
675         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
676         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
677                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
678                 tdc->isr_handler(tdc, false);
679                 tasklet_schedule(&tdc->tasklet);
680                 wake_up_all(&tdc->wq);
681                 spin_unlock(&tdc->lock);
682                 return IRQ_HANDLED;
683         }
684
685         spin_unlock(&tdc->lock);
686         dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
687                  status);
688
689         return IRQ_NONE;
690 }
691
692 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
693 {
694         struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
695         struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
696         unsigned long flags;
697         dma_cookie_t cookie;
698
699         spin_lock_irqsave(&tdc->lock, flags);
700         dma_desc->dma_status = DMA_IN_PROGRESS;
701         cookie = dma_cookie_assign(&dma_desc->txd);
702         list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
703         spin_unlock_irqrestore(&tdc->lock, flags);
704
705         return cookie;
706 }
707
708 static void tegra_dma_issue_pending(struct dma_chan *dc)
709 {
710         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
711         unsigned long flags;
712         int err;
713
714         spin_lock_irqsave(&tdc->lock, flags);
715         if (list_empty(&tdc->pending_sg_req)) {
716                 dev_err(tdc2dev(tdc), "No DMA request\n");
717                 goto end;
718         }
719         if (!tdc->busy) {
720                 err = pm_runtime_resume_and_get(tdc->tdma->dev);
721                 if (err < 0) {
722                         dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
723                         goto end;
724                 }
725
726                 tdc_start_head_req(tdc);
727
728                 /* Continuous single mode: Configure next req */
729                 if (tdc->cyclic) {
730                         /*
731                          * Wait for 1 burst time for configure DMA for
732                          * next transfer.
733                          */
734                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
735                         tdc_configure_next_head_desc(tdc);
736                 }
737         }
738 end:
739         spin_unlock_irqrestore(&tdc->lock, flags);
740 }
741
742 static int tegra_dma_terminate_all(struct dma_chan *dc)
743 {
744         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
745         struct tegra_dma_desc *dma_desc;
746         struct tegra_dma_sg_req *sgreq;
747         unsigned long flags;
748         u32 status, wcount;
749         bool was_busy;
750
751         spin_lock_irqsave(&tdc->lock, flags);
752
753         if (!tdc->busy)
754                 goto skip_dma_stop;
755
756         /* Pause DMA before checking the queue status */
757         tegra_dma_pause(tdc, true);
758
759         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
760         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
761                 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
762                 tdc->isr_handler(tdc, true);
763                 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
764         }
765         if (tdc->tdma->chip_data->support_separate_wcount_reg)
766                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
767         else
768                 wcount = status;
769
770         was_busy = tdc->busy;
771         tegra_dma_stop(tdc);
772
773         if (!list_empty(&tdc->pending_sg_req) && was_busy) {
774                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
775                                          node);
776                 sgreq->dma_desc->bytes_transferred +=
777                                 get_current_xferred_count(tdc, sgreq, wcount);
778         }
779         tegra_dma_resume(tdc);
780
781         pm_runtime_put(tdc->tdma->dev);
782         wake_up_all(&tdc->wq);
783
784 skip_dma_stop:
785         tegra_dma_abort_all(tdc);
786
787         while (!list_empty(&tdc->cb_desc)) {
788                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
789                                             cb_node);
790                 list_del(&dma_desc->cb_node);
791                 dma_desc->cb_count = 0;
792         }
793         spin_unlock_irqrestore(&tdc->lock, flags);
794
795         return 0;
796 }
797
798 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
799 {
800         unsigned long flags;
801         u32 status;
802
803         spin_lock_irqsave(&tdc->lock, flags);
804         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
805         spin_unlock_irqrestore(&tdc->lock, flags);
806
807         return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
808 }
809
810 static void tegra_dma_synchronize(struct dma_chan *dc)
811 {
812         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
813         int err;
814
815         err = pm_runtime_resume_and_get(tdc->tdma->dev);
816         if (err < 0) {
817                 dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
818                 return;
819         }
820
821         /*
822          * CPU, which handles interrupt, could be busy in
823          * uninterruptible state, in this case sibling CPU
824          * should wait until interrupt is handled.
825          */
826         wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
827
828         tasklet_kill(&tdc->tasklet);
829
830         pm_runtime_put(tdc->tdma->dev);
831 }
832
833 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
834                                                struct tegra_dma_sg_req *sg_req)
835 {
836         u32 status, wcount = 0;
837
838         if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
839                 return 0;
840
841         if (tdc->tdma->chip_data->support_separate_wcount_reg)
842                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
843
844         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
845
846         if (!tdc->tdma->chip_data->support_separate_wcount_reg)
847                 wcount = status;
848
849         if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
850                 return sg_req->req_len;
851
852         wcount = get_current_xferred_count(tdc, sg_req, wcount);
853
854         if (!wcount) {
855                 /*
856                  * If wcount wasn't ever polled for this SG before, then
857                  * simply assume that transfer hasn't started yet.
858                  *
859                  * Otherwise it's the end of the transfer.
860                  *
861                  * The alternative would be to poll the status register
862                  * until EOC bit is set or wcount goes UP. That's so
863                  * because EOC bit is getting set only after the last
864                  * burst's completion and counter is less than the actual
865                  * transfer size by 4 bytes. The counter value wraps around
866                  * in a cyclic mode before EOC is set(!), so we can't easily
867                  * distinguish start of transfer from its end.
868                  */
869                 if (sg_req->words_xferred)
870                         wcount = sg_req->req_len - 4;
871
872         } else if (wcount < sg_req->words_xferred) {
873                 /*
874                  * This case will never happen for a non-cyclic transfer.
875                  *
876                  * For a cyclic transfer, although it is possible for the
877                  * next transfer to have already started (resetting the word
878                  * count), this case should still not happen because we should
879                  * have detected that the EOC bit is set and hence the transfer
880                  * was completed.
881                  */
882                 WARN_ON_ONCE(1);
883
884                 wcount = sg_req->req_len - 4;
885         } else {
886                 sg_req->words_xferred = wcount;
887         }
888
889         return wcount;
890 }
891
892 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
893                                            dma_cookie_t cookie,
894                                            struct dma_tx_state *txstate)
895 {
896         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
897         struct tegra_dma_desc *dma_desc;
898         struct tegra_dma_sg_req *sg_req;
899         enum dma_status ret;
900         unsigned long flags;
901         unsigned int residual;
902         unsigned int bytes = 0;
903
904         ret = dma_cookie_status(dc, cookie, txstate);
905         if (ret == DMA_COMPLETE)
906                 return ret;
907
908         spin_lock_irqsave(&tdc->lock, flags);
909
910         /* Check on wait_ack desc status */
911         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
912                 if (dma_desc->txd.cookie == cookie) {
913                         ret = dma_desc->dma_status;
914                         goto found;
915                 }
916         }
917
918         /* Check in pending list */
919         list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
920                 dma_desc = sg_req->dma_desc;
921                 if (dma_desc->txd.cookie == cookie) {
922                         bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
923                         ret = dma_desc->dma_status;
924                         goto found;
925                 }
926         }
927
928         dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
929         dma_desc = NULL;
930
931 found:
932         if (dma_desc && txstate) {
933                 residual = dma_desc->bytes_requested -
934                            ((dma_desc->bytes_transferred + bytes) %
935                             dma_desc->bytes_requested);
936                 dma_set_residue(txstate, residual);
937         }
938
939         trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
940         spin_unlock_irqrestore(&tdc->lock, flags);
941
942         return ret;
943 }
944
945 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
946                                          enum dma_slave_buswidth slave_bw)
947 {
948         switch (slave_bw) {
949         case DMA_SLAVE_BUSWIDTH_1_BYTE:
950                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
951         case DMA_SLAVE_BUSWIDTH_2_BYTES:
952                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
953         case DMA_SLAVE_BUSWIDTH_4_BYTES:
954                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
955         case DMA_SLAVE_BUSWIDTH_8_BYTES:
956                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
957         default:
958                 dev_warn(tdc2dev(tdc),
959                          "slave bw is not supported, using 32bits\n");
960                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961         }
962 }
963
964 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
965                                           u32 burst_size,
966                                           enum dma_slave_buswidth slave_bw,
967                                           u32 len)
968 {
969         unsigned int burst_byte, burst_ahb_width;
970
971         /*
972          * burst_size from client is in terms of the bus_width.
973          * convert them into AHB memory width which is 4 byte.
974          */
975         burst_byte = burst_size * slave_bw;
976         burst_ahb_width = burst_byte / 4;
977
978         /* If burst size is 0 then calculate the burst size based on length */
979         if (!burst_ahb_width) {
980                 if (len & 0xF)
981                         return TEGRA_APBDMA_AHBSEQ_BURST_1;
982                 else if ((len >> 4) & 0x1)
983                         return TEGRA_APBDMA_AHBSEQ_BURST_4;
984                 else
985                         return TEGRA_APBDMA_AHBSEQ_BURST_8;
986         }
987         if (burst_ahb_width < 4)
988                 return TEGRA_APBDMA_AHBSEQ_BURST_1;
989         else if (burst_ahb_width < 8)
990                 return TEGRA_APBDMA_AHBSEQ_BURST_4;
991         else
992                 return TEGRA_APBDMA_AHBSEQ_BURST_8;
993 }
994
995 static int get_transfer_param(struct tegra_dma_channel *tdc,
996                               enum dma_transfer_direction direction,
997                               u32 *apb_addr,
998                               u32 *apb_seq,
999                               u32 *csr,
1000                               unsigned int *burst_size,
1001                               enum dma_slave_buswidth *slave_bw)
1002 {
1003         switch (direction) {
1004         case DMA_MEM_TO_DEV:
1005                 *apb_addr = tdc->dma_sconfig.dst_addr;
1006                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1007                 *burst_size = tdc->dma_sconfig.dst_maxburst;
1008                 *slave_bw = tdc->dma_sconfig.dst_addr_width;
1009                 *csr = TEGRA_APBDMA_CSR_DIR;
1010                 return 0;
1011
1012         case DMA_DEV_TO_MEM:
1013                 *apb_addr = tdc->dma_sconfig.src_addr;
1014                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1015                 *burst_size = tdc->dma_sconfig.src_maxburst;
1016                 *slave_bw = tdc->dma_sconfig.src_addr_width;
1017                 *csr = 0;
1018                 return 0;
1019
1020         default:
1021                 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1022                 break;
1023         }
1024
1025         return -EINVAL;
1026 }
1027
1028 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1029                                   struct tegra_dma_channel_regs *ch_regs,
1030                                   u32 len)
1031 {
1032         u32 len_field = (len - 4) & 0xFFFC;
1033
1034         if (tdc->tdma->chip_data->support_separate_wcount_reg)
1035                 ch_regs->wcount = len_field;
1036         else
1037                 ch_regs->csr |= len_field;
1038 }
1039
1040 static struct dma_async_tx_descriptor *
1041 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1042                         struct scatterlist *sgl,
1043                         unsigned int sg_len,
1044                         enum dma_transfer_direction direction,
1045                         unsigned long flags,
1046                         void *context)
1047 {
1048         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1049         struct tegra_dma_sg_req *sg_req = NULL;
1050         u32 csr, ahb_seq, apb_ptr, apb_seq;
1051         enum dma_slave_buswidth slave_bw;
1052         struct tegra_dma_desc *dma_desc;
1053         struct list_head req_list;
1054         struct scatterlist *sg;
1055         unsigned int burst_size;
1056         unsigned int i;
1057
1058         if (!tdc->config_init) {
1059                 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1060                 return NULL;
1061         }
1062         if (sg_len < 1) {
1063                 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1064                 return NULL;
1065         }
1066
1067         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1068                                &burst_size, &slave_bw) < 0)
1069                 return NULL;
1070
1071         INIT_LIST_HEAD(&req_list);
1072
1073         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1074         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1075                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1076         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1077
1078         csr |= TEGRA_APBDMA_CSR_ONCE;
1079
1080         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1081                 csr |= TEGRA_APBDMA_CSR_FLOW;
1082                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1083         }
1084
1085         if (flags & DMA_PREP_INTERRUPT) {
1086                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1087         } else {
1088                 WARN_ON_ONCE(1);
1089                 return NULL;
1090         }
1091
1092         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1093
1094         dma_desc = tegra_dma_desc_get(tdc);
1095         if (!dma_desc) {
1096                 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1097                 return NULL;
1098         }
1099         INIT_LIST_HEAD(&dma_desc->tx_list);
1100         INIT_LIST_HEAD(&dma_desc->cb_node);
1101         dma_desc->cb_count = 0;
1102         dma_desc->bytes_requested = 0;
1103         dma_desc->bytes_transferred = 0;
1104         dma_desc->dma_status = DMA_IN_PROGRESS;
1105
1106         /* Make transfer requests */
1107         for_each_sg(sgl, sg, sg_len, i) {
1108                 u32 len, mem;
1109
1110                 mem = sg_dma_address(sg);
1111                 len = sg_dma_len(sg);
1112
1113                 if ((len & 3) || (mem & 3) ||
1114                     len > tdc->tdma->chip_data->max_dma_count) {
1115                         dev_err(tdc2dev(tdc),
1116                                 "DMA length/memory address is not supported\n");
1117                         tegra_dma_desc_put(tdc, dma_desc);
1118                         return NULL;
1119                 }
1120
1121                 sg_req = tegra_dma_sg_req_get(tdc);
1122                 if (!sg_req) {
1123                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1124                         tegra_dma_desc_put(tdc, dma_desc);
1125                         return NULL;
1126                 }
1127
1128                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1129                 dma_desc->bytes_requested += len;
1130
1131                 sg_req->ch_regs.apb_ptr = apb_ptr;
1132                 sg_req->ch_regs.ahb_ptr = mem;
1133                 sg_req->ch_regs.csr = csr;
1134                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1135                 sg_req->ch_regs.apb_seq = apb_seq;
1136                 sg_req->ch_regs.ahb_seq = ahb_seq;
1137                 sg_req->configured = false;
1138                 sg_req->last_sg = false;
1139                 sg_req->dma_desc = dma_desc;
1140                 sg_req->req_len = len;
1141
1142                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1143         }
1144         sg_req->last_sg = true;
1145         if (flags & DMA_CTRL_ACK)
1146                 dma_desc->txd.flags = DMA_CTRL_ACK;
1147
1148         /*
1149          * Make sure that mode should not be conflicting with currently
1150          * configured mode.
1151          */
1152         if (!tdc->isr_handler) {
1153                 tdc->isr_handler = handle_once_dma_done;
1154                 tdc->cyclic = false;
1155         } else {
1156                 if (tdc->cyclic) {
1157                         dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1158                         tegra_dma_desc_put(tdc, dma_desc);
1159                         return NULL;
1160                 }
1161         }
1162
1163         return &dma_desc->txd;
1164 }
1165
1166 static struct dma_async_tx_descriptor *
1167 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1168                           size_t buf_len,
1169                           size_t period_len,
1170                           enum dma_transfer_direction direction,
1171                           unsigned long flags)
1172 {
1173         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1174         struct tegra_dma_sg_req *sg_req = NULL;
1175         u32 csr, ahb_seq, apb_ptr, apb_seq;
1176         enum dma_slave_buswidth slave_bw;
1177         struct tegra_dma_desc *dma_desc;
1178         dma_addr_t mem = buf_addr;
1179         unsigned int burst_size;
1180         size_t len, remain_len;
1181
1182         if (!buf_len || !period_len) {
1183                 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1184                 return NULL;
1185         }
1186
1187         if (!tdc->config_init) {
1188                 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1189                 return NULL;
1190         }
1191
1192         /*
1193          * We allow to take more number of requests till DMA is
1194          * not started. The driver will loop over all requests.
1195          * Once DMA is started then new requests can be queued only after
1196          * terminating the DMA.
1197          */
1198         if (tdc->busy) {
1199                 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1200                 return NULL;
1201         }
1202
1203         /*
1204          * We only support cycle transfer when buf_len is multiple of
1205          * period_len.
1206          */
1207         if (buf_len % period_len) {
1208                 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1209                 return NULL;
1210         }
1211
1212         len = period_len;
1213         if ((len & 3) || (buf_addr & 3) ||
1214             len > tdc->tdma->chip_data->max_dma_count) {
1215                 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1216                 return NULL;
1217         }
1218
1219         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1220                                &burst_size, &slave_bw) < 0)
1221                 return NULL;
1222
1223         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1224         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1225                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1226         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1227
1228         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1229                 csr |= TEGRA_APBDMA_CSR_FLOW;
1230                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1231         }
1232
1233         if (flags & DMA_PREP_INTERRUPT) {
1234                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1235         } else {
1236                 WARN_ON_ONCE(1);
1237                 return NULL;
1238         }
1239
1240         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1241
1242         dma_desc = tegra_dma_desc_get(tdc);
1243         if (!dma_desc) {
1244                 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1245                 return NULL;
1246         }
1247
1248         INIT_LIST_HEAD(&dma_desc->tx_list);
1249         INIT_LIST_HEAD(&dma_desc->cb_node);
1250         dma_desc->cb_count = 0;
1251
1252         dma_desc->bytes_transferred = 0;
1253         dma_desc->bytes_requested = buf_len;
1254         remain_len = buf_len;
1255
1256         /* Split transfer equal to period size */
1257         while (remain_len) {
1258                 sg_req = tegra_dma_sg_req_get(tdc);
1259                 if (!sg_req) {
1260                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1261                         tegra_dma_desc_put(tdc, dma_desc);
1262                         return NULL;
1263                 }
1264
1265                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1266                 sg_req->ch_regs.apb_ptr = apb_ptr;
1267                 sg_req->ch_regs.ahb_ptr = mem;
1268                 sg_req->ch_regs.csr = csr;
1269                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1270                 sg_req->ch_regs.apb_seq = apb_seq;
1271                 sg_req->ch_regs.ahb_seq = ahb_seq;
1272                 sg_req->configured = false;
1273                 sg_req->last_sg = false;
1274                 sg_req->dma_desc = dma_desc;
1275                 sg_req->req_len = len;
1276
1277                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1278                 remain_len -= len;
1279                 mem += len;
1280         }
1281         sg_req->last_sg = true;
1282         if (flags & DMA_CTRL_ACK)
1283                 dma_desc->txd.flags = DMA_CTRL_ACK;
1284
1285         /*
1286          * Make sure that mode should not be conflicting with currently
1287          * configured mode.
1288          */
1289         if (!tdc->isr_handler) {
1290                 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1291                 tdc->cyclic = true;
1292         } else {
1293                 if (!tdc->cyclic) {
1294                         dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1295                         tegra_dma_desc_put(tdc, dma_desc);
1296                         return NULL;
1297                 }
1298         }
1299
1300         return &dma_desc->txd;
1301 }
1302
1303 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1304 {
1305         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1306
1307         dma_cookie_init(&tdc->dma_chan);
1308
1309         return 0;
1310 }
1311
1312 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1313 {
1314         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1315         struct tegra_dma_desc *dma_desc;
1316         struct tegra_dma_sg_req *sg_req;
1317         struct list_head dma_desc_list;
1318         struct list_head sg_req_list;
1319
1320         INIT_LIST_HEAD(&dma_desc_list);
1321         INIT_LIST_HEAD(&sg_req_list);
1322
1323         dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1324
1325         tegra_dma_terminate_all(dc);
1326         tasklet_kill(&tdc->tasklet);
1327
1328         list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1329         list_splice_init(&tdc->free_sg_req, &sg_req_list);
1330         list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1331         INIT_LIST_HEAD(&tdc->cb_desc);
1332         tdc->config_init = false;
1333         tdc->isr_handler = NULL;
1334
1335         while (!list_empty(&dma_desc_list)) {
1336                 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1337                                             node);
1338                 list_del(&dma_desc->node);
1339                 kfree(dma_desc);
1340         }
1341
1342         while (!list_empty(&sg_req_list)) {
1343                 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1344                 list_del(&sg_req->node);
1345                 kfree(sg_req);
1346         }
1347
1348         tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1349 }
1350
1351 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1352                                            struct of_dma *ofdma)
1353 {
1354         struct tegra_dma *tdma = ofdma->of_dma_data;
1355         struct tegra_dma_channel *tdc;
1356         struct dma_chan *chan;
1357
1358         if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1359                 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1360                 return NULL;
1361         }
1362
1363         chan = dma_get_any_slave_channel(&tdma->dma_dev);
1364         if (!chan)
1365                 return NULL;
1366
1367         tdc = to_tegra_dma_chan(chan);
1368         tdc->slave_id = dma_spec->args[0];
1369
1370         return chan;
1371 }
1372
1373 /* Tegra20 specific DMA controller information */
1374 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1375         .nr_channels            = 16,
1376         .channel_reg_size       = 0x20,
1377         .max_dma_count          = 1024UL * 64,
1378         .support_channel_pause  = false,
1379         .support_separate_wcount_reg = false,
1380 };
1381
1382 /* Tegra30 specific DMA controller information */
1383 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1384         .nr_channels            = 32,
1385         .channel_reg_size       = 0x20,
1386         .max_dma_count          = 1024UL * 64,
1387         .support_channel_pause  = false,
1388         .support_separate_wcount_reg = false,
1389 };
1390
1391 /* Tegra114 specific DMA controller information */
1392 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1393         .nr_channels            = 32,
1394         .channel_reg_size       = 0x20,
1395         .max_dma_count          = 1024UL * 64,
1396         .support_channel_pause  = true,
1397         .support_separate_wcount_reg = false,
1398 };
1399
1400 /* Tegra148 specific DMA controller information */
1401 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1402         .nr_channels            = 32,
1403         .channel_reg_size       = 0x40,
1404         .max_dma_count          = 1024UL * 64,
1405         .support_channel_pause  = true,
1406         .support_separate_wcount_reg = true,
1407 };
1408
1409 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1410 {
1411         int err;
1412
1413         err = reset_control_assert(tdma->rst);
1414         if (err) {
1415                 dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1416                 return err;
1417         }
1418
1419         err = clk_enable(tdma->dma_clk);
1420         if (err) {
1421                 dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1422                 return err;
1423         }
1424
1425         /* reset DMA controller */
1426         udelay(2);
1427         reset_control_deassert(tdma->rst);
1428
1429         /* enable global DMA registers */
1430         tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1431         tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1432         tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1433
1434         clk_disable(tdma->dma_clk);
1435
1436         return 0;
1437 }
1438
1439 static int tegra_dma_probe(struct platform_device *pdev)
1440 {
1441         const struct tegra_dma_chip_data *cdata;
1442         struct tegra_dma *tdma;
1443         unsigned int i;
1444         size_t size;
1445         int ret;
1446
1447         cdata = of_device_get_match_data(&pdev->dev);
1448         size = struct_size(tdma, channels, cdata->nr_channels);
1449
1450         tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1451         if (!tdma)
1452                 return -ENOMEM;
1453
1454         tdma->dev = &pdev->dev;
1455         tdma->chip_data = cdata;
1456         platform_set_drvdata(pdev, tdma);
1457
1458         tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1459         if (IS_ERR(tdma->base_addr))
1460                 return PTR_ERR(tdma->base_addr);
1461
1462         tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1463         if (IS_ERR(tdma->dma_clk)) {
1464                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1465                 return PTR_ERR(tdma->dma_clk);
1466         }
1467
1468         tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1469         if (IS_ERR(tdma->rst)) {
1470                 dev_err(&pdev->dev, "Error: Missing reset\n");
1471                 return PTR_ERR(tdma->rst);
1472         }
1473
1474         spin_lock_init(&tdma->global_lock);
1475
1476         ret = clk_prepare(tdma->dma_clk);
1477         if (ret)
1478                 return ret;
1479
1480         ret = tegra_dma_init_hw(tdma);
1481         if (ret)
1482                 goto err_clk_unprepare;
1483
1484         pm_runtime_irq_safe(&pdev->dev);
1485         pm_runtime_enable(&pdev->dev);
1486
1487         INIT_LIST_HEAD(&tdma->dma_dev.channels);
1488         for (i = 0; i < cdata->nr_channels; i++) {
1489                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1490                 int irq;
1491
1492                 tdc->chan_addr = tdma->base_addr +
1493                                  TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1494                                  (i * cdata->channel_reg_size);
1495
1496                 irq = platform_get_irq(pdev, i);
1497                 if (irq < 0) {
1498                         ret = irq;
1499                         goto err_pm_disable;
1500                 }
1501
1502                 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1503                 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1504                                        tdc->name, tdc);
1505                 if (ret) {
1506                         dev_err(&pdev->dev,
1507                                 "request_irq failed with err %d channel %d\n",
1508                                 ret, i);
1509                         goto err_pm_disable;
1510                 }
1511
1512                 tdc->dma_chan.device = &tdma->dma_dev;
1513                 dma_cookie_init(&tdc->dma_chan);
1514                 list_add_tail(&tdc->dma_chan.device_node,
1515                               &tdma->dma_dev.channels);
1516                 tdc->tdma = tdma;
1517                 tdc->id = i;
1518                 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1519
1520                 tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1521                 spin_lock_init(&tdc->lock);
1522                 init_waitqueue_head(&tdc->wq);
1523
1524                 INIT_LIST_HEAD(&tdc->pending_sg_req);
1525                 INIT_LIST_HEAD(&tdc->free_sg_req);
1526                 INIT_LIST_HEAD(&tdc->free_dma_desc);
1527                 INIT_LIST_HEAD(&tdc->cb_desc);
1528         }
1529
1530         dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1531         dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1532         dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1533
1534         tdma->global_pause_count = 0;
1535         tdma->dma_dev.dev = &pdev->dev;
1536         tdma->dma_dev.device_alloc_chan_resources =
1537                                         tegra_dma_alloc_chan_resources;
1538         tdma->dma_dev.device_free_chan_resources =
1539                                         tegra_dma_free_chan_resources;
1540         tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1541         tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1542         tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1543                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1544                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1545                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1546         tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1547                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1548                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1549                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1550         tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1551         tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1552         tdma->dma_dev.device_config = tegra_dma_slave_config;
1553         tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1554         tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1555         tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1556         tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1557
1558         ret = dma_async_device_register(&tdma->dma_dev);
1559         if (ret < 0) {
1560                 dev_err(&pdev->dev,
1561                         "Tegra20 APB DMA driver registration failed %d\n", ret);
1562                 goto err_pm_disable;
1563         }
1564
1565         ret = of_dma_controller_register(pdev->dev.of_node,
1566                                          tegra_dma_of_xlate, tdma);
1567         if (ret < 0) {
1568                 dev_err(&pdev->dev,
1569                         "Tegra20 APB DMA OF registration failed %d\n", ret);
1570                 goto err_unregister_dma_dev;
1571         }
1572
1573         dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1574                  cdata->nr_channels);
1575
1576         return 0;
1577
1578 err_unregister_dma_dev:
1579         dma_async_device_unregister(&tdma->dma_dev);
1580
1581 err_pm_disable:
1582         pm_runtime_disable(&pdev->dev);
1583
1584 err_clk_unprepare:
1585         clk_unprepare(tdma->dma_clk);
1586
1587         return ret;
1588 }
1589
1590 static int tegra_dma_remove(struct platform_device *pdev)
1591 {
1592         struct tegra_dma *tdma = platform_get_drvdata(pdev);
1593
1594         of_dma_controller_free(pdev->dev.of_node);
1595         dma_async_device_unregister(&tdma->dma_dev);
1596         pm_runtime_disable(&pdev->dev);
1597         clk_unprepare(tdma->dma_clk);
1598
1599         return 0;
1600 }
1601
1602 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1603 {
1604         struct tegra_dma *tdma = dev_get_drvdata(dev);
1605
1606         clk_disable(tdma->dma_clk);
1607
1608         return 0;
1609 }
1610
1611 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1612 {
1613         struct tegra_dma *tdma = dev_get_drvdata(dev);
1614
1615         return clk_enable(tdma->dma_clk);
1616 }
1617
1618 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1619 {
1620         struct tegra_dma *tdma = dev_get_drvdata(dev);
1621         unsigned long flags;
1622         unsigned int i;
1623         bool busy;
1624
1625         for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1626                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1627
1628                 tasklet_kill(&tdc->tasklet);
1629
1630                 spin_lock_irqsave(&tdc->lock, flags);
1631                 busy = tdc->busy;
1632                 spin_unlock_irqrestore(&tdc->lock, flags);
1633
1634                 if (busy) {
1635                         dev_err(tdma->dev, "channel %u busy\n", i);
1636                         return -EBUSY;
1637                 }
1638         }
1639
1640         return pm_runtime_force_suspend(dev);
1641 }
1642
1643 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1644 {
1645         struct tegra_dma *tdma = dev_get_drvdata(dev);
1646         int err;
1647
1648         err = tegra_dma_init_hw(tdma);
1649         if (err)
1650                 return err;
1651
1652         return pm_runtime_force_resume(dev);
1653 }
1654
1655 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1656         SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1657                            NULL)
1658         SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1659 };
1660
1661 static const struct of_device_id tegra_dma_of_match[] = {
1662         {
1663                 .compatible = "nvidia,tegra148-apbdma",
1664                 .data = &tegra148_dma_chip_data,
1665         }, {
1666                 .compatible = "nvidia,tegra114-apbdma",
1667                 .data = &tegra114_dma_chip_data,
1668         }, {
1669                 .compatible = "nvidia,tegra30-apbdma",
1670                 .data = &tegra30_dma_chip_data,
1671         }, {
1672                 .compatible = "nvidia,tegra20-apbdma",
1673                 .data = &tegra20_dma_chip_data,
1674         }, {
1675         },
1676 };
1677 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1678
1679 static struct platform_driver tegra_dmac_driver = {
1680         .driver = {
1681                 .name   = "tegra-apbdma",
1682                 .pm     = &tegra_dma_dev_pm_ops,
1683                 .of_match_table = tegra_dma_of_match,
1684         },
1685         .probe          = tegra_dma_probe,
1686         .remove         = tegra_dma_remove,
1687 };
1688
1689 module_platform_driver(tegra_dmac_driver);
1690
1691 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1692 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1693 MODULE_LICENSE("GPL v2");