Merge tag 'nios2-v5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[linux-2.6-microblaze.git] / drivers / dma / sun4i-dma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Emilio López
4  * Emilio López <emilio@elopez.com.ar>
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18
19 #include "virt-dma.h"
20
21 /** Common macros to normal and dedicated DMA registers **/
22
23 #define SUN4I_DMA_CFG_LOADING                   BIT(31)
24 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width)     ((width) << 25)
25 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len)     ((len) << 23)
26 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode)       ((mode) << 21)
27 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type)        ((type) << 16)
28 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width)     ((width) << 9)
29 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len)     ((len) << 7)
30 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode)       ((mode) << 5)
31 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type)        (type)
32
33 /** Normal DMA register values **/
34
35 /* Normal DMA source/destination data request type values */
36 #define SUN4I_NDMA_DRQ_TYPE_SDRAM               0x16
37 #define SUN4I_NDMA_DRQ_TYPE_LIMIT               (0x1F + 1)
38
39 /** Normal DMA register layout **/
40
41 /* Dedicated DMA source/destination address mode values */
42 #define SUN4I_NDMA_ADDR_MODE_LINEAR             0
43 #define SUN4I_NDMA_ADDR_MODE_IO                 1
44
45 /* Normal DMA configuration register layout */
46 #define SUN4I_NDMA_CFG_CONT_MODE                BIT(30)
47 #define SUN4I_NDMA_CFG_WAIT_STATE(n)            ((n) << 27)
48 #define SUN4I_NDMA_CFG_DST_NON_SECURE           BIT(22)
49 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN   BIT(15)
50 #define SUN4I_NDMA_CFG_SRC_NON_SECURE           BIT(6)
51
52 /** Dedicated DMA register values **/
53
54 /* Dedicated DMA source/destination address mode values */
55 #define SUN4I_DDMA_ADDR_MODE_LINEAR             0
56 #define SUN4I_DDMA_ADDR_MODE_IO                 1
57 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE    2
58 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE      3
59
60 /* Dedicated DMA source/destination data request type values */
61 #define SUN4I_DDMA_DRQ_TYPE_SDRAM               0x1
62 #define SUN4I_DDMA_DRQ_TYPE_LIMIT               (0x1F + 1)
63
64 /** Dedicated DMA register layout **/
65
66 /* Dedicated DMA configuration register layout */
67 #define SUN4I_DDMA_CFG_BUSY                     BIT(30)
68 #define SUN4I_DDMA_CFG_CONT_MODE                BIT(29)
69 #define SUN4I_DDMA_CFG_DST_NON_SECURE           BIT(28)
70 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN   BIT(15)
71 #define SUN4I_DDMA_CFG_SRC_NON_SECURE           BIT(12)
72
73 /* Dedicated DMA parameter register layout */
74 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n)    (((n) - 1) << 24)
75 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n)      (((n) - 1) << 16)
76 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n)    (((n) - 1) << 8)
77 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n)      (((n) - 1) << 0)
78
79 /** DMA register offsets **/
80
81 /* General register offsets */
82 #define SUN4I_DMA_IRQ_ENABLE_REG                0x0
83 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG        0x4
84
85 /* Normal DMA register offsets */
86 #define SUN4I_NDMA_CHANNEL_REG_BASE(n)          (0x100 + (n) * 0x20)
87 #define SUN4I_NDMA_CFG_REG                      0x0
88 #define SUN4I_NDMA_SRC_ADDR_REG                 0x4
89 #define SUN4I_NDMA_DST_ADDR_REG         0x8
90 #define SUN4I_NDMA_BYTE_COUNT_REG               0xC
91
92 /* Dedicated DMA register offsets */
93 #define SUN4I_DDMA_CHANNEL_REG_BASE(n)          (0x300 + (n) * 0x20)
94 #define SUN4I_DDMA_CFG_REG                      0x0
95 #define SUN4I_DDMA_SRC_ADDR_REG                 0x4
96 #define SUN4I_DDMA_DST_ADDR_REG         0x8
97 #define SUN4I_DDMA_BYTE_COUNT_REG               0xC
98 #define SUN4I_DDMA_PARA_REG                     0x18
99
100 /** DMA Driver **/
101
102 /*
103  * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
104  * that's 16 channels. As for endpoints, there's 29 and 21
105  * respectively. Given that the Normal DMA endpoints (other than
106  * SDRAM) can be used as tx/rx, we need 78 vchans in total
107  */
108 #define SUN4I_NDMA_NR_MAX_CHANNELS      8
109 #define SUN4I_DDMA_NR_MAX_CHANNELS      8
110 #define SUN4I_DMA_NR_MAX_CHANNELS                                       \
111         (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
112 #define SUN4I_NDMA_NR_MAX_VCHANS        (29 * 2 - 1)
113 #define SUN4I_DDMA_NR_MAX_VCHANS        21
114 #define SUN4I_DMA_NR_MAX_VCHANS                                         \
115         (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
116
117 /* This set of SUN4I_DDMA timing parameters were found experimentally while
118  * working with the SPI driver and seem to make it behave correctly */
119 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
120         (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) |                 \
121          SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) |                         \
122          SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) |                           \
123          SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
124
125 struct sun4i_dma_pchan {
126         /* Register base of channel */
127         void __iomem                    *base;
128         /* vchan currently being serviced */
129         struct sun4i_dma_vchan          *vchan;
130         /* Is this a dedicated pchan? */
131         int                             is_dedicated;
132 };
133
134 struct sun4i_dma_vchan {
135         struct virt_dma_chan            vc;
136         struct dma_slave_config         cfg;
137         struct sun4i_dma_pchan          *pchan;
138         struct sun4i_dma_promise        *processing;
139         struct sun4i_dma_contract       *contract;
140         u8                              endpoint;
141         int                             is_dedicated;
142 };
143
144 struct sun4i_dma_promise {
145         u32                             cfg;
146         u32                             para;
147         dma_addr_t                      src;
148         dma_addr_t                      dst;
149         size_t                          len;
150         struct list_head                list;
151 };
152
153 /* A contract is a set of promises */
154 struct sun4i_dma_contract {
155         struct virt_dma_desc            vd;
156         struct list_head                demands;
157         struct list_head                completed_demands;
158         int                             is_cyclic;
159 };
160
161 struct sun4i_dma_dev {
162         DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
163         struct dma_device               slave;
164         struct sun4i_dma_pchan          *pchans;
165         struct sun4i_dma_vchan          *vchans;
166         void __iomem                    *base;
167         struct clk                      *clk;
168         int                             irq;
169         spinlock_t                      lock;
170 };
171
172 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
173 {
174         return container_of(dev, struct sun4i_dma_dev, slave);
175 }
176
177 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
178 {
179         return container_of(chan, struct sun4i_dma_vchan, vc.chan);
180 }
181
182 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
183 {
184         return container_of(vd, struct sun4i_dma_contract, vd);
185 }
186
187 static struct device *chan2dev(struct dma_chan *chan)
188 {
189         return &chan->dev->device;
190 }
191
192 static int convert_burst(u32 maxburst)
193 {
194         if (maxburst > 8)
195                 return -EINVAL;
196
197         /* 1 -> 0, 4 -> 1, 8 -> 2 */
198         return (maxburst >> 2);
199 }
200
201 static int convert_buswidth(enum dma_slave_buswidth addr_width)
202 {
203         if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
204                 return -EINVAL;
205
206         /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
207         return (addr_width >> 1);
208 }
209
210 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
211 {
212         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
213
214         vchan_free_chan_resources(&vchan->vc);
215 }
216
217 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
218                                                   struct sun4i_dma_vchan *vchan)
219 {
220         struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
221         unsigned long flags;
222         int i, max;
223
224         /*
225          * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
226          * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
227          */
228         if (vchan->is_dedicated) {
229                 i = SUN4I_NDMA_NR_MAX_CHANNELS;
230                 max = SUN4I_DMA_NR_MAX_CHANNELS;
231         } else {
232                 i = 0;
233                 max = SUN4I_NDMA_NR_MAX_CHANNELS;
234         }
235
236         spin_lock_irqsave(&priv->lock, flags);
237         for_each_clear_bit_from(i, priv->pchans_used, max) {
238                 pchan = &pchans[i];
239                 pchan->vchan = vchan;
240                 set_bit(i, priv->pchans_used);
241                 break;
242         }
243         spin_unlock_irqrestore(&priv->lock, flags);
244
245         return pchan;
246 }
247
248 static void release_pchan(struct sun4i_dma_dev *priv,
249                           struct sun4i_dma_pchan *pchan)
250 {
251         unsigned long flags;
252         int nr = pchan - priv->pchans;
253
254         spin_lock_irqsave(&priv->lock, flags);
255
256         pchan->vchan = NULL;
257         clear_bit(nr, priv->pchans_used);
258
259         spin_unlock_irqrestore(&priv->lock, flags);
260 }
261
262 static void configure_pchan(struct sun4i_dma_pchan *pchan,
263                             struct sun4i_dma_promise *d)
264 {
265         /*
266          * Configure addresses and misc parameters depending on type
267          * SUN4I_DDMA has an extra field with timing parameters
268          */
269         if (pchan->is_dedicated) {
270                 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
271                 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
272                 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
273                 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
274                 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
275         } else {
276                 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
277                 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
278                 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
279                 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
280         }
281 }
282
283 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
284                                 struct sun4i_dma_pchan *pchan,
285                                 int half, int end)
286 {
287         u32 reg;
288         int pchan_number = pchan - priv->pchans;
289         unsigned long flags;
290
291         spin_lock_irqsave(&priv->lock, flags);
292
293         reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
294
295         if (half)
296                 reg |= BIT(pchan_number * 2);
297         else
298                 reg &= ~BIT(pchan_number * 2);
299
300         if (end)
301                 reg |= BIT(pchan_number * 2 + 1);
302         else
303                 reg &= ~BIT(pchan_number * 2 + 1);
304
305         writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
306
307         spin_unlock_irqrestore(&priv->lock, flags);
308 }
309
310 /**
311  * Execute pending operations on a vchan
312  *
313  * When given a vchan, this function will try to acquire a suitable
314  * pchan and, if successful, will configure it to fulfill a promise
315  * from the next pending contract.
316  *
317  * This function must be called with &vchan->vc.lock held.
318  */
319 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
320                                    struct sun4i_dma_vchan *vchan)
321 {
322         struct sun4i_dma_promise *promise = NULL;
323         struct sun4i_dma_contract *contract = NULL;
324         struct sun4i_dma_pchan *pchan;
325         struct virt_dma_desc *vd;
326         int ret;
327
328         lockdep_assert_held(&vchan->vc.lock);
329
330         /* We need a pchan to do anything, so secure one if available */
331         pchan = find_and_use_pchan(priv, vchan);
332         if (!pchan)
333                 return -EBUSY;
334
335         /*
336          * Channel endpoints must not be repeated, so if this vchan
337          * has already submitted some work, we can't do anything else
338          */
339         if (vchan->processing) {
340                 dev_dbg(chan2dev(&vchan->vc.chan),
341                         "processing something to this endpoint already\n");
342                 ret = -EBUSY;
343                 goto release_pchan;
344         }
345
346         do {
347                 /* Figure out which contract we're working with today */
348                 vd = vchan_next_desc(&vchan->vc);
349                 if (!vd) {
350                         dev_dbg(chan2dev(&vchan->vc.chan),
351                                 "No pending contract found");
352                         ret = 0;
353                         goto release_pchan;
354                 }
355
356                 contract = to_sun4i_dma_contract(vd);
357                 if (list_empty(&contract->demands)) {
358                         /* The contract has been completed so mark it as such */
359                         list_del(&contract->vd.node);
360                         vchan_cookie_complete(&contract->vd);
361                         dev_dbg(chan2dev(&vchan->vc.chan),
362                                 "Empty contract found and marked complete");
363                 }
364         } while (list_empty(&contract->demands));
365
366         /* Now find out what we need to do */
367         promise = list_first_entry(&contract->demands,
368                                    struct sun4i_dma_promise, list);
369         vchan->processing = promise;
370
371         /* ... and make it reality */
372         if (promise) {
373                 vchan->contract = contract;
374                 vchan->pchan = pchan;
375                 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
376                 configure_pchan(pchan, promise);
377         }
378
379         return 0;
380
381 release_pchan:
382         release_pchan(priv, pchan);
383         return ret;
384 }
385
386 static int sanitize_config(struct dma_slave_config *sconfig,
387                            enum dma_transfer_direction direction)
388 {
389         switch (direction) {
390         case DMA_MEM_TO_DEV:
391                 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
392                     !sconfig->dst_maxburst)
393                         return -EINVAL;
394
395                 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
396                         sconfig->src_addr_width = sconfig->dst_addr_width;
397
398                 if (!sconfig->src_maxburst)
399                         sconfig->src_maxburst = sconfig->dst_maxburst;
400
401                 break;
402
403         case DMA_DEV_TO_MEM:
404                 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
405                     !sconfig->src_maxburst)
406                         return -EINVAL;
407
408                 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
409                         sconfig->dst_addr_width = sconfig->src_addr_width;
410
411                 if (!sconfig->dst_maxburst)
412                         sconfig->dst_maxburst = sconfig->src_maxburst;
413
414                 break;
415         default:
416                 return 0;
417         }
418
419         return 0;
420 }
421
422 /**
423  * Generate a promise, to be used in a normal DMA contract.
424  *
425  * A NDMA promise contains all the information required to program the
426  * normal part of the DMA Engine and get data copied. A non-executed
427  * promise will live in the demands list on a contract. Once it has been
428  * completed, it will be moved to the completed demands list for later freeing.
429  * All linked promises will be freed when the corresponding contract is freed
430  */
431 static struct sun4i_dma_promise *
432 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
433                       size_t len, struct dma_slave_config *sconfig,
434                       enum dma_transfer_direction direction)
435 {
436         struct sun4i_dma_promise *promise;
437         int ret;
438
439         ret = sanitize_config(sconfig, direction);
440         if (ret)
441                 return NULL;
442
443         promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
444         if (!promise)
445                 return NULL;
446
447         promise->src = src;
448         promise->dst = dest;
449         promise->len = len;
450         promise->cfg = SUN4I_DMA_CFG_LOADING |
451                 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
452
453         dev_dbg(chan2dev(chan),
454                 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
455                 sconfig->src_maxburst, sconfig->dst_maxburst,
456                 sconfig->src_addr_width, sconfig->dst_addr_width);
457
458         /* Source burst */
459         ret = convert_burst(sconfig->src_maxburst);
460         if (ret < 0)
461                 goto fail;
462         promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
463
464         /* Destination burst */
465         ret = convert_burst(sconfig->dst_maxburst);
466         if (ret < 0)
467                 goto fail;
468         promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
469
470         /* Source bus width */
471         ret = convert_buswidth(sconfig->src_addr_width);
472         if (ret < 0)
473                 goto fail;
474         promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
475
476         /* Destination bus width */
477         ret = convert_buswidth(sconfig->dst_addr_width);
478         if (ret < 0)
479                 goto fail;
480         promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
481
482         return promise;
483
484 fail:
485         kfree(promise);
486         return NULL;
487 }
488
489 /**
490  * Generate a promise, to be used in a dedicated DMA contract.
491  *
492  * A DDMA promise contains all the information required to program the
493  * Dedicated part of the DMA Engine and get data copied. A non-executed
494  * promise will live in the demands list on a contract. Once it has been
495  * completed, it will be moved to the completed demands list for later freeing.
496  * All linked promises will be freed when the corresponding contract is freed
497  */
498 static struct sun4i_dma_promise *
499 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
500                       size_t len, struct dma_slave_config *sconfig)
501 {
502         struct sun4i_dma_promise *promise;
503         int ret;
504
505         promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
506         if (!promise)
507                 return NULL;
508
509         promise->src = src;
510         promise->dst = dest;
511         promise->len = len;
512         promise->cfg = SUN4I_DMA_CFG_LOADING |
513                 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
514
515         /* Source burst */
516         ret = convert_burst(sconfig->src_maxburst);
517         if (ret < 0)
518                 goto fail;
519         promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
520
521         /* Destination burst */
522         ret = convert_burst(sconfig->dst_maxburst);
523         if (ret < 0)
524                 goto fail;
525         promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
526
527         /* Source bus width */
528         ret = convert_buswidth(sconfig->src_addr_width);
529         if (ret < 0)
530                 goto fail;
531         promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
532
533         /* Destination bus width */
534         ret = convert_buswidth(sconfig->dst_addr_width);
535         if (ret < 0)
536                 goto fail;
537         promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
538
539         return promise;
540
541 fail:
542         kfree(promise);
543         return NULL;
544 }
545
546 /**
547  * Generate a contract
548  *
549  * Contracts function as DMA descriptors. As our hardware does not support
550  * linked lists, we need to implement SG via software. We use a contract
551  * to hold all the pieces of the request and process them serially one
552  * after another. Each piece is represented as a promise.
553  */
554 static struct sun4i_dma_contract *generate_dma_contract(void)
555 {
556         struct sun4i_dma_contract *contract;
557
558         contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
559         if (!contract)
560                 return NULL;
561
562         INIT_LIST_HEAD(&contract->demands);
563         INIT_LIST_HEAD(&contract->completed_demands);
564
565         return contract;
566 }
567
568 /**
569  * Get next promise on a cyclic transfer
570  *
571  * Cyclic contracts contain a series of promises which are executed on a
572  * loop. This function returns the next promise from a cyclic contract,
573  * so it can be programmed into the hardware.
574  */
575 static struct sun4i_dma_promise *
576 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
577 {
578         struct sun4i_dma_promise *promise;
579
580         promise = list_first_entry_or_null(&contract->demands,
581                                            struct sun4i_dma_promise, list);
582         if (!promise) {
583                 list_splice_init(&contract->completed_demands,
584                                  &contract->demands);
585                 promise = list_first_entry(&contract->demands,
586                                            struct sun4i_dma_promise, list);
587         }
588
589         return promise;
590 }
591
592 /**
593  * Free a contract and all its associated promises
594  */
595 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
596 {
597         struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
598         struct sun4i_dma_promise *promise, *tmp;
599
600         /* Free all the demands and completed demands */
601         list_for_each_entry_safe(promise, tmp, &contract->demands, list)
602                 kfree(promise);
603
604         list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
605                 kfree(promise);
606
607         kfree(contract);
608 }
609
610 static struct dma_async_tx_descriptor *
611 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
612                           dma_addr_t src, size_t len, unsigned long flags)
613 {
614         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
615         struct dma_slave_config *sconfig = &vchan->cfg;
616         struct sun4i_dma_promise *promise;
617         struct sun4i_dma_contract *contract;
618
619         contract = generate_dma_contract();
620         if (!contract)
621                 return NULL;
622
623         /*
624          * We can only do the copy to bus aligned addresses, so
625          * choose the best one so we get decent performance. We also
626          * maximize the burst size for this same reason.
627          */
628         sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629         sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
630         sconfig->src_maxburst = 8;
631         sconfig->dst_maxburst = 8;
632
633         if (vchan->is_dedicated)
634                 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
635         else
636                 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
637                                                 DMA_MEM_TO_MEM);
638
639         if (!promise) {
640                 kfree(contract);
641                 return NULL;
642         }
643
644         /* Configure memcpy mode */
645         if (vchan->is_dedicated) {
646                 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
647                                 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
648         } else {
649                 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
650                                 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
651         }
652
653         /* Fill the contract with our only promise */
654         list_add_tail(&promise->list, &contract->demands);
655
656         /* And add it to the vchan */
657         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
658 }
659
660 static struct dma_async_tx_descriptor *
661 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
662                           size_t period_len, enum dma_transfer_direction dir,
663                           unsigned long flags)
664 {
665         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
666         struct dma_slave_config *sconfig = &vchan->cfg;
667         struct sun4i_dma_promise *promise;
668         struct sun4i_dma_contract *contract;
669         dma_addr_t src, dest;
670         u32 endpoints;
671         int nr_periods, offset, plength, i;
672
673         if (!is_slave_direction(dir)) {
674                 dev_err(chan2dev(chan), "Invalid DMA direction\n");
675                 return NULL;
676         }
677
678         if (vchan->is_dedicated) {
679                 /*
680                  * As we are using this just for audio data, we need to use
681                  * normal DMA. There is nothing stopping us from supporting
682                  * dedicated DMA here as well, so if a client comes up and
683                  * requires it, it will be simple to implement it.
684                  */
685                 dev_err(chan2dev(chan),
686                         "Cyclic transfers are only supported on Normal DMA\n");
687                 return NULL;
688         }
689
690         contract = generate_dma_contract();
691         if (!contract)
692                 return NULL;
693
694         contract->is_cyclic = 1;
695
696         /* Figure out the endpoints and the address we need */
697         if (dir == DMA_MEM_TO_DEV) {
698                 src = buf;
699                 dest = sconfig->dst_addr;
700                 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
701                             SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
702                             SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO);
703         } else {
704                 src = sconfig->src_addr;
705                 dest = buf;
706                 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
707                             SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) |
708                             SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
709         }
710
711         /*
712          * We will be using half done interrupts to make two periods
713          * out of a promise, so we need to program the DMA engine less
714          * often
715          */
716
717         /*
718          * The engine can interrupt on half-transfer, so we can use
719          * this feature to program the engine half as often as if we
720          * didn't use it (keep in mind the hardware doesn't support
721          * linked lists).
722          *
723          * Say you have a set of periods (| marks the start/end, I for
724          * interrupt, P for programming the engine to do a new
725          * transfer), the easy but slow way would be to do
726          *
727          *  |---|---|---|---| (periods / promises)
728          *  P  I,P I,P I,P  I
729          *
730          * Using half transfer interrupts you can do
731          *
732          *  |-------|-------| (promises as configured on hw)
733          *  |---|---|---|---| (periods)
734          *  P   I  I,P  I   I
735          *
736          * Which requires half the engine programming for the same
737          * functionality.
738          */
739         nr_periods = DIV_ROUND_UP(len / period_len, 2);
740         for (i = 0; i < nr_periods; i++) {
741                 /* Calculate the offset in the buffer and the length needed */
742                 offset = i * period_len * 2;
743                 plength = min((len - offset), (period_len * 2));
744                 if (dir == DMA_MEM_TO_DEV)
745                         src = buf + offset;
746                 else
747                         dest = buf + offset;
748
749                 /* Make the promise */
750                 promise = generate_ndma_promise(chan, src, dest,
751                                                 plength, sconfig, dir);
752                 if (!promise) {
753                         /* TODO: should we free everything? */
754                         return NULL;
755                 }
756                 promise->cfg |= endpoints;
757
758                 /* Then add it to the contract */
759                 list_add_tail(&promise->list, &contract->demands);
760         }
761
762         /* And add it to the vchan */
763         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
764 }
765
766 static struct dma_async_tx_descriptor *
767 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
768                         unsigned int sg_len, enum dma_transfer_direction dir,
769                         unsigned long flags, void *context)
770 {
771         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
772         struct dma_slave_config *sconfig = &vchan->cfg;
773         struct sun4i_dma_promise *promise;
774         struct sun4i_dma_contract *contract;
775         u8 ram_type, io_mode, linear_mode;
776         struct scatterlist *sg;
777         dma_addr_t srcaddr, dstaddr;
778         u32 endpoints, para;
779         int i;
780
781         if (!sgl)
782                 return NULL;
783
784         if (!is_slave_direction(dir)) {
785                 dev_err(chan2dev(chan), "Invalid DMA direction\n");
786                 return NULL;
787         }
788
789         contract = generate_dma_contract();
790         if (!contract)
791                 return NULL;
792
793         if (vchan->is_dedicated) {
794                 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
795                 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
796                 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
797         } else {
798                 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
799                 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
800                 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
801         }
802
803         if (dir == DMA_MEM_TO_DEV)
804                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
805                             SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
806                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
807                             SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
808         else
809                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
810                             SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
811                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
812                             SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
813
814         for_each_sg(sgl, sg, sg_len, i) {
815                 /* Figure out addresses */
816                 if (dir == DMA_MEM_TO_DEV) {
817                         srcaddr = sg_dma_address(sg);
818                         dstaddr = sconfig->dst_addr;
819                 } else {
820                         srcaddr = sconfig->src_addr;
821                         dstaddr = sg_dma_address(sg);
822                 }
823
824                 /*
825                  * These are the magic DMA engine timings that keep SPI going.
826                  * I haven't seen any interface on DMAEngine to configure
827                  * timings, and so far they seem to work for everything we
828                  * support, so I've kept them here. I don't know if other
829                  * devices need different timings because, as usual, we only
830                  * have the "para" bitfield meanings, but no comment on what
831                  * the values should be when doing a certain operation :|
832                  */
833                 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
834
835                 /* And make a suitable promise */
836                 if (vchan->is_dedicated)
837                         promise = generate_ddma_promise(chan, srcaddr, dstaddr,
838                                                         sg_dma_len(sg),
839                                                         sconfig);
840                 else
841                         promise = generate_ndma_promise(chan, srcaddr, dstaddr,
842                                                         sg_dma_len(sg),
843                                                         sconfig, dir);
844
845                 if (!promise)
846                         return NULL; /* TODO: should we free everything? */
847
848                 promise->cfg |= endpoints;
849                 promise->para = para;
850
851                 /* Then add it to the contract */
852                 list_add_tail(&promise->list, &contract->demands);
853         }
854
855         /*
856          * Once we've got all the promises ready, add the contract
857          * to the pending list on the vchan
858          */
859         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
860 }
861
862 static int sun4i_dma_terminate_all(struct dma_chan *chan)
863 {
864         struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
865         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
866         struct sun4i_dma_pchan *pchan = vchan->pchan;
867         LIST_HEAD(head);
868         unsigned long flags;
869
870         spin_lock_irqsave(&vchan->vc.lock, flags);
871         vchan_get_all_descriptors(&vchan->vc, &head);
872         spin_unlock_irqrestore(&vchan->vc.lock, flags);
873
874         /*
875          * Clearing the configuration register will halt the pchan. Interrupts
876          * may still trigger, so don't forget to disable them.
877          */
878         if (pchan) {
879                 if (pchan->is_dedicated)
880                         writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
881                 else
882                         writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
883                 set_pchan_interrupt(priv, pchan, 0, 0);
884                 release_pchan(priv, pchan);
885         }
886
887         spin_lock_irqsave(&vchan->vc.lock, flags);
888         vchan_dma_desc_free_list(&vchan->vc, &head);
889         /* Clear these so the vchan is usable again */
890         vchan->processing = NULL;
891         vchan->pchan = NULL;
892         spin_unlock_irqrestore(&vchan->vc.lock, flags);
893
894         return 0;
895 }
896
897 static int sun4i_dma_config(struct dma_chan *chan,
898                             struct dma_slave_config *config)
899 {
900         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
901
902         memcpy(&vchan->cfg, config, sizeof(*config));
903
904         return 0;
905 }
906
907 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
908                                            struct of_dma *ofdma)
909 {
910         struct sun4i_dma_dev *priv = ofdma->of_dma_data;
911         struct sun4i_dma_vchan *vchan;
912         struct dma_chan *chan;
913         u8 is_dedicated = dma_spec->args[0];
914         u8 endpoint = dma_spec->args[1];
915
916         /* Check if type is Normal or Dedicated */
917         if (is_dedicated != 0 && is_dedicated != 1)
918                 return NULL;
919
920         /* Make sure the endpoint looks sane */
921         if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
922             (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
923                 return NULL;
924
925         chan = dma_get_any_slave_channel(&priv->slave);
926         if (!chan)
927                 return NULL;
928
929         /* Assign the endpoint to the vchan */
930         vchan = to_sun4i_dma_vchan(chan);
931         vchan->is_dedicated = is_dedicated;
932         vchan->endpoint = endpoint;
933
934         return chan;
935 }
936
937 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
938                                            dma_cookie_t cookie,
939                                            struct dma_tx_state *state)
940 {
941         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
942         struct sun4i_dma_pchan *pchan = vchan->pchan;
943         struct sun4i_dma_contract *contract;
944         struct sun4i_dma_promise *promise;
945         struct virt_dma_desc *vd;
946         unsigned long flags;
947         enum dma_status ret;
948         size_t bytes = 0;
949
950         ret = dma_cookie_status(chan, cookie, state);
951         if (!state || (ret == DMA_COMPLETE))
952                 return ret;
953
954         spin_lock_irqsave(&vchan->vc.lock, flags);
955         vd = vchan_find_desc(&vchan->vc, cookie);
956         if (!vd)
957                 goto exit;
958         contract = to_sun4i_dma_contract(vd);
959
960         list_for_each_entry(promise, &contract->demands, list)
961                 bytes += promise->len;
962
963         /*
964          * The hardware is configured to return the remaining byte
965          * quantity. If possible, replace the first listed element's
966          * full size with the actual remaining amount
967          */
968         promise = list_first_entry_or_null(&contract->demands,
969                                            struct sun4i_dma_promise, list);
970         if (promise && pchan) {
971                 bytes -= promise->len;
972                 if (pchan->is_dedicated)
973                         bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
974                 else
975                         bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
976         }
977
978 exit:
979
980         dma_set_residue(state, bytes);
981         spin_unlock_irqrestore(&vchan->vc.lock, flags);
982
983         return ret;
984 }
985
986 static void sun4i_dma_issue_pending(struct dma_chan *chan)
987 {
988         struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
989         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
990         unsigned long flags;
991
992         spin_lock_irqsave(&vchan->vc.lock, flags);
993
994         /*
995          * If there are pending transactions for this vchan, push one of
996          * them into the engine to get the ball rolling.
997          */
998         if (vchan_issue_pending(&vchan->vc))
999                 __execute_vchan_pending(priv, vchan);
1000
1001         spin_unlock_irqrestore(&vchan->vc.lock, flags);
1002 }
1003
1004 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1005 {
1006         struct sun4i_dma_dev *priv = dev_id;
1007         struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1008         struct sun4i_dma_vchan *vchan;
1009         struct sun4i_dma_contract *contract;
1010         struct sun4i_dma_promise *promise;
1011         unsigned long pendirq, irqs, disableirqs;
1012         int bit, i, free_room, allow_mitigation = 1;
1013
1014         pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1015
1016 handle_pending:
1017
1018         disableirqs = 0;
1019         free_room = 0;
1020
1021         for_each_set_bit(bit, &pendirq, 32) {
1022                 pchan = &pchans[bit >> 1];
1023                 vchan = pchan->vchan;
1024                 if (!vchan) /* a terminated channel may still interrupt */
1025                         continue;
1026                 contract = vchan->contract;
1027
1028                 /*
1029                  * Disable the IRQ and free the pchan if it's an end
1030                  * interrupt (odd bit)
1031                  */
1032                 if (bit & 1) {
1033                         spin_lock(&vchan->vc.lock);
1034
1035                         /*
1036                          * Move the promise into the completed list now that
1037                          * we're done with it
1038                          */
1039                         list_del(&vchan->processing->list);
1040                         list_add_tail(&vchan->processing->list,
1041                                       &contract->completed_demands);
1042
1043                         /*
1044                          * Cyclic DMA transfers are special:
1045                          * - There's always something we can dispatch
1046                          * - We need to run the callback
1047                          * - Latency is very important, as this is used by audio
1048                          * We therefore just cycle through the list and dispatch
1049                          * whatever we have here, reusing the pchan. There's
1050                          * no need to run the thread after this.
1051                          *
1052                          * For non-cyclic transfers we need to look around,
1053                          * so we can program some more work, or notify the
1054                          * client that their transfers have been completed.
1055                          */
1056                         if (contract->is_cyclic) {
1057                                 promise = get_next_cyclic_promise(contract);
1058                                 vchan->processing = promise;
1059                                 configure_pchan(pchan, promise);
1060                                 vchan_cyclic_callback(&contract->vd);
1061                         } else {
1062                                 vchan->processing = NULL;
1063                                 vchan->pchan = NULL;
1064
1065                                 free_room = 1;
1066                                 disableirqs |= BIT(bit);
1067                                 release_pchan(priv, pchan);
1068                         }
1069
1070                         spin_unlock(&vchan->vc.lock);
1071                 } else {
1072                         /* Half done interrupt */
1073                         if (contract->is_cyclic)
1074                                 vchan_cyclic_callback(&contract->vd);
1075                         else
1076                                 disableirqs |= BIT(bit);
1077                 }
1078         }
1079
1080         /* Disable the IRQs for events we handled */
1081         spin_lock(&priv->lock);
1082         irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1083         writel_relaxed(irqs & ~disableirqs,
1084                        priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1085         spin_unlock(&priv->lock);
1086
1087         /* Writing 1 to the pending field will clear the pending interrupt */
1088         writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1089
1090         /*
1091          * If a pchan was freed, we may be able to schedule something else,
1092          * so have a look around
1093          */
1094         if (free_room) {
1095                 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1096                         vchan = &priv->vchans[i];
1097                         spin_lock(&vchan->vc.lock);
1098                         __execute_vchan_pending(priv, vchan);
1099                         spin_unlock(&vchan->vc.lock);
1100                 }
1101         }
1102
1103         /*
1104          * Handle newer interrupts if some showed up, but only do it once
1105          * to avoid a too long a loop
1106          */
1107         if (allow_mitigation) {
1108                 pendirq = readl_relaxed(priv->base +
1109                                         SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1110                 if (pendirq) {
1111                         allow_mitigation = 0;
1112                         goto handle_pending;
1113                 }
1114         }
1115
1116         return IRQ_HANDLED;
1117 }
1118
1119 static int sun4i_dma_probe(struct platform_device *pdev)
1120 {
1121         struct sun4i_dma_dev *priv;
1122         struct resource *res;
1123         int i, j, ret;
1124
1125         priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1126         if (!priv)
1127                 return -ENOMEM;
1128
1129         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1130         priv->base = devm_ioremap_resource(&pdev->dev, res);
1131         if (IS_ERR(priv->base))
1132                 return PTR_ERR(priv->base);
1133
1134         priv->irq = platform_get_irq(pdev, 0);
1135         if (priv->irq < 0)
1136                 return priv->irq;
1137
1138         priv->clk = devm_clk_get(&pdev->dev, NULL);
1139         if (IS_ERR(priv->clk)) {
1140                 dev_err(&pdev->dev, "No clock specified\n");
1141                 return PTR_ERR(priv->clk);
1142         }
1143
1144         platform_set_drvdata(pdev, priv);
1145         spin_lock_init(&priv->lock);
1146
1147         dma_cap_zero(priv->slave.cap_mask);
1148         dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1149         dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1150         dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1151         dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1152
1153         INIT_LIST_HEAD(&priv->slave.channels);
1154         priv->slave.device_free_chan_resources  = sun4i_dma_free_chan_resources;
1155         priv->slave.device_tx_status            = sun4i_dma_tx_status;
1156         priv->slave.device_issue_pending        = sun4i_dma_issue_pending;
1157         priv->slave.device_prep_slave_sg        = sun4i_dma_prep_slave_sg;
1158         priv->slave.device_prep_dma_memcpy      = sun4i_dma_prep_dma_memcpy;
1159         priv->slave.device_prep_dma_cyclic      = sun4i_dma_prep_dma_cyclic;
1160         priv->slave.device_config               = sun4i_dma_config;
1161         priv->slave.device_terminate_all        = sun4i_dma_terminate_all;
1162         priv->slave.copy_align                  = 2;
1163         priv->slave.src_addr_widths             = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1164                                                   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1165                                                   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1166         priv->slave.dst_addr_widths             = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1167                                                   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1168                                                   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1169         priv->slave.directions                  = BIT(DMA_DEV_TO_MEM) |
1170                                                   BIT(DMA_MEM_TO_DEV);
1171         priv->slave.residue_granularity         = DMA_RESIDUE_GRANULARITY_BURST;
1172
1173         priv->slave.dev = &pdev->dev;
1174
1175         priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1176                                     sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1177         priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1178                                     sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1179         if (!priv->vchans || !priv->pchans)
1180                 return -ENOMEM;
1181
1182         /*
1183          * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1184          * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1185          * dedicated ones
1186          */
1187         for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1188                 priv->pchans[i].base = priv->base +
1189                         SUN4I_NDMA_CHANNEL_REG_BASE(i);
1190
1191         for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1192                 priv->pchans[i].base = priv->base +
1193                         SUN4I_DDMA_CHANNEL_REG_BASE(j);
1194                 priv->pchans[i].is_dedicated = 1;
1195         }
1196
1197         for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1198                 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1199
1200                 spin_lock_init(&vchan->vc.lock);
1201                 vchan->vc.desc_free = sun4i_dma_free_contract;
1202                 vchan_init(&vchan->vc, &priv->slave);
1203         }
1204
1205         ret = clk_prepare_enable(priv->clk);
1206         if (ret) {
1207                 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1208                 return ret;
1209         }
1210
1211         /*
1212          * Make sure the IRQs are all disabled and accounted for. The bootloader
1213          * likes to leave these dirty
1214          */
1215         writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1216         writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1217
1218         ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1219                                0, dev_name(&pdev->dev), priv);
1220         if (ret) {
1221                 dev_err(&pdev->dev, "Cannot request IRQ\n");
1222                 goto err_clk_disable;
1223         }
1224
1225         ret = dma_async_device_register(&priv->slave);
1226         if (ret) {
1227                 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1228                 goto err_clk_disable;
1229         }
1230
1231         ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1232                                          priv);
1233         if (ret) {
1234                 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1235                 goto err_dma_unregister;
1236         }
1237
1238         dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1239
1240         return 0;
1241
1242 err_dma_unregister:
1243         dma_async_device_unregister(&priv->slave);
1244 err_clk_disable:
1245         clk_disable_unprepare(priv->clk);
1246         return ret;
1247 }
1248
1249 static int sun4i_dma_remove(struct platform_device *pdev)
1250 {
1251         struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1252
1253         /* Disable IRQ so no more work is scheduled */
1254         disable_irq(priv->irq);
1255
1256         of_dma_controller_free(pdev->dev.of_node);
1257         dma_async_device_unregister(&priv->slave);
1258
1259         clk_disable_unprepare(priv->clk);
1260
1261         return 0;
1262 }
1263
1264 static const struct of_device_id sun4i_dma_match[] = {
1265         { .compatible = "allwinner,sun4i-a10-dma" },
1266         { /* sentinel */ },
1267 };
1268 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1269
1270 static struct platform_driver sun4i_dma_driver = {
1271         .probe  = sun4i_dma_probe,
1272         .remove = sun4i_dma_remove,
1273         .driver = {
1274                 .name           = "sun4i-dma",
1275                 .of_match_table = sun4i_dma_match,
1276         },
1277 };
1278
1279 module_platform_driver(sun4i_dma_driver);
1280
1281 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1282 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1283 MODULE_LICENSE("GPL");