dmaengine: stm32-dma: rework irq handler to manage error before xfer events
[linux-2.6-microblaze.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
71                                                 */
72 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
76                                         | STM32_DMA_SCR_MINC \
77                                         | STM32_DMA_SCR_PINCOS \
78                                         | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
80                                         | STM32_DMA_SCR_TEIE \
81                                         | STM32_DMA_SCR_DMEIE)
82
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
85
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
88
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
91
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
94
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
102                                         | STM32_DMA_SFCR_DMDIS)
103
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM            0x00
106 #define STM32_DMA_MEM_TO_DEV            0x01
107 #define STM32_DMA_MEM_TO_MEM            0x02
108
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW          0x00
111 #define STM32_DMA_PRIORITY_MEDIUM       0x01
112 #define STM32_DMA_PRIORITY_HIGH         0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
114
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
121
122 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
123 /*
124  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125  * gather at boundary. Thus it's safer to round down this value on FIFO
126  * size (16 Bytes)
127  */
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
129         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS          0x08
131 #define STM32_DMA_MAX_REQUEST_ID        0x08
132 #define STM32_DMA_MAX_DATA_PARAM        0x03
133 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST             4
135 #define STM32_DMA_MAX_BURST             16
136
137 /* DMA Features */
138 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) \
142                                          >> 2)
143
144 enum stm32_dma_width {
145         STM32_DMA_BYTE,
146         STM32_DMA_HALF_WORD,
147         STM32_DMA_WORD,
148 };
149
150 enum stm32_dma_burst_size {
151         STM32_DMA_BURST_SINGLE,
152         STM32_DMA_BURST_INCR4,
153         STM32_DMA_BURST_INCR8,
154         STM32_DMA_BURST_INCR16,
155 };
156
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165         u32 channel_id;
166         u32 request_line;
167         u32 stream_config;
168         u32 features;
169 };
170
171 struct stm32_dma_chan_reg {
172         u32 dma_lisr;
173         u32 dma_hisr;
174         u32 dma_lifcr;
175         u32 dma_hifcr;
176         u32 dma_scr;
177         u32 dma_sndtr;
178         u32 dma_spar;
179         u32 dma_sm0ar;
180         u32 dma_sm1ar;
181         u32 dma_sfcr;
182 };
183
184 struct stm32_dma_sg_req {
185         u32 len;
186         struct stm32_dma_chan_reg chan_reg;
187 };
188
189 struct stm32_dma_desc {
190         struct virt_dma_desc vdesc;
191         bool cyclic;
192         u32 num_sgs;
193         struct stm32_dma_sg_req sg_req[];
194 };
195
196 struct stm32_dma_chan {
197         struct virt_dma_chan vchan;
198         bool config_init;
199         bool busy;
200         u32 id;
201         u32 irq;
202         struct stm32_dma_desc *desc;
203         u32 next_sg;
204         struct dma_slave_config dma_sconfig;
205         struct stm32_dma_chan_reg chan_reg;
206         u32 threshold;
207         u32 mem_burst;
208         u32 mem_width;
209 };
210
211 struct stm32_dma_device {
212         struct dma_device ddev;
213         void __iomem *base;
214         struct clk *clk;
215         bool mem2mem;
216         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217 };
218
219 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220 {
221         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222                             ddev);
223 }
224
225 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226 {
227         return container_of(c, struct stm32_dma_chan, vchan.chan);
228 }
229
230 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231 {
232         return container_of(vdesc, struct stm32_dma_desc, vdesc);
233 }
234
235 static struct device *chan2dev(struct stm32_dma_chan *chan)
236 {
237         return &chan->vchan.chan.dev->device;
238 }
239
240 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241 {
242         return readl_relaxed(dmadev->base + reg);
243 }
244
245 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246 {
247         writel_relaxed(val, dmadev->base + reg);
248 }
249
250 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251                                enum dma_slave_buswidth width)
252 {
253         switch (width) {
254         case DMA_SLAVE_BUSWIDTH_1_BYTE:
255                 return STM32_DMA_BYTE;
256         case DMA_SLAVE_BUSWIDTH_2_BYTES:
257                 return STM32_DMA_HALF_WORD;
258         case DMA_SLAVE_BUSWIDTH_4_BYTES:
259                 return STM32_DMA_WORD;
260         default:
261                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
262                 return -EINVAL;
263         }
264 }
265
266 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267                                                        u32 threshold)
268 {
269         enum dma_slave_buswidth max_width;
270
271         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
272                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
273         else
274                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
275
276         while ((buf_len < max_width  || buf_len % max_width) &&
277                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
278                 max_width = max_width >> 1;
279
280         return max_width;
281 }
282
283 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
284                                                 enum dma_slave_buswidth width)
285 {
286         u32 remaining;
287
288         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
289                 return false;
290
291         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
292                 if (burst != 0) {
293                         /*
294                          * If number of beats fit in several whole bursts
295                          * this configuration is allowed.
296                          */
297                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
298                                      (threshold + 1) / 4) % burst;
299
300                         if (remaining == 0)
301                                 return true;
302                 } else {
303                         return true;
304                 }
305         }
306
307         return false;
308 }
309
310 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
311 {
312         /* If FIFO direct mode, burst is not possible */
313         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
314                 return false;
315
316         /*
317          * Buffer or period length has to be aligned on FIFO depth.
318          * Otherwise bytes may be stuck within FIFO at buffer or period
319          * length.
320          */
321         return ((buf_len % ((threshold + 1) * 4)) == 0);
322 }
323
324 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
325                                     enum dma_slave_buswidth width)
326 {
327         u32 best_burst = max_burst;
328
329         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
330                 return 0;
331
332         while ((buf_len < best_burst * width && best_burst > 1) ||
333                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
334                                                     width)) {
335                 if (best_burst > STM32_DMA_MIN_BURST)
336                         best_burst = best_burst >> 1;
337                 else
338                         best_burst = 0;
339         }
340
341         return best_burst;
342 }
343
344 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
345 {
346         switch (maxburst) {
347         case 0:
348         case 1:
349                 return STM32_DMA_BURST_SINGLE;
350         case 4:
351                 return STM32_DMA_BURST_INCR4;
352         case 8:
353                 return STM32_DMA_BURST_INCR8;
354         case 16:
355                 return STM32_DMA_BURST_INCR16;
356         default:
357                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
358                 return -EINVAL;
359         }
360 }
361
362 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
363                                       u32 src_burst, u32 dst_burst)
364 {
365         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
366         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
367
368         if (!src_burst && !dst_burst) {
369                 /* Using direct mode */
370                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
371         } else {
372                 /* Using FIFO mode */
373                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
374         }
375 }
376
377 static int stm32_dma_slave_config(struct dma_chan *c,
378                                   struct dma_slave_config *config)
379 {
380         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
381
382         memcpy(&chan->dma_sconfig, config, sizeof(*config));
383
384         chan->config_init = true;
385
386         return 0;
387 }
388
389 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
390 {
391         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
392         u32 flags, dma_isr;
393
394         /*
395          * Read "flags" from DMA_xISR register corresponding to the selected
396          * DMA channel at the correct bit offset inside that register.
397          *
398          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
399          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
400          */
401
402         if (chan->id & 4)
403                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
404         else
405                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
406
407         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
408
409         return flags & STM32_DMA_MASKI;
410 }
411
412 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
413 {
414         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
415         u32 dma_ifcr;
416
417         /*
418          * Write "flags" to the DMA_xIFCR register corresponding to the selected
419          * DMA channel at the correct bit offset inside that register.
420          *
421          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
422          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
423          */
424         flags &= STM32_DMA_MASKI;
425         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
426
427         if (chan->id & 4)
428                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
429         else
430                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
431 }
432
433 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
434 {
435         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436         u32 dma_scr, id, reg;
437
438         id = chan->id;
439         reg = STM32_DMA_SCR(id);
440         dma_scr = stm32_dma_read(dmadev, reg);
441
442         if (dma_scr & STM32_DMA_SCR_EN) {
443                 dma_scr &= ~STM32_DMA_SCR_EN;
444                 stm32_dma_write(dmadev, reg, dma_scr);
445
446                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
447                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
448                                         10, 1000000);
449         }
450
451         return 0;
452 }
453
454 static void stm32_dma_stop(struct stm32_dma_chan *chan)
455 {
456         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
457         u32 dma_scr, dma_sfcr, status;
458         int ret;
459
460         /* Disable interrupts */
461         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
462         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
463         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
464         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
465         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
466         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
467
468         /* Disable DMA */
469         ret = stm32_dma_disable_chan(chan);
470         if (ret < 0)
471                 return;
472
473         /* Clear interrupt status if it is there */
474         status = stm32_dma_irq_status(chan);
475         if (status) {
476                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
477                         __func__, status);
478                 stm32_dma_irq_clear(chan, status);
479         }
480
481         chan->busy = false;
482 }
483
484 static int stm32_dma_terminate_all(struct dma_chan *c)
485 {
486         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
487         unsigned long flags;
488         LIST_HEAD(head);
489
490         spin_lock_irqsave(&chan->vchan.lock, flags);
491
492         if (chan->desc) {
493                 vchan_terminate_vdesc(&chan->desc->vdesc);
494                 if (chan->busy)
495                         stm32_dma_stop(chan);
496                 chan->desc = NULL;
497         }
498
499         vchan_get_all_descriptors(&chan->vchan, &head);
500         spin_unlock_irqrestore(&chan->vchan.lock, flags);
501         vchan_dma_desc_free_list(&chan->vchan, &head);
502
503         return 0;
504 }
505
506 static void stm32_dma_synchronize(struct dma_chan *c)
507 {
508         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
509
510         vchan_synchronize(&chan->vchan);
511 }
512
513 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
514 {
515         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
516         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
517         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
518         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
519         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
520         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
521         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
522
523         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
524         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
525         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
526         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
527         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
528         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
529 }
530
531 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
532
533 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
534 {
535         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
536         struct virt_dma_desc *vdesc;
537         struct stm32_dma_sg_req *sg_req;
538         struct stm32_dma_chan_reg *reg;
539         u32 status;
540         int ret;
541
542         ret = stm32_dma_disable_chan(chan);
543         if (ret < 0)
544                 return;
545
546         if (!chan->desc) {
547                 vdesc = vchan_next_desc(&chan->vchan);
548                 if (!vdesc)
549                         return;
550
551                 list_del(&vdesc->node);
552
553                 chan->desc = to_stm32_dma_desc(vdesc);
554                 chan->next_sg = 0;
555         }
556
557         if (chan->next_sg == chan->desc->num_sgs)
558                 chan->next_sg = 0;
559
560         sg_req = &chan->desc->sg_req[chan->next_sg];
561         reg = &sg_req->chan_reg;
562
563         reg->dma_scr &= ~STM32_DMA_SCR_EN;
564         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
565         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
566         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
567         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
568         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
569         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
570
571         chan->next_sg++;
572
573         /* Clear interrupt status if it is there */
574         status = stm32_dma_irq_status(chan);
575         if (status)
576                 stm32_dma_irq_clear(chan, status);
577
578         if (chan->desc->cyclic)
579                 stm32_dma_configure_next_sg(chan);
580
581         stm32_dma_dump_reg(chan);
582
583         /* Start DMA */
584         reg->dma_scr |= STM32_DMA_SCR_EN;
585         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
586
587         chan->busy = true;
588
589         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
590 }
591
592 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
593 {
594         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
595         struct stm32_dma_sg_req *sg_req;
596         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
597
598         id = chan->id;
599         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
600
601         if (dma_scr & STM32_DMA_SCR_DBM) {
602                 if (chan->next_sg == chan->desc->num_sgs)
603                         chan->next_sg = 0;
604
605                 sg_req = &chan->desc->sg_req[chan->next_sg];
606
607                 if (dma_scr & STM32_DMA_SCR_CT) {
608                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
609                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
610                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
611                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
612                 } else {
613                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
614                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
615                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
616                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
617                 }
618         }
619 }
620
621 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
622 {
623         if (chan->desc) {
624                 if (chan->desc->cyclic) {
625                         vchan_cyclic_callback(&chan->desc->vdesc);
626                         chan->next_sg++;
627                         stm32_dma_configure_next_sg(chan);
628                 } else {
629                         chan->busy = false;
630                         if (chan->next_sg == chan->desc->num_sgs) {
631                                 vchan_cookie_complete(&chan->desc->vdesc);
632                                 chan->desc = NULL;
633                         }
634                         stm32_dma_start_transfer(chan);
635                 }
636         }
637 }
638
639 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
640 {
641         struct stm32_dma_chan *chan = devid;
642         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
643         u32 status, scr, sfcr;
644
645         spin_lock(&chan->vchan.lock);
646
647         status = stm32_dma_irq_status(chan);
648         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
649         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
650
651         if (status & STM32_DMA_FEI) {
652                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
653                 status &= ~STM32_DMA_FEI;
654                 if (sfcr & STM32_DMA_SFCR_FEIE) {
655                         if (!(scr & STM32_DMA_SCR_EN) &&
656                             !(status & STM32_DMA_TCI))
657                                 dev_err(chan2dev(chan), "FIFO Error\n");
658                         else
659                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
660                 }
661         }
662         if (status & STM32_DMA_DMEI) {
663                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
664                 status &= ~STM32_DMA_DMEI;
665                 if (sfcr & STM32_DMA_SCR_DMEIE)
666                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
667         }
668
669         if (status & STM32_DMA_TCI) {
670                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
671                 if (scr & STM32_DMA_SCR_TCIE)
672                         stm32_dma_handle_chan_done(chan);
673                 status &= ~STM32_DMA_TCI;
674         }
675
676         if (status & STM32_DMA_HTI) {
677                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
678                 status &= ~STM32_DMA_HTI;
679         }
680
681         if (status) {
682                 stm32_dma_irq_clear(chan, status);
683                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
684                 if (!(scr & STM32_DMA_SCR_EN))
685                         dev_err(chan2dev(chan), "chan disabled by HW\n");
686         }
687
688         spin_unlock(&chan->vchan.lock);
689
690         return IRQ_HANDLED;
691 }
692
693 static void stm32_dma_issue_pending(struct dma_chan *c)
694 {
695         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
696         unsigned long flags;
697
698         spin_lock_irqsave(&chan->vchan.lock, flags);
699         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
700                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
701                 stm32_dma_start_transfer(chan);
702
703         }
704         spin_unlock_irqrestore(&chan->vchan.lock, flags);
705 }
706
707 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
708                                     enum dma_transfer_direction direction,
709                                     enum dma_slave_buswidth *buswidth,
710                                     u32 buf_len)
711 {
712         enum dma_slave_buswidth src_addr_width, dst_addr_width;
713         int src_bus_width, dst_bus_width;
714         int src_burst_size, dst_burst_size;
715         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
716         u32 dma_scr, fifoth;
717
718         src_addr_width = chan->dma_sconfig.src_addr_width;
719         dst_addr_width = chan->dma_sconfig.dst_addr_width;
720         src_maxburst = chan->dma_sconfig.src_maxburst;
721         dst_maxburst = chan->dma_sconfig.dst_maxburst;
722         fifoth = chan->threshold;
723
724         switch (direction) {
725         case DMA_MEM_TO_DEV:
726                 /* Set device data size */
727                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
728                 if (dst_bus_width < 0)
729                         return dst_bus_width;
730
731                 /* Set device burst size */
732                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
733                                                           dst_maxburst,
734                                                           fifoth,
735                                                           dst_addr_width);
736
737                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
738                 if (dst_burst_size < 0)
739                         return dst_burst_size;
740
741                 /* Set memory data size */
742                 src_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
743                 chan->mem_width = src_addr_width;
744                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
745                 if (src_bus_width < 0)
746                         return src_bus_width;
747
748                 /* Set memory burst size */
749                 src_maxburst = STM32_DMA_MAX_BURST;
750                 src_best_burst = stm32_dma_get_best_burst(buf_len,
751                                                           src_maxburst,
752                                                           fifoth,
753                                                           src_addr_width);
754                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
755                 if (src_burst_size < 0)
756                         return src_burst_size;
757
758                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
759                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
760                         STM32_DMA_SCR_MSIZE(src_bus_width) |
761                         STM32_DMA_SCR_PBURST(dst_burst_size) |
762                         STM32_DMA_SCR_MBURST(src_burst_size);
763
764                 /* Set FIFO threshold */
765                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
766                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
767                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
768
769                 /* Set peripheral address */
770                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
771                 *buswidth = dst_addr_width;
772                 break;
773
774         case DMA_DEV_TO_MEM:
775                 /* Set device data size */
776                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
777                 if (src_bus_width < 0)
778                         return src_bus_width;
779
780                 /* Set device burst size */
781                 src_best_burst = stm32_dma_get_best_burst(buf_len,
782                                                           src_maxburst,
783                                                           fifoth,
784                                                           src_addr_width);
785                 chan->mem_burst = src_best_burst;
786                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
787                 if (src_burst_size < 0)
788                         return src_burst_size;
789
790                 /* Set memory data size */
791                 dst_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
792                 chan->mem_width = dst_addr_width;
793                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
794                 if (dst_bus_width < 0)
795                         return dst_bus_width;
796
797                 /* Set memory burst size */
798                 dst_maxburst = STM32_DMA_MAX_BURST;
799                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
800                                                           dst_maxburst,
801                                                           fifoth,
802                                                           dst_addr_width);
803                 chan->mem_burst = dst_best_burst;
804                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
805                 if (dst_burst_size < 0)
806                         return dst_burst_size;
807
808                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
809                         STM32_DMA_SCR_PSIZE(src_bus_width) |
810                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
811                         STM32_DMA_SCR_PBURST(src_burst_size) |
812                         STM32_DMA_SCR_MBURST(dst_burst_size);
813
814                 /* Set FIFO threshold */
815                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
816                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
817                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
818
819                 /* Set peripheral address */
820                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
821                 *buswidth = chan->dma_sconfig.src_addr_width;
822                 break;
823
824         default:
825                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
826                 return -EINVAL;
827         }
828
829         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
830
831         /* Set DMA control register */
832         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
833                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
834                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
835         chan->chan_reg.dma_scr |= dma_scr;
836
837         return 0;
838 }
839
840 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
841 {
842         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
843 }
844
845 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
846         struct dma_chan *c, struct scatterlist *sgl,
847         u32 sg_len, enum dma_transfer_direction direction,
848         unsigned long flags, void *context)
849 {
850         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
851         struct stm32_dma_desc *desc;
852         struct scatterlist *sg;
853         enum dma_slave_buswidth buswidth;
854         u32 nb_data_items;
855         int i, ret;
856
857         if (!chan->config_init) {
858                 dev_err(chan2dev(chan), "dma channel is not configured\n");
859                 return NULL;
860         }
861
862         if (sg_len < 1) {
863                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
864                 return NULL;
865         }
866
867         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
868         if (!desc)
869                 return NULL;
870
871         /* Set peripheral flow controller */
872         if (chan->dma_sconfig.device_fc)
873                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
874         else
875                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
876
877         for_each_sg(sgl, sg, sg_len, i) {
878                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
879                                                sg_dma_len(sg));
880                 if (ret < 0)
881                         goto err;
882
883                 desc->sg_req[i].len = sg_dma_len(sg);
884
885                 nb_data_items = desc->sg_req[i].len / buswidth;
886                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
887                         dev_err(chan2dev(chan), "nb items not supported\n");
888                         goto err;
889                 }
890
891                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
892                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
893                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
894                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
895                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
896                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
897                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
898         }
899
900         desc->num_sgs = sg_len;
901         desc->cyclic = false;
902
903         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
904
905 err:
906         kfree(desc);
907         return NULL;
908 }
909
910 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
911         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
912         size_t period_len, enum dma_transfer_direction direction,
913         unsigned long flags)
914 {
915         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
916         struct stm32_dma_desc *desc;
917         enum dma_slave_buswidth buswidth;
918         u32 num_periods, nb_data_items;
919         int i, ret;
920
921         if (!buf_len || !period_len) {
922                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
923                 return NULL;
924         }
925
926         if (!chan->config_init) {
927                 dev_err(chan2dev(chan), "dma channel is not configured\n");
928                 return NULL;
929         }
930
931         if (buf_len % period_len) {
932                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
933                 return NULL;
934         }
935
936         /*
937          * We allow to take more number of requests till DMA is
938          * not started. The driver will loop over all requests.
939          * Once DMA is started then new requests can be queued only after
940          * terminating the DMA.
941          */
942         if (chan->busy) {
943                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
944                 return NULL;
945         }
946
947         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
948         if (ret < 0)
949                 return NULL;
950
951         nb_data_items = period_len / buswidth;
952         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
953                 dev_err(chan2dev(chan), "number of items not supported\n");
954                 return NULL;
955         }
956
957         /*  Enable Circular mode or double buffer mode */
958         if (buf_len == period_len)
959                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
960         else
961                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
962
963         /* Clear periph ctrl if client set it */
964         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
965
966         num_periods = buf_len / period_len;
967
968         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
969         if (!desc)
970                 return NULL;
971
972         for (i = 0; i < num_periods; i++) {
973                 desc->sg_req[i].len = period_len;
974
975                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
976                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
977                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
978                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
979                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
980                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
981                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
982                 buf_addr += period_len;
983         }
984
985         desc->num_sgs = num_periods;
986         desc->cyclic = true;
987
988         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
989 }
990
991 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
992         struct dma_chan *c, dma_addr_t dest,
993         dma_addr_t src, size_t len, unsigned long flags)
994 {
995         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
996         enum dma_slave_buswidth max_width;
997         struct stm32_dma_desc *desc;
998         size_t xfer_count, offset;
999         u32 num_sgs, best_burst, dma_burst, threshold;
1000         int i;
1001
1002         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1003         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1004         if (!desc)
1005                 return NULL;
1006
1007         threshold = chan->threshold;
1008
1009         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1010                 xfer_count = min_t(size_t, len - offset,
1011                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012
1013                 /* Compute best burst size */
1014                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1016                                                       threshold, max_width);
1017                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1018
1019                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1020                 desc->sg_req[i].chan_reg.dma_scr =
1021                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1022                         STM32_DMA_SCR_PBURST(dma_burst) |
1023                         STM32_DMA_SCR_MBURST(dma_burst) |
1024                         STM32_DMA_SCR_MINC |
1025                         STM32_DMA_SCR_PINC |
1026                         STM32_DMA_SCR_TCIE |
1027                         STM32_DMA_SCR_TEIE;
1028                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1029                 desc->sg_req[i].chan_reg.dma_sfcr |=
1030                         STM32_DMA_SFCR_FTH(threshold);
1031                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1032                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1033                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1034                 desc->sg_req[i].len = xfer_count;
1035         }
1036
1037         desc->num_sgs = num_sgs;
1038         desc->cyclic = false;
1039
1040         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1041 }
1042
1043 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1044 {
1045         u32 dma_scr, width, ndtr;
1046         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1047
1048         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1049         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1050         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1051
1052         return ndtr << width;
1053 }
1054
1055 /**
1056  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1057  * @chan: dma channel
1058  *
1059  * This function called when IRQ are disable, checks that the hardware has not
1060  * switched on the next transfer in double buffer mode. The test is done by
1061  * comparing the next_sg memory address with the hardware related register
1062  * (based on CT bit value).
1063  *
1064  * Returns true if expected current transfer is still running or double
1065  * buffer mode is not activated.
1066  */
1067 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1068 {
1069         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1070         struct stm32_dma_sg_req *sg_req;
1071         u32 dma_scr, dma_smar, id;
1072
1073         id = chan->id;
1074         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1075
1076         if (!(dma_scr & STM32_DMA_SCR_DBM))
1077                 return true;
1078
1079         sg_req = &chan->desc->sg_req[chan->next_sg];
1080
1081         if (dma_scr & STM32_DMA_SCR_CT) {
1082                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1083                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1084         }
1085
1086         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1087
1088         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1089 }
1090
1091 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1092                                      struct stm32_dma_desc *desc,
1093                                      u32 next_sg)
1094 {
1095         u32 modulo, burst_size;
1096         u32 residue;
1097         u32 n_sg = next_sg;
1098         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1099         int i;
1100
1101         /*
1102          * Calculate the residue means compute the descriptors
1103          * information:
1104          * - the sg_req currently transferred
1105          * - the Hardware remaining position in this sg (NDTR bits field).
1106          *
1107          * A race condition may occur if DMA is running in cyclic or double
1108          * buffer mode, since the DMA register are automatically reloaded at end
1109          * of period transfer. The hardware may have switched to the next
1110          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1111          * read.
1112          * In this case the SxNDTR reg could (or not) correspond to the new
1113          * transfer position, and not the expected one.
1114          * The strategy implemented in the stm32 driver is to:
1115          *  - read the SxNDTR register
1116          *  - crosscheck that hardware is still in current transfer.
1117          * In case of switch, we can assume that the DMA is at the beginning of
1118          * the next transfer. So we approximate the residue in consequence, by
1119          * pointing on the beginning of next transfer.
1120          *
1121          * This race condition doesn't apply for none cyclic mode, as double
1122          * buffer is not used. In such situation registers are updated by the
1123          * software.
1124          */
1125
1126         residue = stm32_dma_get_remaining_bytes(chan);
1127
1128         if (!stm32_dma_is_current_sg(chan)) {
1129                 n_sg++;
1130                 if (n_sg == chan->desc->num_sgs)
1131                         n_sg = 0;
1132                 residue = sg_req->len;
1133         }
1134
1135         /*
1136          * In cyclic mode, for the last period, residue = remaining bytes
1137          * from NDTR,
1138          * else for all other periods in cyclic mode, and in sg mode,
1139          * residue = remaining bytes from NDTR + remaining
1140          * periods/sg to be transferred
1141          */
1142         if (!chan->desc->cyclic || n_sg != 0)
1143                 for (i = n_sg; i < desc->num_sgs; i++)
1144                         residue += desc->sg_req[i].len;
1145
1146         if (!chan->mem_burst)
1147                 return residue;
1148
1149         burst_size = chan->mem_burst * chan->mem_width;
1150         modulo = residue % burst_size;
1151         if (modulo)
1152                 residue = residue - modulo + burst_size;
1153
1154         return residue;
1155 }
1156
1157 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1158                                            dma_cookie_t cookie,
1159                                            struct dma_tx_state *state)
1160 {
1161         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1162         struct virt_dma_desc *vdesc;
1163         enum dma_status status;
1164         unsigned long flags;
1165         u32 residue = 0;
1166
1167         status = dma_cookie_status(c, cookie, state);
1168         if (status == DMA_COMPLETE || !state)
1169                 return status;
1170
1171         spin_lock_irqsave(&chan->vchan.lock, flags);
1172         vdesc = vchan_find_desc(&chan->vchan, cookie);
1173         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1174                 residue = stm32_dma_desc_residue(chan, chan->desc,
1175                                                  chan->next_sg);
1176         else if (vdesc)
1177                 residue = stm32_dma_desc_residue(chan,
1178                                                  to_stm32_dma_desc(vdesc), 0);
1179         dma_set_residue(state, residue);
1180
1181         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1182
1183         return status;
1184 }
1185
1186 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1187 {
1188         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1189         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1190         int ret;
1191
1192         chan->config_init = false;
1193
1194         ret = pm_runtime_get_sync(dmadev->ddev.dev);
1195         if (ret < 0)
1196                 return ret;
1197
1198         ret = stm32_dma_disable_chan(chan);
1199         if (ret < 0)
1200                 pm_runtime_put(dmadev->ddev.dev);
1201
1202         return ret;
1203 }
1204
1205 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1206 {
1207         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1208         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1209         unsigned long flags;
1210
1211         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1212
1213         if (chan->busy) {
1214                 spin_lock_irqsave(&chan->vchan.lock, flags);
1215                 stm32_dma_stop(chan);
1216                 chan->desc = NULL;
1217                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1218         }
1219
1220         pm_runtime_put(dmadev->ddev.dev);
1221
1222         vchan_free_chan_resources(to_virt_chan(c));
1223 }
1224
1225 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1226 {
1227         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1228 }
1229
1230 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1231                                  struct stm32_dma_cfg *cfg)
1232 {
1233         stm32_dma_clear_reg(&chan->chan_reg);
1234
1235         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1236         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1237
1238         /* Enable Interrupts  */
1239         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1240
1241         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1242         if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1243                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1244 }
1245
1246 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1247                                            struct of_dma *ofdma)
1248 {
1249         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1250         struct device *dev = dmadev->ddev.dev;
1251         struct stm32_dma_cfg cfg;
1252         struct stm32_dma_chan *chan;
1253         struct dma_chan *c;
1254
1255         if (dma_spec->args_count < 4) {
1256                 dev_err(dev, "Bad number of cells\n");
1257                 return NULL;
1258         }
1259
1260         cfg.channel_id = dma_spec->args[0];
1261         cfg.request_line = dma_spec->args[1];
1262         cfg.stream_config = dma_spec->args[2];
1263         cfg.features = dma_spec->args[3];
1264
1265         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1266             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1267                 dev_err(dev, "Bad channel and/or request id\n");
1268                 return NULL;
1269         }
1270
1271         chan = &dmadev->chan[cfg.channel_id];
1272
1273         c = dma_get_slave_channel(&chan->vchan.chan);
1274         if (!c) {
1275                 dev_err(dev, "No more channels available\n");
1276                 return NULL;
1277         }
1278
1279         stm32_dma_set_config(chan, &cfg);
1280
1281         return c;
1282 }
1283
1284 static const struct of_device_id stm32_dma_of_match[] = {
1285         { .compatible = "st,stm32-dma", },
1286         { /* sentinel */ },
1287 };
1288 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1289
1290 static int stm32_dma_probe(struct platform_device *pdev)
1291 {
1292         struct stm32_dma_chan *chan;
1293         struct stm32_dma_device *dmadev;
1294         struct dma_device *dd;
1295         const struct of_device_id *match;
1296         struct resource *res;
1297         struct reset_control *rst;
1298         int i, ret;
1299
1300         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1301         if (!match) {
1302                 dev_err(&pdev->dev, "Error: No device match found\n");
1303                 return -ENODEV;
1304         }
1305
1306         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1307         if (!dmadev)
1308                 return -ENOMEM;
1309
1310         dd = &dmadev->ddev;
1311
1312         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1313         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1314         if (IS_ERR(dmadev->base))
1315                 return PTR_ERR(dmadev->base);
1316
1317         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1318         if (IS_ERR(dmadev->clk))
1319                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1320
1321         ret = clk_prepare_enable(dmadev->clk);
1322         if (ret < 0) {
1323                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1324                 return ret;
1325         }
1326
1327         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1328                                                 "st,mem2mem");
1329
1330         rst = devm_reset_control_get(&pdev->dev, NULL);
1331         if (IS_ERR(rst)) {
1332                 ret = PTR_ERR(rst);
1333                 if (ret == -EPROBE_DEFER)
1334                         goto clk_free;
1335         } else {
1336                 reset_control_assert(rst);
1337                 udelay(2);
1338                 reset_control_deassert(rst);
1339         }
1340
1341         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1342
1343         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1344         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1345         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1346         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1347         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1348         dd->device_tx_status = stm32_dma_tx_status;
1349         dd->device_issue_pending = stm32_dma_issue_pending;
1350         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1351         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1352         dd->device_config = stm32_dma_slave_config;
1353         dd->device_terminate_all = stm32_dma_terminate_all;
1354         dd->device_synchronize = stm32_dma_synchronize;
1355         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1356                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1357                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1358         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1359                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1360                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1361         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1362         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1363         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1364         dd->max_burst = STM32_DMA_MAX_BURST;
1365         dd->descriptor_reuse = true;
1366         dd->dev = &pdev->dev;
1367         INIT_LIST_HEAD(&dd->channels);
1368
1369         if (dmadev->mem2mem) {
1370                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1371                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1372                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1373         }
1374
1375         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1376                 chan = &dmadev->chan[i];
1377                 chan->id = i;
1378                 chan->vchan.desc_free = stm32_dma_desc_free;
1379                 vchan_init(&chan->vchan, dd);
1380         }
1381
1382         ret = dma_async_device_register(dd);
1383         if (ret)
1384                 goto clk_free;
1385
1386         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387                 chan = &dmadev->chan[i];
1388                 ret = platform_get_irq(pdev, i);
1389                 if (ret < 0)
1390                         goto err_unregister;
1391                 chan->irq = ret;
1392
1393                 ret = devm_request_irq(&pdev->dev, chan->irq,
1394                                        stm32_dma_chan_irq, 0,
1395                                        dev_name(chan2dev(chan)), chan);
1396                 if (ret) {
1397                         dev_err(&pdev->dev,
1398                                 "request_irq failed with err %d channel %d\n",
1399                                 ret, i);
1400                         goto err_unregister;
1401                 }
1402         }
1403
1404         ret = of_dma_controller_register(pdev->dev.of_node,
1405                                          stm32_dma_of_xlate, dmadev);
1406         if (ret < 0) {
1407                 dev_err(&pdev->dev,
1408                         "STM32 DMA DMA OF registration failed %d\n", ret);
1409                 goto err_unregister;
1410         }
1411
1412         platform_set_drvdata(pdev, dmadev);
1413
1414         pm_runtime_set_active(&pdev->dev);
1415         pm_runtime_enable(&pdev->dev);
1416         pm_runtime_get_noresume(&pdev->dev);
1417         pm_runtime_put(&pdev->dev);
1418
1419         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1420
1421         return 0;
1422
1423 err_unregister:
1424         dma_async_device_unregister(dd);
1425 clk_free:
1426         clk_disable_unprepare(dmadev->clk);
1427
1428         return ret;
1429 }
1430
1431 #ifdef CONFIG_PM
1432 static int stm32_dma_runtime_suspend(struct device *dev)
1433 {
1434         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1435
1436         clk_disable_unprepare(dmadev->clk);
1437
1438         return 0;
1439 }
1440
1441 static int stm32_dma_runtime_resume(struct device *dev)
1442 {
1443         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1444         int ret;
1445
1446         ret = clk_prepare_enable(dmadev->clk);
1447         if (ret) {
1448                 dev_err(dev, "failed to prepare_enable clock\n");
1449                 return ret;
1450         }
1451
1452         return 0;
1453 }
1454 #endif
1455
1456 #ifdef CONFIG_PM_SLEEP
1457 static int stm32_dma_suspend(struct device *dev)
1458 {
1459         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1460         int id, ret, scr;
1461
1462         ret = pm_runtime_get_sync(dev);
1463         if (ret < 0)
1464                 return ret;
1465
1466         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1467                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1468                 if (scr & STM32_DMA_SCR_EN) {
1469                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1470                         return -EBUSY;
1471                 }
1472         }
1473
1474         pm_runtime_put_sync(dev);
1475
1476         pm_runtime_force_suspend(dev);
1477
1478         return 0;
1479 }
1480
1481 static int stm32_dma_resume(struct device *dev)
1482 {
1483         return pm_runtime_force_resume(dev);
1484 }
1485 #endif
1486
1487 static const struct dev_pm_ops stm32_dma_pm_ops = {
1488         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1489         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1490                            stm32_dma_runtime_resume, NULL)
1491 };
1492
1493 static struct platform_driver stm32_dma_driver = {
1494         .driver = {
1495                 .name = "stm32-dma",
1496                 .of_match_table = stm32_dma_of_match,
1497                 .pm = &stm32_dma_pm_ops,
1498         },
1499         .probe = stm32_dma_probe,
1500 };
1501
1502 static int __init stm32_dma_init(void)
1503 {
1504         return platform_driver_register(&stm32_dma_driver);
1505 }
1506 subsys_initcall(stm32_dma_init);