Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_ISR(n)                (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
36 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
37 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
38 #define STM32_DMA_IFCR(n)               (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
39 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
40 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
41 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
42 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
43 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
44 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
45                                          | STM32_DMA_TEI \
46                                          | STM32_DMA_DMEI \
47                                          | STM32_DMA_FEI)
48 /*
49  * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
50  * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
51  */
52 #define STM32_DMA_FLAGS_SHIFT(n)        ({ typeof(n) (_n) = (n); \
53                                            (((_n) & 2) << 3) | (((_n) & 1) * 6); })
54
55 /* DMA Stream x Configuration Register */
56 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
57 #define STM32_DMA_SCR_REQ_MASK          GENMASK(27, 25)
58 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
59 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
60 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
61 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
62 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
63 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
64 #define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
65 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
66 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
67 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
68 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
69 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
70 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
71 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
72 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
73                                                 */
74 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
75 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
76 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
77 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
78                                         | STM32_DMA_SCR_MINC \
79                                         | STM32_DMA_SCR_PINCOS \
80                                         | STM32_DMA_SCR_PL_MASK)
81 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
82                                         | STM32_DMA_SCR_TEIE \
83                                         | STM32_DMA_SCR_DMEIE)
84
85 /* DMA Stream x number of data register */
86 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
87
88 /* DMA stream peripheral address register */
89 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
90
91 /* DMA stream x memory 0 address register */
92 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
93
94 /* DMA stream x memory 1 address register */
95 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
96
97 /* DMA stream x FIFO control register */
98 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
99 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
100 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
103                                         | STM32_DMA_SFCR_DMDIS)
104
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM            0x00
107 #define STM32_DMA_MEM_TO_DEV            0x01
108 #define STM32_DMA_MEM_TO_MEM            0x02
109
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW          0x00
112 #define STM32_DMA_PRIORITY_MEDIUM       0x01
113 #define STM32_DMA_PRIORITY_HIGH         0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
115
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
122
123 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
130         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS          0x08
132 #define STM32_DMA_MAX_REQUEST_ID        0x08
133 #define STM32_DMA_MAX_DATA_PARAM        0x03
134 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST             4
136 #define STM32_DMA_MAX_BURST             16
137
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
140 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
141 #define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
142 #define STM32_DMA_MDMA_STREAM_ID_MASK   GENMASK(19, 16)
143
144 enum stm32_dma_width {
145         STM32_DMA_BYTE,
146         STM32_DMA_HALF_WORD,
147         STM32_DMA_WORD,
148 };
149
150 enum stm32_dma_burst_size {
151         STM32_DMA_BURST_SINGLE,
152         STM32_DMA_BURST_INCR4,
153         STM32_DMA_BURST_INCR8,
154         STM32_DMA_BURST_INCR16,
155 };
156
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165         u32 channel_id;
166         u32 request_line;
167         u32 stream_config;
168         u32 features;
169 };
170
171 struct stm32_dma_chan_reg {
172         u32 dma_lisr;
173         u32 dma_hisr;
174         u32 dma_lifcr;
175         u32 dma_hifcr;
176         u32 dma_scr;
177         u32 dma_sndtr;
178         u32 dma_spar;
179         u32 dma_sm0ar;
180         u32 dma_sm1ar;
181         u32 dma_sfcr;
182 };
183
184 struct stm32_dma_sg_req {
185         u32 len;
186         struct stm32_dma_chan_reg chan_reg;
187 };
188
189 struct stm32_dma_desc {
190         struct virt_dma_desc vdesc;
191         bool cyclic;
192         u32 num_sgs;
193         struct stm32_dma_sg_req sg_req[] __counted_by(num_sgs);
194 };
195
196 /**
197  * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
198  * @stream_id: DMA request to trigger STM32 MDMA transfer
199  * @ifcr: DMA interrupt flag clear register address,
200  *        used by STM32 MDMA to clear DMA Transfer Complete flag
201  * @tcf: DMA Transfer Complete flag
202  */
203 struct stm32_dma_mdma_config {
204         u32 stream_id;
205         u32 ifcr;
206         u32 tcf;
207 };
208
209 struct stm32_dma_chan {
210         struct virt_dma_chan vchan;
211         bool config_init;
212         bool busy;
213         u32 id;
214         u32 irq;
215         struct stm32_dma_desc *desc;
216         u32 next_sg;
217         struct dma_slave_config dma_sconfig;
218         struct stm32_dma_chan_reg chan_reg;
219         u32 threshold;
220         u32 mem_burst;
221         u32 mem_width;
222         enum dma_status status;
223         bool trig_mdma;
224         struct stm32_dma_mdma_config mdma_config;
225 };
226
227 struct stm32_dma_device {
228         struct dma_device ddev;
229         void __iomem *base;
230         struct clk *clk;
231         bool mem2mem;
232         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
233 };
234
235 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
236 {
237         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
238                             ddev);
239 }
240
241 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
242 {
243         return container_of(c, struct stm32_dma_chan, vchan.chan);
244 }
245
246 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
247 {
248         return container_of(vdesc, struct stm32_dma_desc, vdesc);
249 }
250
251 static struct device *chan2dev(struct stm32_dma_chan *chan)
252 {
253         return &chan->vchan.chan.dev->device;
254 }
255
256 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
257 {
258         return readl_relaxed(dmadev->base + reg);
259 }
260
261 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
262 {
263         writel_relaxed(val, dmadev->base + reg);
264 }
265
266 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
267                                enum dma_slave_buswidth width)
268 {
269         switch (width) {
270         case DMA_SLAVE_BUSWIDTH_1_BYTE:
271                 return STM32_DMA_BYTE;
272         case DMA_SLAVE_BUSWIDTH_2_BYTES:
273                 return STM32_DMA_HALF_WORD;
274         case DMA_SLAVE_BUSWIDTH_4_BYTES:
275                 return STM32_DMA_WORD;
276         default:
277                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
278                 return -EINVAL;
279         }
280 }
281
282 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
283                                                        dma_addr_t buf_addr,
284                                                        u32 threshold)
285 {
286         enum dma_slave_buswidth max_width;
287
288         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
289                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
290         else
291                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
292
293         while ((buf_len < max_width  || buf_len % max_width) &&
294                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
295                 max_width = max_width >> 1;
296
297         if (buf_addr & (max_width - 1))
298                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
299
300         return max_width;
301 }
302
303 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
304                                                 enum dma_slave_buswidth width)
305 {
306         u32 remaining;
307
308         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
309                 return false;
310
311         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
312                 if (burst != 0) {
313                         /*
314                          * If number of beats fit in several whole bursts
315                          * this configuration is allowed.
316                          */
317                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
318                                      (threshold + 1) / 4) % burst;
319
320                         if (remaining == 0)
321                                 return true;
322                 } else {
323                         return true;
324                 }
325         }
326
327         return false;
328 }
329
330 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
331 {
332         /* If FIFO direct mode, burst is not possible */
333         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
334                 return false;
335
336         /*
337          * Buffer or period length has to be aligned on FIFO depth.
338          * Otherwise bytes may be stuck within FIFO at buffer or period
339          * length.
340          */
341         return ((buf_len % ((threshold + 1) * 4)) == 0);
342 }
343
344 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
345                                     enum dma_slave_buswidth width)
346 {
347         u32 best_burst = max_burst;
348
349         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
350                 return 0;
351
352         while ((buf_len < best_burst * width && best_burst > 1) ||
353                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
354                                                     width)) {
355                 if (best_burst > STM32_DMA_MIN_BURST)
356                         best_burst = best_burst >> 1;
357                 else
358                         best_burst = 0;
359         }
360
361         return best_burst;
362 }
363
364 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
365 {
366         switch (maxburst) {
367         case 0:
368         case 1:
369                 return STM32_DMA_BURST_SINGLE;
370         case 4:
371                 return STM32_DMA_BURST_INCR4;
372         case 8:
373                 return STM32_DMA_BURST_INCR8;
374         case 16:
375                 return STM32_DMA_BURST_INCR16;
376         default:
377                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
378                 return -EINVAL;
379         }
380 }
381
382 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
383                                       u32 src_burst, u32 dst_burst)
384 {
385         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
386         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
387
388         if (!src_burst && !dst_burst) {
389                 /* Using direct mode */
390                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
391         } else {
392                 /* Using FIFO mode */
393                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
394         }
395 }
396
397 static int stm32_dma_slave_config(struct dma_chan *c,
398                                   struct dma_slave_config *config)
399 {
400         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
401
402         memcpy(&chan->dma_sconfig, config, sizeof(*config));
403
404         /* Check if user is requesting DMA to trigger STM32 MDMA */
405         if (config->peripheral_size) {
406                 config->peripheral_config = &chan->mdma_config;
407                 config->peripheral_size = sizeof(chan->mdma_config);
408                 chan->trig_mdma = true;
409         }
410
411         chan->config_init = true;
412
413         return 0;
414 }
415
416 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
417 {
418         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
419         u32 flags, dma_isr;
420
421         /*
422          * Read "flags" from DMA_xISR register corresponding to the selected
423          * DMA channel at the correct bit offset inside that register.
424          */
425
426         dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
427         flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
428
429         return flags & STM32_DMA_MASKI;
430 }
431
432 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
433 {
434         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
435         u32 dma_ifcr;
436
437         /*
438          * Write "flags" to the DMA_xIFCR register corresponding to the selected
439          * DMA channel at the correct bit offset inside that register.
440          */
441         flags &= STM32_DMA_MASKI;
442         dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
443
444         stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
445 }
446
447 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
448 {
449         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
450         u32 dma_scr, id, reg;
451
452         id = chan->id;
453         reg = STM32_DMA_SCR(id);
454         dma_scr = stm32_dma_read(dmadev, reg);
455
456         if (dma_scr & STM32_DMA_SCR_EN) {
457                 dma_scr &= ~STM32_DMA_SCR_EN;
458                 stm32_dma_write(dmadev, reg, dma_scr);
459
460                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
461                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
462                                         10, 1000000);
463         }
464
465         return 0;
466 }
467
468 static void stm32_dma_stop(struct stm32_dma_chan *chan)
469 {
470         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
471         u32 dma_scr, dma_sfcr, status;
472         int ret;
473
474         /* Disable interrupts */
475         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
476         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
477         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
478         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
479         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
480         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
481
482         /* Disable DMA */
483         ret = stm32_dma_disable_chan(chan);
484         if (ret < 0)
485                 return;
486
487         /* Clear interrupt status if it is there */
488         status = stm32_dma_irq_status(chan);
489         if (status) {
490                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
491                         __func__, status);
492                 stm32_dma_irq_clear(chan, status);
493         }
494
495         chan->busy = false;
496         chan->status = DMA_COMPLETE;
497 }
498
499 static int stm32_dma_terminate_all(struct dma_chan *c)
500 {
501         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
502         unsigned long flags;
503         LIST_HEAD(head);
504
505         spin_lock_irqsave(&chan->vchan.lock, flags);
506
507         if (chan->desc) {
508                 dma_cookie_complete(&chan->desc->vdesc.tx);
509                 vchan_terminate_vdesc(&chan->desc->vdesc);
510                 if (chan->busy)
511                         stm32_dma_stop(chan);
512                 chan->desc = NULL;
513         }
514
515         vchan_get_all_descriptors(&chan->vchan, &head);
516         spin_unlock_irqrestore(&chan->vchan.lock, flags);
517         vchan_dma_desc_free_list(&chan->vchan, &head);
518
519         return 0;
520 }
521
522 static void stm32_dma_synchronize(struct dma_chan *c)
523 {
524         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
525
526         vchan_synchronize(&chan->vchan);
527 }
528
529 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
530 {
531         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
532         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
533         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
534         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
535         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
536         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
537         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
538
539         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
540         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
541         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
542         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
543         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
544         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
545 }
546
547 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
548 {
549         chan->next_sg++;
550         if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
551                 chan->next_sg = 0;
552 }
553
554 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
555
556 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
557 {
558         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
559         struct virt_dma_desc *vdesc;
560         struct stm32_dma_sg_req *sg_req;
561         struct stm32_dma_chan_reg *reg;
562         u32 status;
563         int ret;
564
565         ret = stm32_dma_disable_chan(chan);
566         if (ret < 0)
567                 return;
568
569         if (!chan->desc) {
570                 vdesc = vchan_next_desc(&chan->vchan);
571                 if (!vdesc)
572                         return;
573
574                 list_del(&vdesc->node);
575
576                 chan->desc = to_stm32_dma_desc(vdesc);
577                 chan->next_sg = 0;
578         }
579
580         if (chan->next_sg == chan->desc->num_sgs)
581                 chan->next_sg = 0;
582
583         sg_req = &chan->desc->sg_req[chan->next_sg];
584         reg = &sg_req->chan_reg;
585
586         /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
587         if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
588                 reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
589
590         reg->dma_scr &= ~STM32_DMA_SCR_EN;
591         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
592         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
593         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
594         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
595         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
596         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
597
598         stm32_dma_sg_inc(chan);
599
600         /* Clear interrupt status if it is there */
601         status = stm32_dma_irq_status(chan);
602         if (status)
603                 stm32_dma_irq_clear(chan, status);
604
605         if (chan->desc->cyclic)
606                 stm32_dma_configure_next_sg(chan);
607
608         stm32_dma_dump_reg(chan);
609
610         /* Start DMA */
611         chan->busy = true;
612         chan->status = DMA_IN_PROGRESS;
613         reg->dma_scr |= STM32_DMA_SCR_EN;
614         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
615
616         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
617 }
618
619 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
620 {
621         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
622         struct stm32_dma_sg_req *sg_req;
623         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
624
625         id = chan->id;
626         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
627
628         sg_req = &chan->desc->sg_req[chan->next_sg];
629
630         if (dma_scr & STM32_DMA_SCR_CT) {
631                 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
632                 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
633                 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
634                         stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
635         } else {
636                 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
637                 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
638                 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
639                         stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
640         }
641 }
642
643 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
644 {
645         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
646         u32 dma_scr;
647
648         /*
649          * Read and store current remaining data items and peripheral/memory addresses to be
650          * updated on resume
651          */
652         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
653         /*
654          * Transfer can be paused while between a previous resume and reconfiguration on transfer
655          * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
656          * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
657          */
658         if (chan->desc && chan->desc->cyclic) {
659                 if (chan->desc->num_sgs == 1)
660                         dma_scr |= STM32_DMA_SCR_CIRC;
661                 else
662                         dma_scr |= STM32_DMA_SCR_DBM;
663         }
664         chan->chan_reg.dma_scr = dma_scr;
665
666         /*
667          * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
668          * on resume NDTR autoreload value will be wrong (lower than the initial period length)
669          */
670         if (chan->desc && chan->desc->cyclic) {
671                 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
672                 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
673         }
674
675         chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
676
677         chan->status = DMA_PAUSED;
678
679         dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
680 }
681
682 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
683 {
684         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
685         struct stm32_dma_sg_req *sg_req;
686         u32 dma_scr, status, id;
687
688         id = chan->id;
689         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
690
691         /* Clear interrupt status if it is there */
692         status = stm32_dma_irq_status(chan);
693         if (status)
694                 stm32_dma_irq_clear(chan, status);
695
696         if (!chan->next_sg)
697                 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
698         else
699                 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
700
701         /* Reconfigure NDTR with the initial value */
702         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
703
704         /* Restore SPAR */
705         stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
706
707         /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
708         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
709         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
710
711         /* Reactivate CIRC/DBM if needed */
712         if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
713                 dma_scr |= STM32_DMA_SCR_DBM;
714                 /* Restore CT */
715                 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
716                         dma_scr &= ~STM32_DMA_SCR_CT;
717                 else
718                         dma_scr |= STM32_DMA_SCR_CT;
719         } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
720                 dma_scr |= STM32_DMA_SCR_CIRC;
721         }
722         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
723
724         stm32_dma_configure_next_sg(chan);
725
726         stm32_dma_dump_reg(chan);
727
728         dma_scr |= STM32_DMA_SCR_EN;
729         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
730
731         dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
732 }
733
734 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
735 {
736         if (!chan->desc)
737                 return;
738
739         if (chan->desc->cyclic) {
740                 vchan_cyclic_callback(&chan->desc->vdesc);
741                 if (chan->trig_mdma)
742                         return;
743                 stm32_dma_sg_inc(chan);
744                 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
745                 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
746                         stm32_dma_post_resume_reconfigure(chan);
747                 else if (scr & STM32_DMA_SCR_DBM)
748                         stm32_dma_configure_next_sg(chan);
749         } else {
750                 chan->busy = false;
751                 chan->status = DMA_COMPLETE;
752                 if (chan->next_sg == chan->desc->num_sgs) {
753                         vchan_cookie_complete(&chan->desc->vdesc);
754                         chan->desc = NULL;
755                 }
756                 stm32_dma_start_transfer(chan);
757         }
758 }
759
760 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
761 {
762         struct stm32_dma_chan *chan = devid;
763         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
764         u32 status, scr, sfcr;
765
766         spin_lock(&chan->vchan.lock);
767
768         status = stm32_dma_irq_status(chan);
769         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
770         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
771
772         if (status & STM32_DMA_FEI) {
773                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
774                 status &= ~STM32_DMA_FEI;
775                 if (sfcr & STM32_DMA_SFCR_FEIE) {
776                         if (!(scr & STM32_DMA_SCR_EN) &&
777                             !(status & STM32_DMA_TCI))
778                                 dev_err(chan2dev(chan), "FIFO Error\n");
779                         else
780                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
781                 }
782         }
783         if (status & STM32_DMA_DMEI) {
784                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
785                 status &= ~STM32_DMA_DMEI;
786                 if (sfcr & STM32_DMA_SCR_DMEIE)
787                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
788         }
789
790         if (status & STM32_DMA_TCI) {
791                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
792                 if (scr & STM32_DMA_SCR_TCIE) {
793                         if (chan->status != DMA_PAUSED)
794                                 stm32_dma_handle_chan_done(chan, scr);
795                 }
796                 status &= ~STM32_DMA_TCI;
797         }
798
799         if (status & STM32_DMA_HTI) {
800                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
801                 status &= ~STM32_DMA_HTI;
802         }
803
804         if (status) {
805                 stm32_dma_irq_clear(chan, status);
806                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
807                 if (!(scr & STM32_DMA_SCR_EN))
808                         dev_err(chan2dev(chan), "chan disabled by HW\n");
809         }
810
811         spin_unlock(&chan->vchan.lock);
812
813         return IRQ_HANDLED;
814 }
815
816 static void stm32_dma_issue_pending(struct dma_chan *c)
817 {
818         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
819         unsigned long flags;
820
821         spin_lock_irqsave(&chan->vchan.lock, flags);
822         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
823                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
824                 stm32_dma_start_transfer(chan);
825
826         }
827         spin_unlock_irqrestore(&chan->vchan.lock, flags);
828 }
829
830 static int stm32_dma_pause(struct dma_chan *c)
831 {
832         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
833         unsigned long flags;
834         int ret;
835
836         if (chan->status != DMA_IN_PROGRESS)
837                 return -EPERM;
838
839         spin_lock_irqsave(&chan->vchan.lock, flags);
840
841         ret = stm32_dma_disable_chan(chan);
842         if (!ret)
843                 stm32_dma_handle_chan_paused(chan);
844
845         spin_unlock_irqrestore(&chan->vchan.lock, flags);
846
847         return ret;
848 }
849
850 static int stm32_dma_resume(struct dma_chan *c)
851 {
852         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
853         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
854         struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
855         u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
856         struct stm32_dma_sg_req *sg_req;
857         unsigned long flags;
858
859         if (chan->status != DMA_PAUSED)
860                 return -EPERM;
861
862         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
863         if (WARN_ON(scr & STM32_DMA_SCR_EN))
864                 return -EPERM;
865
866         spin_lock_irqsave(&chan->vchan.lock, flags);
867
868         /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
869         if (!chan->next_sg)
870                 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
871         else
872                 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
873
874         ndtr = sg_req->chan_reg.dma_sndtr;
875         offset = (ndtr - chan_reg.dma_sndtr);
876         offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
877         spar = sg_req->chan_reg.dma_spar;
878         sm0ar = sg_req->chan_reg.dma_sm0ar;
879         sm1ar = sg_req->chan_reg.dma_sm1ar;
880
881         /*
882          * The peripheral and/or memory addresses have to be updated in order to adjust the
883          * address pointers. Need to check increment.
884          */
885         if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
886                 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
887         else
888                 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
889
890         if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
891                 offset = 0;
892
893         /*
894          * In case of DBM, the current target could be SM1AR.
895          * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
896          * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
897          */
898         if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
899                 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
900         else
901                 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
902
903         /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
904         stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
905
906         /*
907          * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
908          * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
909          */
910         if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
911                 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
912
913         if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
914                 stm32_dma_configure_next_sg(chan);
915
916         stm32_dma_dump_reg(chan);
917
918         /* The stream may then be re-enabled to restart transfer from the point it was stopped */
919         chan->status = DMA_IN_PROGRESS;
920         chan_reg.dma_scr |= STM32_DMA_SCR_EN;
921         stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
922
923         spin_unlock_irqrestore(&chan->vchan.lock, flags);
924
925         dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
926
927         return 0;
928 }
929
930 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
931                                     enum dma_transfer_direction direction,
932                                     enum dma_slave_buswidth *buswidth,
933                                     u32 buf_len, dma_addr_t buf_addr)
934 {
935         enum dma_slave_buswidth src_addr_width, dst_addr_width;
936         int src_bus_width, dst_bus_width;
937         int src_burst_size, dst_burst_size;
938         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
939         u32 dma_scr, fifoth;
940
941         src_addr_width = chan->dma_sconfig.src_addr_width;
942         dst_addr_width = chan->dma_sconfig.dst_addr_width;
943         src_maxburst = chan->dma_sconfig.src_maxburst;
944         dst_maxburst = chan->dma_sconfig.dst_maxburst;
945         fifoth = chan->threshold;
946
947         switch (direction) {
948         case DMA_MEM_TO_DEV:
949                 /* Set device data size */
950                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
951                 if (dst_bus_width < 0)
952                         return dst_bus_width;
953
954                 /* Set device burst size */
955                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
956                                                           dst_maxburst,
957                                                           fifoth,
958                                                           dst_addr_width);
959
960                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
961                 if (dst_burst_size < 0)
962                         return dst_burst_size;
963
964                 /* Set memory data size */
965                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
966                                                          fifoth);
967                 chan->mem_width = src_addr_width;
968                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
969                 if (src_bus_width < 0)
970                         return src_bus_width;
971
972                 /*
973                  * Set memory burst size - burst not possible if address is not aligned on
974                  * the address boundary equal to the size of the transfer
975                  */
976                 if (buf_addr & (buf_len - 1))
977                         src_maxburst = 1;
978                 else
979                         src_maxburst = STM32_DMA_MAX_BURST;
980                 src_best_burst = stm32_dma_get_best_burst(buf_len,
981                                                           src_maxburst,
982                                                           fifoth,
983                                                           src_addr_width);
984                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
985                 if (src_burst_size < 0)
986                         return src_burst_size;
987
988                 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
989                         FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
990                         FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
991                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
992                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
993
994                 /* Set FIFO threshold */
995                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
996                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
997                         chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
998
999                 /* Set peripheral address */
1000                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1001                 *buswidth = dst_addr_width;
1002                 break;
1003
1004         case DMA_DEV_TO_MEM:
1005                 /* Set device data size */
1006                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1007                 if (src_bus_width < 0)
1008                         return src_bus_width;
1009
1010                 /* Set device burst size */
1011                 src_best_burst = stm32_dma_get_best_burst(buf_len,
1012                                                           src_maxburst,
1013                                                           fifoth,
1014                                                           src_addr_width);
1015                 chan->mem_burst = src_best_burst;
1016                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1017                 if (src_burst_size < 0)
1018                         return src_burst_size;
1019
1020                 /* Set memory data size */
1021                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1022                                                          fifoth);
1023                 chan->mem_width = dst_addr_width;
1024                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1025                 if (dst_bus_width < 0)
1026                         return dst_bus_width;
1027
1028                 /*
1029                  * Set memory burst size - burst not possible if address is not aligned on
1030                  * the address boundary equal to the size of the transfer
1031                  */
1032                 if (buf_addr & (buf_len - 1))
1033                         dst_maxburst = 1;
1034                 else
1035                         dst_maxburst = STM32_DMA_MAX_BURST;
1036                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
1037                                                           dst_maxburst,
1038                                                           fifoth,
1039                                                           dst_addr_width);
1040                 chan->mem_burst = dst_best_burst;
1041                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1042                 if (dst_burst_size < 0)
1043                         return dst_burst_size;
1044
1045                 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1046                         FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1047                         FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1048                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1049                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1050
1051                 /* Set FIFO threshold */
1052                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1053                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1054                         chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1055
1056                 /* Set peripheral address */
1057                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1058                 *buswidth = chan->dma_sconfig.src_addr_width;
1059                 break;
1060
1061         default:
1062                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
1063                 return -EINVAL;
1064         }
1065
1066         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1067
1068         /* Set DMA control register */
1069         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1070                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1071                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1072         chan->chan_reg.dma_scr |= dma_scr;
1073
1074         return 0;
1075 }
1076
1077 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1078 {
1079         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1080 }
1081
1082 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1083         struct dma_chan *c, struct scatterlist *sgl,
1084         u32 sg_len, enum dma_transfer_direction direction,
1085         unsigned long flags, void *context)
1086 {
1087         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1088         struct stm32_dma_desc *desc;
1089         struct scatterlist *sg;
1090         enum dma_slave_buswidth buswidth;
1091         u32 nb_data_items;
1092         int i, ret;
1093
1094         if (!chan->config_init) {
1095                 dev_err(chan2dev(chan), "dma channel is not configured\n");
1096                 return NULL;
1097         }
1098
1099         if (sg_len < 1) {
1100                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1101                 return NULL;
1102         }
1103
1104         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1105         if (!desc)
1106                 return NULL;
1107         desc->num_sgs = sg_len;
1108
1109         /* Set peripheral flow controller */
1110         if (chan->dma_sconfig.device_fc)
1111                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112         else
1113                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115         /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116         if (chan->trig_mdma && sg_len > 1) {
1117                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1119         }
1120
1121         for_each_sg(sgl, sg, sg_len, i) {
1122                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1123                                                sg_dma_len(sg),
1124                                                sg_dma_address(sg));
1125                 if (ret < 0)
1126                         goto err;
1127
1128                 desc->sg_req[i].len = sg_dma_len(sg);
1129
1130                 nb_data_items = desc->sg_req[i].len / buswidth;
1131                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132                         dev_err(chan2dev(chan), "nb items not supported\n");
1133                         goto err;
1134                 }
1135
1136                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142                 if (chan->trig_mdma)
1143                         desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1145         }
1146         desc->cyclic = false;
1147
1148         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149
1150 err:
1151         kfree(desc);
1152         return NULL;
1153 }
1154
1155 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157         size_t period_len, enum dma_transfer_direction direction,
1158         unsigned long flags)
1159 {
1160         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161         struct stm32_dma_desc *desc;
1162         enum dma_slave_buswidth buswidth;
1163         u32 num_periods, nb_data_items;
1164         int i, ret;
1165
1166         if (!buf_len || !period_len) {
1167                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168                 return NULL;
1169         }
1170
1171         if (!chan->config_init) {
1172                 dev_err(chan2dev(chan), "dma channel is not configured\n");
1173                 return NULL;
1174         }
1175
1176         if (buf_len % period_len) {
1177                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178                 return NULL;
1179         }
1180
1181         /*
1182          * We allow to take more number of requests till DMA is
1183          * not started. The driver will loop over all requests.
1184          * Once DMA is started then new requests can be queued only after
1185          * terminating the DMA.
1186          */
1187         if (chan->busy) {
1188                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189                 return NULL;
1190         }
1191
1192         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193                                        buf_addr);
1194         if (ret < 0)
1195                 return NULL;
1196
1197         nb_data_items = period_len / buswidth;
1198         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199                 dev_err(chan2dev(chan), "number of items not supported\n");
1200                 return NULL;
1201         }
1202
1203         /*  Enable Circular mode or double buffer mode */
1204         if (buf_len == period_len) {
1205                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206         } else {
1207                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209         }
1210
1211         /* Clear periph ctrl if client set it */
1212         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213
1214         num_periods = buf_len / period_len;
1215
1216         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217         if (!desc)
1218                 return NULL;
1219         desc->num_sgs = num_periods;
1220
1221         for (i = 0; i < num_periods; i++) {
1222                 desc->sg_req[i].len = period_len;
1223
1224                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1225                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1226                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1227                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1228                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1229                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1230                 if (chan->trig_mdma)
1231                         desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1232                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1233                 if (!chan->trig_mdma)
1234                         buf_addr += period_len;
1235         }
1236         desc->cyclic = true;
1237
1238         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1239 }
1240
1241 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1242         struct dma_chan *c, dma_addr_t dest,
1243         dma_addr_t src, size_t len, unsigned long flags)
1244 {
1245         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1246         enum dma_slave_buswidth max_width;
1247         struct stm32_dma_desc *desc;
1248         size_t xfer_count, offset;
1249         u32 num_sgs, best_burst, threshold;
1250         int dma_burst, i;
1251
1252         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1253         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1254         if (!desc)
1255                 return NULL;
1256         desc->num_sgs = num_sgs;
1257
1258         threshold = chan->threshold;
1259
1260         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261                 xfer_count = min_t(size_t, len - offset,
1262                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263
1264                 /* Compute best burst size */
1265                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267                                                       threshold, max_width);
1268                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1269                 if (dma_burst < 0) {
1270                         kfree(desc);
1271                         return NULL;
1272                 }
1273
1274                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1275                 desc->sg_req[i].chan_reg.dma_scr =
1276                         FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1277                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1278                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1279                         STM32_DMA_SCR_MINC |
1280                         STM32_DMA_SCR_PINC |
1281                         STM32_DMA_SCR_TCIE |
1282                         STM32_DMA_SCR_TEIE;
1283                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1284                 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1285                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1286                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1287                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1288                 desc->sg_req[i].len = xfer_count;
1289         }
1290         desc->cyclic = false;
1291
1292         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1293 }
1294
1295 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1296 {
1297         u32 dma_scr, width, ndtr;
1298         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1299
1300         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1301         width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1302         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1303
1304         return ndtr << width;
1305 }
1306
1307 /**
1308  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1309  * @chan: dma channel
1310  *
1311  * This function called when IRQ are disable, checks that the hardware has not
1312  * switched on the next transfer in double buffer mode. The test is done by
1313  * comparing the next_sg memory address with the hardware related register
1314  * (based on CT bit value).
1315  *
1316  * Returns true if expected current transfer is still running or double
1317  * buffer mode is not activated.
1318  */
1319 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1320 {
1321         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1322         struct stm32_dma_sg_req *sg_req;
1323         u32 dma_scr, dma_smar, id, period_len;
1324
1325         id = chan->id;
1326         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1327
1328         /* In cyclic CIRC but not DBM, CT is not used */
1329         if (!(dma_scr & STM32_DMA_SCR_DBM))
1330                 return true;
1331
1332         sg_req = &chan->desc->sg_req[chan->next_sg];
1333         period_len = sg_req->len;
1334
1335         /* DBM - take care of a previous pause/resume not yet post reconfigured */
1336         if (dma_scr & STM32_DMA_SCR_CT) {
1337                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1338                 /*
1339                  * If transfer has been pause/resumed,
1340                  * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1341                  */
1342                 return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1343                         dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1344         }
1345
1346         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1347         /*
1348          * If transfer has been pause/resumed,
1349          * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1350          */
1351         return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1352                 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1353 }
1354
1355 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1356                                      struct stm32_dma_desc *desc,
1357                                      u32 next_sg)
1358 {
1359         u32 modulo, burst_size;
1360         u32 residue;
1361         u32 n_sg = next_sg;
1362         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1363         int i;
1364
1365         /*
1366          * Calculate the residue means compute the descriptors
1367          * information:
1368          * - the sg_req currently transferred
1369          * - the Hardware remaining position in this sg (NDTR bits field).
1370          *
1371          * A race condition may occur if DMA is running in cyclic or double
1372          * buffer mode, since the DMA register are automatically reloaded at end
1373          * of period transfer. The hardware may have switched to the next
1374          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1375          * read.
1376          * In this case the SxNDTR reg could (or not) correspond to the new
1377          * transfer position, and not the expected one.
1378          * The strategy implemented in the stm32 driver is to:
1379          *  - read the SxNDTR register
1380          *  - crosscheck that hardware is still in current transfer.
1381          * In case of switch, we can assume that the DMA is at the beginning of
1382          * the next transfer. So we approximate the residue in consequence, by
1383          * pointing on the beginning of next transfer.
1384          *
1385          * This race condition doesn't apply for none cyclic mode, as double
1386          * buffer is not used. In such situation registers are updated by the
1387          * software.
1388          */
1389
1390         residue = stm32_dma_get_remaining_bytes(chan);
1391
1392         if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
1393                 n_sg++;
1394                 if (n_sg == chan->desc->num_sgs)
1395                         n_sg = 0;
1396                 if (!chan->trig_mdma)
1397                         residue = sg_req->len;
1398         }
1399
1400         /*
1401          * In cyclic mode, for the last period, residue = remaining bytes
1402          * from NDTR,
1403          * else for all other periods in cyclic mode, and in sg mode,
1404          * residue = remaining bytes from NDTR + remaining
1405          * periods/sg to be transferred
1406          */
1407         if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
1408                 for (i = n_sg; i < desc->num_sgs; i++)
1409                         residue += desc->sg_req[i].len;
1410
1411         if (!chan->mem_burst)
1412                 return residue;
1413
1414         burst_size = chan->mem_burst * chan->mem_width;
1415         modulo = residue % burst_size;
1416         if (modulo)
1417                 residue = residue - modulo + burst_size;
1418
1419         return residue;
1420 }
1421
1422 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1423                                            dma_cookie_t cookie,
1424                                            struct dma_tx_state *state)
1425 {
1426         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1427         struct virt_dma_desc *vdesc;
1428         enum dma_status status;
1429         unsigned long flags;
1430         u32 residue = 0;
1431
1432         status = dma_cookie_status(c, cookie, state);
1433         if (status == DMA_COMPLETE)
1434                 return status;
1435
1436         status = chan->status;
1437
1438         if (!state)
1439                 return status;
1440
1441         spin_lock_irqsave(&chan->vchan.lock, flags);
1442         vdesc = vchan_find_desc(&chan->vchan, cookie);
1443         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1444                 residue = stm32_dma_desc_residue(chan, chan->desc,
1445                                                  chan->next_sg);
1446         else if (vdesc)
1447                 residue = stm32_dma_desc_residue(chan,
1448                                                  to_stm32_dma_desc(vdesc), 0);
1449         dma_set_residue(state, residue);
1450
1451         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1452
1453         return status;
1454 }
1455
1456 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1457 {
1458         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1459         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1460         int ret;
1461
1462         chan->config_init = false;
1463
1464         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1465         if (ret < 0)
1466                 return ret;
1467
1468         ret = stm32_dma_disable_chan(chan);
1469         if (ret < 0)
1470                 pm_runtime_put(dmadev->ddev.dev);
1471
1472         return ret;
1473 }
1474
1475 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1476 {
1477         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1478         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1479         unsigned long flags;
1480
1481         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1482
1483         if (chan->busy) {
1484                 spin_lock_irqsave(&chan->vchan.lock, flags);
1485                 stm32_dma_stop(chan);
1486                 chan->desc = NULL;
1487                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1488         }
1489
1490         pm_runtime_put(dmadev->ddev.dev);
1491
1492         vchan_free_chan_resources(to_virt_chan(c));
1493         stm32_dma_clear_reg(&chan->chan_reg);
1494         chan->threshold = 0;
1495 }
1496
1497 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1498 {
1499         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1500 }
1501
1502 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1503                                  struct stm32_dma_cfg *cfg)
1504 {
1505         stm32_dma_clear_reg(&chan->chan_reg);
1506
1507         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1508         chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1509
1510         /* Enable Interrupts  */
1511         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1512
1513         chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1514         if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1515                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1516         if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1517                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1518         chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1519 }
1520
1521 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1522                                            struct of_dma *ofdma)
1523 {
1524         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1525         struct device *dev = dmadev->ddev.dev;
1526         struct stm32_dma_cfg cfg;
1527         struct stm32_dma_chan *chan;
1528         struct dma_chan *c;
1529
1530         if (dma_spec->args_count < 4) {
1531                 dev_err(dev, "Bad number of cells\n");
1532                 return NULL;
1533         }
1534
1535         cfg.channel_id = dma_spec->args[0];
1536         cfg.request_line = dma_spec->args[1];
1537         cfg.stream_config = dma_spec->args[2];
1538         cfg.features = dma_spec->args[3];
1539
1540         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1541             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1542                 dev_err(dev, "Bad channel and/or request id\n");
1543                 return NULL;
1544         }
1545
1546         chan = &dmadev->chan[cfg.channel_id];
1547
1548         c = dma_get_slave_channel(&chan->vchan.chan);
1549         if (!c) {
1550                 dev_err(dev, "No more channels available\n");
1551                 return NULL;
1552         }
1553
1554         stm32_dma_set_config(chan, &cfg);
1555
1556         return c;
1557 }
1558
1559 static const struct of_device_id stm32_dma_of_match[] = {
1560         { .compatible = "st,stm32-dma", },
1561         { /* sentinel */ },
1562 };
1563 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1564
1565 static int stm32_dma_probe(struct platform_device *pdev)
1566 {
1567         struct stm32_dma_chan *chan;
1568         struct stm32_dma_device *dmadev;
1569         struct dma_device *dd;
1570         struct resource *res;
1571         struct reset_control *rst;
1572         int i, ret;
1573
1574         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1575         if (!dmadev)
1576                 return -ENOMEM;
1577
1578         dd = &dmadev->ddev;
1579
1580         dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1581         if (IS_ERR(dmadev->base))
1582                 return PTR_ERR(dmadev->base);
1583
1584         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1585         if (IS_ERR(dmadev->clk))
1586                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1587
1588         ret = clk_prepare_enable(dmadev->clk);
1589         if (ret < 0) {
1590                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1591                 return ret;
1592         }
1593
1594         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1595                                                 "st,mem2mem");
1596
1597         rst = devm_reset_control_get(&pdev->dev, NULL);
1598         if (IS_ERR(rst)) {
1599                 ret = PTR_ERR(rst);
1600                 if (ret == -EPROBE_DEFER)
1601                         goto clk_free;
1602         } else {
1603                 reset_control_assert(rst);
1604                 udelay(2);
1605                 reset_control_deassert(rst);
1606         }
1607
1608         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1609
1610         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1611         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1612         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1613         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1614         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1615         dd->device_tx_status = stm32_dma_tx_status;
1616         dd->device_issue_pending = stm32_dma_issue_pending;
1617         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1618         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1619         dd->device_config = stm32_dma_slave_config;
1620         dd->device_pause = stm32_dma_pause;
1621         dd->device_resume = stm32_dma_resume;
1622         dd->device_terminate_all = stm32_dma_terminate_all;
1623         dd->device_synchronize = stm32_dma_synchronize;
1624         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1625                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1626                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1627         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1628                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1629                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1630         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1631         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1632         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1633         dd->max_burst = STM32_DMA_MAX_BURST;
1634         dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1635         dd->descriptor_reuse = true;
1636         dd->dev = &pdev->dev;
1637         INIT_LIST_HEAD(&dd->channels);
1638
1639         if (dmadev->mem2mem) {
1640                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1641                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1642                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1643         }
1644
1645         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1646                 chan = &dmadev->chan[i];
1647                 chan->id = i;
1648                 chan->vchan.desc_free = stm32_dma_desc_free;
1649                 vchan_init(&chan->vchan, dd);
1650
1651                 chan->mdma_config.ifcr = res->start;
1652                 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1653
1654                 chan->mdma_config.tcf = STM32_DMA_TCI;
1655                 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1656         }
1657
1658         ret = dma_async_device_register(dd);
1659         if (ret)
1660                 goto clk_free;
1661
1662         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1663                 chan = &dmadev->chan[i];
1664                 ret = platform_get_irq(pdev, i);
1665                 if (ret < 0)
1666                         goto err_unregister;
1667                 chan->irq = ret;
1668
1669                 ret = devm_request_irq(&pdev->dev, chan->irq,
1670                                        stm32_dma_chan_irq, 0,
1671                                        dev_name(chan2dev(chan)), chan);
1672                 if (ret) {
1673                         dev_err(&pdev->dev,
1674                                 "request_irq failed with err %d channel %d\n",
1675                                 ret, i);
1676                         goto err_unregister;
1677                 }
1678         }
1679
1680         ret = of_dma_controller_register(pdev->dev.of_node,
1681                                          stm32_dma_of_xlate, dmadev);
1682         if (ret < 0) {
1683                 dev_err(&pdev->dev,
1684                         "STM32 DMA DMA OF registration failed %d\n", ret);
1685                 goto err_unregister;
1686         }
1687
1688         platform_set_drvdata(pdev, dmadev);
1689
1690         pm_runtime_set_active(&pdev->dev);
1691         pm_runtime_enable(&pdev->dev);
1692         pm_runtime_get_noresume(&pdev->dev);
1693         pm_runtime_put(&pdev->dev);
1694
1695         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1696
1697         return 0;
1698
1699 err_unregister:
1700         dma_async_device_unregister(dd);
1701 clk_free:
1702         clk_disable_unprepare(dmadev->clk);
1703
1704         return ret;
1705 }
1706
1707 #ifdef CONFIG_PM
1708 static int stm32_dma_runtime_suspend(struct device *dev)
1709 {
1710         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1711
1712         clk_disable_unprepare(dmadev->clk);
1713
1714         return 0;
1715 }
1716
1717 static int stm32_dma_runtime_resume(struct device *dev)
1718 {
1719         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1720         int ret;
1721
1722         ret = clk_prepare_enable(dmadev->clk);
1723         if (ret) {
1724                 dev_err(dev, "failed to prepare_enable clock\n");
1725                 return ret;
1726         }
1727
1728         return 0;
1729 }
1730 #endif
1731
1732 #ifdef CONFIG_PM_SLEEP
1733 static int stm32_dma_pm_suspend(struct device *dev)
1734 {
1735         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1736         int id, ret, scr;
1737
1738         ret = pm_runtime_resume_and_get(dev);
1739         if (ret < 0)
1740                 return ret;
1741
1742         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1743                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1744                 if (scr & STM32_DMA_SCR_EN) {
1745                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1746                         return -EBUSY;
1747                 }
1748         }
1749
1750         pm_runtime_put_sync(dev);
1751
1752         pm_runtime_force_suspend(dev);
1753
1754         return 0;
1755 }
1756
1757 static int stm32_dma_pm_resume(struct device *dev)
1758 {
1759         return pm_runtime_force_resume(dev);
1760 }
1761 #endif
1762
1763 static const struct dev_pm_ops stm32_dma_pm_ops = {
1764         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1765         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1766                            stm32_dma_runtime_resume, NULL)
1767 };
1768
1769 static struct platform_driver stm32_dma_driver = {
1770         .driver = {
1771                 .name = "stm32-dma",
1772                 .of_match_table = stm32_dma_of_match,
1773                 .pm = &stm32_dma_pm_ops,
1774         },
1775         .probe = stm32_dma_probe,
1776 };
1777
1778 static int __init stm32_dma_init(void)
1779 {
1780         return platform_driver_register(&stm32_dma_driver);
1781 }
1782 subsys_initcall(stm32_dma_init);