drm/amdgpu: gfx support ras gpu reset
[linux-2.6-microblaze.git] / drivers / dma / stm32-dma.c
1 /*
2  * Driver for STM32 DMA controller
3  *
4  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
5  *
6  * Copyright (C) M'boumba Cedric Madianga 2015
7  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
8  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
9  *
10  * License terms:  GNU General Public License (GPL), version 2
11  */
12
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
71                                                 */
72 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
76                                         | STM32_DMA_SCR_MINC \
77                                         | STM32_DMA_SCR_PINCOS \
78                                         | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
80                                         | STM32_DMA_SCR_TEIE \
81                                         | STM32_DMA_SCR_DMEIE)
82
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
85
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
88
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
91
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
94
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
102                                         | STM32_DMA_SFCR_DMDIS)
103
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM            0x00
106 #define STM32_DMA_MEM_TO_DEV            0x01
107 #define STM32_DMA_MEM_TO_MEM            0x02
108
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW          0x00
111 #define STM32_DMA_PRIORITY_MEDIUM       0x01
112 #define STM32_DMA_PRIORITY_HIGH         0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
114
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
120
121 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
122 /*
123  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
124  * gather at boundary. Thus it's safer to round down this value on FIFO
125  * size (16 Bytes)
126  */
127 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
128         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
129 #define STM32_DMA_MAX_CHANNELS          0x08
130 #define STM32_DMA_MAX_REQUEST_ID        0x08
131 #define STM32_DMA_MAX_DATA_PARAM        0x03
132 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
133 #define STM32_DMA_MIN_BURST             4
134 #define STM32_DMA_MAX_BURST             16
135
136 /* DMA Features */
137 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
138 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
139
140 enum stm32_dma_width {
141         STM32_DMA_BYTE,
142         STM32_DMA_HALF_WORD,
143         STM32_DMA_WORD,
144 };
145
146 enum stm32_dma_burst_size {
147         STM32_DMA_BURST_SINGLE,
148         STM32_DMA_BURST_INCR4,
149         STM32_DMA_BURST_INCR8,
150         STM32_DMA_BURST_INCR16,
151 };
152
153 /**
154  * struct stm32_dma_cfg - STM32 DMA custom configuration
155  * @channel_id: channel ID
156  * @request_line: DMA request
157  * @stream_config: 32bit mask specifying the DMA channel configuration
158  * @features: 32bit mask specifying the DMA Feature list
159  */
160 struct stm32_dma_cfg {
161         u32 channel_id;
162         u32 request_line;
163         u32 stream_config;
164         u32 features;
165 };
166
167 struct stm32_dma_chan_reg {
168         u32 dma_lisr;
169         u32 dma_hisr;
170         u32 dma_lifcr;
171         u32 dma_hifcr;
172         u32 dma_scr;
173         u32 dma_sndtr;
174         u32 dma_spar;
175         u32 dma_sm0ar;
176         u32 dma_sm1ar;
177         u32 dma_sfcr;
178 };
179
180 struct stm32_dma_sg_req {
181         u32 len;
182         struct stm32_dma_chan_reg chan_reg;
183 };
184
185 struct stm32_dma_desc {
186         struct virt_dma_desc vdesc;
187         bool cyclic;
188         u32 num_sgs;
189         struct stm32_dma_sg_req sg_req[];
190 };
191
192 struct stm32_dma_chan {
193         struct virt_dma_chan vchan;
194         bool config_init;
195         bool busy;
196         u32 id;
197         u32 irq;
198         struct stm32_dma_desc *desc;
199         u32 next_sg;
200         struct dma_slave_config dma_sconfig;
201         struct stm32_dma_chan_reg chan_reg;
202         u32 threshold;
203         u32 mem_burst;
204         u32 mem_width;
205 };
206
207 struct stm32_dma_device {
208         struct dma_device ddev;
209         void __iomem *base;
210         struct clk *clk;
211         struct reset_control *rst;
212         bool mem2mem;
213         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
214 };
215
216 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
217 {
218         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
219                             ddev);
220 }
221
222 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
223 {
224         return container_of(c, struct stm32_dma_chan, vchan.chan);
225 }
226
227 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
228 {
229         return container_of(vdesc, struct stm32_dma_desc, vdesc);
230 }
231
232 static struct device *chan2dev(struct stm32_dma_chan *chan)
233 {
234         return &chan->vchan.chan.dev->device;
235 }
236
237 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
238 {
239         return readl_relaxed(dmadev->base + reg);
240 }
241
242 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
243 {
244         writel_relaxed(val, dmadev->base + reg);
245 }
246
247 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
248 {
249         return kzalloc(sizeof(struct stm32_dma_desc) +
250                        sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
251 }
252
253 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
254                                enum dma_slave_buswidth width)
255 {
256         switch (width) {
257         case DMA_SLAVE_BUSWIDTH_1_BYTE:
258                 return STM32_DMA_BYTE;
259         case DMA_SLAVE_BUSWIDTH_2_BYTES:
260                 return STM32_DMA_HALF_WORD;
261         case DMA_SLAVE_BUSWIDTH_4_BYTES:
262                 return STM32_DMA_WORD;
263         default:
264                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
265                 return -EINVAL;
266         }
267 }
268
269 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
270                                                        u32 threshold)
271 {
272         enum dma_slave_buswidth max_width;
273
274         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276         else
277                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278
279         while ((buf_len < max_width  || buf_len % max_width) &&
280                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281                 max_width = max_width >> 1;
282
283         return max_width;
284 }
285
286 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
287                                                 enum dma_slave_buswidth width)
288 {
289         u32 remaining;
290
291         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
292                 if (burst != 0) {
293                         /*
294                          * If number of beats fit in several whole bursts
295                          * this configuration is allowed.
296                          */
297                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
298                                      (threshold + 1) / 4) % burst;
299
300                         if (remaining == 0)
301                                 return true;
302                 } else {
303                         return true;
304                 }
305         }
306
307         return false;
308 }
309
310 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
311 {
312         /*
313          * Buffer or period length has to be aligned on FIFO depth.
314          * Otherwise bytes may be stuck within FIFO at buffer or period
315          * length.
316          */
317         return ((buf_len % ((threshold + 1) * 4)) == 0);
318 }
319
320 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
321                                     enum dma_slave_buswidth width)
322 {
323         u32 best_burst = max_burst;
324
325         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
326                 return 0;
327
328         while ((buf_len < best_burst * width && best_burst > 1) ||
329                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
330                                                     width)) {
331                 if (best_burst > STM32_DMA_MIN_BURST)
332                         best_burst = best_burst >> 1;
333                 else
334                         best_burst = 0;
335         }
336
337         return best_burst;
338 }
339
340 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
341 {
342         switch (maxburst) {
343         case 0:
344         case 1:
345                 return STM32_DMA_BURST_SINGLE;
346         case 4:
347                 return STM32_DMA_BURST_INCR4;
348         case 8:
349                 return STM32_DMA_BURST_INCR8;
350         case 16:
351                 return STM32_DMA_BURST_INCR16;
352         default:
353                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
354                 return -EINVAL;
355         }
356 }
357
358 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
359                                       u32 src_burst, u32 dst_burst)
360 {
361         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
362         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
363
364         if (!src_burst && !dst_burst) {
365                 /* Using direct mode */
366                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
367         } else {
368                 /* Using FIFO mode */
369                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
370         }
371 }
372
373 static int stm32_dma_slave_config(struct dma_chan *c,
374                                   struct dma_slave_config *config)
375 {
376         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
377
378         memcpy(&chan->dma_sconfig, config, sizeof(*config));
379
380         chan->config_init = true;
381
382         return 0;
383 }
384
385 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
386 {
387         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
388         u32 flags, dma_isr;
389
390         /*
391          * Read "flags" from DMA_xISR register corresponding to the selected
392          * DMA channel at the correct bit offset inside that register.
393          *
394          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
395          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
396          */
397
398         if (chan->id & 4)
399                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
400         else
401                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
402
403         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
404
405         return flags & STM32_DMA_MASKI;
406 }
407
408 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
409 {
410         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
411         u32 dma_ifcr;
412
413         /*
414          * Write "flags" to the DMA_xIFCR register corresponding to the selected
415          * DMA channel at the correct bit offset inside that register.
416          *
417          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
418          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
419          */
420         flags &= STM32_DMA_MASKI;
421         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
422
423         if (chan->id & 4)
424                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
425         else
426                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
427 }
428
429 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
430 {
431         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
432         unsigned long timeout = jiffies + msecs_to_jiffies(5000);
433         u32 dma_scr, id;
434
435         id = chan->id;
436         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437
438         if (dma_scr & STM32_DMA_SCR_EN) {
439                 dma_scr &= ~STM32_DMA_SCR_EN;
440                 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
441
442                 do {
443                         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
444                         dma_scr &= STM32_DMA_SCR_EN;
445                         if (!dma_scr)
446                                 break;
447
448                         if (time_after_eq(jiffies, timeout)) {
449                                 dev_err(chan2dev(chan), "%s: timeout!\n",
450                                         __func__);
451                                 return -EBUSY;
452                         }
453                         cond_resched();
454                 } while (1);
455         }
456
457         return 0;
458 }
459
460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
461 {
462         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463         u32 dma_scr, dma_sfcr, status;
464         int ret;
465
466         /* Disable interrupts */
467         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473
474         /* Disable DMA */
475         ret = stm32_dma_disable_chan(chan);
476         if (ret < 0)
477                 return;
478
479         /* Clear interrupt status if it is there */
480         status = stm32_dma_irq_status(chan);
481         if (status) {
482                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483                         __func__, status);
484                 stm32_dma_irq_clear(chan, status);
485         }
486
487         chan->busy = false;
488 }
489
490 static int stm32_dma_terminate_all(struct dma_chan *c)
491 {
492         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493         unsigned long flags;
494         LIST_HEAD(head);
495
496         spin_lock_irqsave(&chan->vchan.lock, flags);
497
498         if (chan->busy) {
499                 stm32_dma_stop(chan);
500                 chan->desc = NULL;
501         }
502
503         vchan_get_all_descriptors(&chan->vchan, &head);
504         spin_unlock_irqrestore(&chan->vchan.lock, flags);
505         vchan_dma_desc_free_list(&chan->vchan, &head);
506
507         return 0;
508 }
509
510 static void stm32_dma_synchronize(struct dma_chan *c)
511 {
512         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
513
514         vchan_synchronize(&chan->vchan);
515 }
516
517 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
518 {
519         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
520         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
521         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
522         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
523         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
524         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
525         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
526
527         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
528         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
529         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
530         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
531         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
532         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
533 }
534
535 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
536
537 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
538 {
539         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
540         struct virt_dma_desc *vdesc;
541         struct stm32_dma_sg_req *sg_req;
542         struct stm32_dma_chan_reg *reg;
543         u32 status;
544         int ret;
545
546         ret = stm32_dma_disable_chan(chan);
547         if (ret < 0)
548                 return;
549
550         if (!chan->desc) {
551                 vdesc = vchan_next_desc(&chan->vchan);
552                 if (!vdesc)
553                         return;
554
555                 chan->desc = to_stm32_dma_desc(vdesc);
556                 chan->next_sg = 0;
557         }
558
559         if (chan->next_sg == chan->desc->num_sgs)
560                 chan->next_sg = 0;
561
562         sg_req = &chan->desc->sg_req[chan->next_sg];
563         reg = &sg_req->chan_reg;
564
565         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
566         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
567         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
568         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
569         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
570         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
571
572         chan->next_sg++;
573
574         /* Clear interrupt status if it is there */
575         status = stm32_dma_irq_status(chan);
576         if (status)
577                 stm32_dma_irq_clear(chan, status);
578
579         if (chan->desc->cyclic)
580                 stm32_dma_configure_next_sg(chan);
581
582         stm32_dma_dump_reg(chan);
583
584         /* Start DMA */
585         reg->dma_scr |= STM32_DMA_SCR_EN;
586         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
587
588         chan->busy = true;
589
590         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
591 }
592
593 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
594 {
595         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
596         struct stm32_dma_sg_req *sg_req;
597         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
598
599         id = chan->id;
600         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
601
602         if (dma_scr & STM32_DMA_SCR_DBM) {
603                 if (chan->next_sg == chan->desc->num_sgs)
604                         chan->next_sg = 0;
605
606                 sg_req = &chan->desc->sg_req[chan->next_sg];
607
608                 if (dma_scr & STM32_DMA_SCR_CT) {
609                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
610                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
611                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
612                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
613                 } else {
614                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
615                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
616                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
617                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
618                 }
619         }
620 }
621
622 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
623 {
624         if (chan->desc) {
625                 if (chan->desc->cyclic) {
626                         vchan_cyclic_callback(&chan->desc->vdesc);
627                         chan->next_sg++;
628                         stm32_dma_configure_next_sg(chan);
629                 } else {
630                         chan->busy = false;
631                         if (chan->next_sg == chan->desc->num_sgs) {
632                                 list_del(&chan->desc->vdesc.node);
633                                 vchan_cookie_complete(&chan->desc->vdesc);
634                                 chan->desc = NULL;
635                         }
636                         stm32_dma_start_transfer(chan);
637                 }
638         }
639 }
640
641 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
642 {
643         struct stm32_dma_chan *chan = devid;
644         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
645         u32 status, scr, sfcr;
646
647         spin_lock(&chan->vchan.lock);
648
649         status = stm32_dma_irq_status(chan);
650         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
651         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
652
653         if (status & STM32_DMA_TCI) {
654                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
655                 if (scr & STM32_DMA_SCR_TCIE)
656                         stm32_dma_handle_chan_done(chan);
657                 status &= ~STM32_DMA_TCI;
658         }
659         if (status & STM32_DMA_HTI) {
660                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
661                 status &= ~STM32_DMA_HTI;
662         }
663         if (status & STM32_DMA_FEI) {
664                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
665                 status &= ~STM32_DMA_FEI;
666                 if (sfcr & STM32_DMA_SFCR_FEIE) {
667                         if (!(scr & STM32_DMA_SCR_EN))
668                                 dev_err(chan2dev(chan), "FIFO Error\n");
669                         else
670                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
671                 }
672         }
673         if (status) {
674                 stm32_dma_irq_clear(chan, status);
675                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
676                 if (!(scr & STM32_DMA_SCR_EN))
677                         dev_err(chan2dev(chan), "chan disabled by HW\n");
678         }
679
680         spin_unlock(&chan->vchan.lock);
681
682         return IRQ_HANDLED;
683 }
684
685 static void stm32_dma_issue_pending(struct dma_chan *c)
686 {
687         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
688         unsigned long flags;
689
690         spin_lock_irqsave(&chan->vchan.lock, flags);
691         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
692                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
693                 stm32_dma_start_transfer(chan);
694
695         }
696         spin_unlock_irqrestore(&chan->vchan.lock, flags);
697 }
698
699 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
700                                     enum dma_transfer_direction direction,
701                                     enum dma_slave_buswidth *buswidth,
702                                     u32 buf_len)
703 {
704         enum dma_slave_buswidth src_addr_width, dst_addr_width;
705         int src_bus_width, dst_bus_width;
706         int src_burst_size, dst_burst_size;
707         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
708         u32 dma_scr, threshold;
709
710         src_addr_width = chan->dma_sconfig.src_addr_width;
711         dst_addr_width = chan->dma_sconfig.dst_addr_width;
712         src_maxburst = chan->dma_sconfig.src_maxburst;
713         dst_maxburst = chan->dma_sconfig.dst_maxburst;
714         threshold = chan->threshold;
715
716         switch (direction) {
717         case DMA_MEM_TO_DEV:
718                 /* Set device data size */
719                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
720                 if (dst_bus_width < 0)
721                         return dst_bus_width;
722
723                 /* Set device burst size */
724                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
725                                                           dst_maxburst,
726                                                           threshold,
727                                                           dst_addr_width);
728
729                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
730                 if (dst_burst_size < 0)
731                         return dst_burst_size;
732
733                 /* Set memory data size */
734                 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
735                 chan->mem_width = src_addr_width;
736                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
737                 if (src_bus_width < 0)
738                         return src_bus_width;
739
740                 /* Set memory burst size */
741                 src_maxburst = STM32_DMA_MAX_BURST;
742                 src_best_burst = stm32_dma_get_best_burst(buf_len,
743                                                           src_maxburst,
744                                                           threshold,
745                                                           src_addr_width);
746                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
747                 if (src_burst_size < 0)
748                         return src_burst_size;
749
750                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
751                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
752                         STM32_DMA_SCR_MSIZE(src_bus_width) |
753                         STM32_DMA_SCR_PBURST(dst_burst_size) |
754                         STM32_DMA_SCR_MBURST(src_burst_size);
755
756                 /* Set FIFO threshold */
757                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
758                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
759
760                 /* Set peripheral address */
761                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
762                 *buswidth = dst_addr_width;
763                 break;
764
765         case DMA_DEV_TO_MEM:
766                 /* Set device data size */
767                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
768                 if (src_bus_width < 0)
769                         return src_bus_width;
770
771                 /* Set device burst size */
772                 src_best_burst = stm32_dma_get_best_burst(buf_len,
773                                                           src_maxburst,
774                                                           threshold,
775                                                           src_addr_width);
776                 chan->mem_burst = src_best_burst;
777                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
778                 if (src_burst_size < 0)
779                         return src_burst_size;
780
781                 /* Set memory data size */
782                 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
783                 chan->mem_width = dst_addr_width;
784                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
785                 if (dst_bus_width < 0)
786                         return dst_bus_width;
787
788                 /* Set memory burst size */
789                 dst_maxburst = STM32_DMA_MAX_BURST;
790                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
791                                                           dst_maxburst,
792                                                           threshold,
793                                                           dst_addr_width);
794                 chan->mem_burst = dst_best_burst;
795                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
796                 if (dst_burst_size < 0)
797                         return dst_burst_size;
798
799                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
800                         STM32_DMA_SCR_PSIZE(src_bus_width) |
801                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
802                         STM32_DMA_SCR_PBURST(src_burst_size) |
803                         STM32_DMA_SCR_MBURST(dst_burst_size);
804
805                 /* Set FIFO threshold */
806                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
807                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
808
809                 /* Set peripheral address */
810                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
811                 *buswidth = chan->dma_sconfig.src_addr_width;
812                 break;
813
814         default:
815                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
816                 return -EINVAL;
817         }
818
819         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
820
821         /* Set DMA control register */
822         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
823                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
824                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
825         chan->chan_reg.dma_scr |= dma_scr;
826
827         return 0;
828 }
829
830 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
831 {
832         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
833 }
834
835 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
836         struct dma_chan *c, struct scatterlist *sgl,
837         u32 sg_len, enum dma_transfer_direction direction,
838         unsigned long flags, void *context)
839 {
840         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
841         struct stm32_dma_desc *desc;
842         struct scatterlist *sg;
843         enum dma_slave_buswidth buswidth;
844         u32 nb_data_items;
845         int i, ret;
846
847         if (!chan->config_init) {
848                 dev_err(chan2dev(chan), "dma channel is not configured\n");
849                 return NULL;
850         }
851
852         if (sg_len < 1) {
853                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
854                 return NULL;
855         }
856
857         desc = stm32_dma_alloc_desc(sg_len);
858         if (!desc)
859                 return NULL;
860
861         /* Set peripheral flow controller */
862         if (chan->dma_sconfig.device_fc)
863                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
864         else
865                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
866
867         for_each_sg(sgl, sg, sg_len, i) {
868                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
869                                                sg_dma_len(sg));
870                 if (ret < 0)
871                         goto err;
872
873                 desc->sg_req[i].len = sg_dma_len(sg);
874
875                 nb_data_items = desc->sg_req[i].len / buswidth;
876                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
877                         dev_err(chan2dev(chan), "nb items not supported\n");
878                         goto err;
879                 }
880
881                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
882                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
883                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
884                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
885                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
886                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
887                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
888         }
889
890         desc->num_sgs = sg_len;
891         desc->cyclic = false;
892
893         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
894
895 err:
896         kfree(desc);
897         return NULL;
898 }
899
900 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
901         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
902         size_t period_len, enum dma_transfer_direction direction,
903         unsigned long flags)
904 {
905         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
906         struct stm32_dma_desc *desc;
907         enum dma_slave_buswidth buswidth;
908         u32 num_periods, nb_data_items;
909         int i, ret;
910
911         if (!buf_len || !period_len) {
912                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
913                 return NULL;
914         }
915
916         if (!chan->config_init) {
917                 dev_err(chan2dev(chan), "dma channel is not configured\n");
918                 return NULL;
919         }
920
921         if (buf_len % period_len) {
922                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
923                 return NULL;
924         }
925
926         /*
927          * We allow to take more number of requests till DMA is
928          * not started. The driver will loop over all requests.
929          * Once DMA is started then new requests can be queued only after
930          * terminating the DMA.
931          */
932         if (chan->busy) {
933                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
934                 return NULL;
935         }
936
937         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
938         if (ret < 0)
939                 return NULL;
940
941         nb_data_items = period_len / buswidth;
942         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
943                 dev_err(chan2dev(chan), "number of items not supported\n");
944                 return NULL;
945         }
946
947         /*  Enable Circular mode or double buffer mode */
948         if (buf_len == period_len)
949                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
950         else
951                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
952
953         /* Clear periph ctrl if client set it */
954         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
955
956         num_periods = buf_len / period_len;
957
958         desc = stm32_dma_alloc_desc(num_periods);
959         if (!desc)
960                 return NULL;
961
962         for (i = 0; i < num_periods; i++) {
963                 desc->sg_req[i].len = period_len;
964
965                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
966                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
967                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
968                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
969                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
970                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
971                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
972                 buf_addr += period_len;
973         }
974
975         desc->num_sgs = num_periods;
976         desc->cyclic = true;
977
978         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
979 }
980
981 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
982         struct dma_chan *c, dma_addr_t dest,
983         dma_addr_t src, size_t len, unsigned long flags)
984 {
985         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
986         enum dma_slave_buswidth max_width;
987         struct stm32_dma_desc *desc;
988         size_t xfer_count, offset;
989         u32 num_sgs, best_burst, dma_burst, threshold;
990         int i;
991
992         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
993         desc = stm32_dma_alloc_desc(num_sgs);
994         if (!desc)
995                 return NULL;
996
997         threshold = chan->threshold;
998
999         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1000                 xfer_count = min_t(size_t, len - offset,
1001                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1002
1003                 /* Compute best burst size */
1004                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1006                                                       threshold, max_width);
1007                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1008
1009                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1010                 desc->sg_req[i].chan_reg.dma_scr =
1011                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1012                         STM32_DMA_SCR_PBURST(dma_burst) |
1013                         STM32_DMA_SCR_MBURST(dma_burst) |
1014                         STM32_DMA_SCR_MINC |
1015                         STM32_DMA_SCR_PINC |
1016                         STM32_DMA_SCR_TCIE |
1017                         STM32_DMA_SCR_TEIE;
1018                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1019                 desc->sg_req[i].chan_reg.dma_sfcr |=
1020                         STM32_DMA_SFCR_FTH(threshold);
1021                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1022                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1023                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1024                 desc->sg_req[i].len = xfer_count;
1025         }
1026
1027         desc->num_sgs = num_sgs;
1028         desc->cyclic = false;
1029
1030         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1031 }
1032
1033 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1034 {
1035         u32 dma_scr, width, ndtr;
1036         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1037
1038         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1039         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1040         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1041
1042         return ndtr << width;
1043 }
1044
1045 /**
1046  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1047  * @chan: dma channel
1048  *
1049  * This function called when IRQ are disable, checks that the hardware has not
1050  * switched on the next transfer in double buffer mode. The test is done by
1051  * comparing the next_sg memory address with the hardware related register
1052  * (based on CT bit value).
1053  *
1054  * Returns true if expected current transfer is still running or double
1055  * buffer mode is not activated.
1056  */
1057 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1058 {
1059         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1060         struct stm32_dma_sg_req *sg_req;
1061         u32 dma_scr, dma_smar, id;
1062
1063         id = chan->id;
1064         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1065
1066         if (!(dma_scr & STM32_DMA_SCR_DBM))
1067                 return true;
1068
1069         sg_req = &chan->desc->sg_req[chan->next_sg];
1070
1071         if (dma_scr & STM32_DMA_SCR_CT) {
1072                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1073                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1074         }
1075
1076         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1077
1078         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1079 }
1080
1081 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1082                                      struct stm32_dma_desc *desc,
1083                                      u32 next_sg)
1084 {
1085         u32 modulo, burst_size;
1086         u32 residue;
1087         u32 n_sg = next_sg;
1088         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1089         int i;
1090
1091         /*
1092          * Calculate the residue means compute the descriptors
1093          * information:
1094          * - the sg_req currently transferred
1095          * - the Hardware remaining position in this sg (NDTR bits field).
1096          *
1097          * A race condition may occur if DMA is running in cyclic or double
1098          * buffer mode, since the DMA register are automatically reloaded at end
1099          * of period transfer. The hardware may have switched to the next
1100          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1101          * read.
1102          * In this case the SxNDTR reg could (or not) correspond to the new
1103          * transfer position, and not the expected one.
1104          * The strategy implemented in the stm32 driver is to:
1105          *  - read the SxNDTR register
1106          *  - crosscheck that hardware is still in current transfer.
1107          * In case of switch, we can assume that the DMA is at the beginning of
1108          * the next transfer. So we approximate the residue in consequence, by
1109          * pointing on the beginning of next transfer.
1110          *
1111          * This race condition doesn't apply for none cyclic mode, as double
1112          * buffer is not used. In such situation registers are updated by the
1113          * software.
1114          */
1115
1116         residue = stm32_dma_get_remaining_bytes(chan);
1117
1118         if (!stm32_dma_is_current_sg(chan)) {
1119                 n_sg++;
1120                 if (n_sg == chan->desc->num_sgs)
1121                         n_sg = 0;
1122                 residue = sg_req->len;
1123         }
1124
1125         /*
1126          * In cyclic mode, for the last period, residue = remaining bytes
1127          * from NDTR,
1128          * else for all other periods in cyclic mode, and in sg mode,
1129          * residue = remaining bytes from NDTR + remaining
1130          * periods/sg to be transferred
1131          */
1132         if (!chan->desc->cyclic || n_sg != 0)
1133                 for (i = n_sg; i < desc->num_sgs; i++)
1134                         residue += desc->sg_req[i].len;
1135
1136         if (!chan->mem_burst)
1137                 return residue;
1138
1139         burst_size = chan->mem_burst * chan->mem_width;
1140         modulo = residue % burst_size;
1141         if (modulo)
1142                 residue = residue - modulo + burst_size;
1143
1144         return residue;
1145 }
1146
1147 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1148                                            dma_cookie_t cookie,
1149                                            struct dma_tx_state *state)
1150 {
1151         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1152         struct virt_dma_desc *vdesc;
1153         enum dma_status status;
1154         unsigned long flags;
1155         u32 residue = 0;
1156
1157         status = dma_cookie_status(c, cookie, state);
1158         if (status == DMA_COMPLETE || !state)
1159                 return status;
1160
1161         spin_lock_irqsave(&chan->vchan.lock, flags);
1162         vdesc = vchan_find_desc(&chan->vchan, cookie);
1163         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1164                 residue = stm32_dma_desc_residue(chan, chan->desc,
1165                                                  chan->next_sg);
1166         else if (vdesc)
1167                 residue = stm32_dma_desc_residue(chan,
1168                                                  to_stm32_dma_desc(vdesc), 0);
1169         dma_set_residue(state, residue);
1170
1171         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1172
1173         return status;
1174 }
1175
1176 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1177 {
1178         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1179         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1180         int ret;
1181
1182         chan->config_init = false;
1183
1184         ret = pm_runtime_get_sync(dmadev->ddev.dev);
1185         if (ret < 0)
1186                 return ret;
1187
1188         ret = stm32_dma_disable_chan(chan);
1189         if (ret < 0)
1190                 pm_runtime_put(dmadev->ddev.dev);
1191
1192         return ret;
1193 }
1194
1195 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1196 {
1197         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199         unsigned long flags;
1200
1201         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1202
1203         if (chan->busy) {
1204                 spin_lock_irqsave(&chan->vchan.lock, flags);
1205                 stm32_dma_stop(chan);
1206                 chan->desc = NULL;
1207                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1208         }
1209
1210         pm_runtime_put(dmadev->ddev.dev);
1211
1212         vchan_free_chan_resources(to_virt_chan(c));
1213 }
1214
1215 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1216 {
1217         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1218 }
1219
1220 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1221                                  struct stm32_dma_cfg *cfg)
1222 {
1223         stm32_dma_clear_reg(&chan->chan_reg);
1224
1225         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1226         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1227
1228         /* Enable Interrupts  */
1229         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1230
1231         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1232 }
1233
1234 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1235                                            struct of_dma *ofdma)
1236 {
1237         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1238         struct device *dev = dmadev->ddev.dev;
1239         struct stm32_dma_cfg cfg;
1240         struct stm32_dma_chan *chan;
1241         struct dma_chan *c;
1242
1243         if (dma_spec->args_count < 4) {
1244                 dev_err(dev, "Bad number of cells\n");
1245                 return NULL;
1246         }
1247
1248         cfg.channel_id = dma_spec->args[0];
1249         cfg.request_line = dma_spec->args[1];
1250         cfg.stream_config = dma_spec->args[2];
1251         cfg.features = dma_spec->args[3];
1252
1253         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1254             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1255                 dev_err(dev, "Bad channel and/or request id\n");
1256                 return NULL;
1257         }
1258
1259         chan = &dmadev->chan[cfg.channel_id];
1260
1261         c = dma_get_slave_channel(&chan->vchan.chan);
1262         if (!c) {
1263                 dev_err(dev, "No more channels available\n");
1264                 return NULL;
1265         }
1266
1267         stm32_dma_set_config(chan, &cfg);
1268
1269         return c;
1270 }
1271
1272 static const struct of_device_id stm32_dma_of_match[] = {
1273         { .compatible = "st,stm32-dma", },
1274         { /* sentinel */ },
1275 };
1276 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1277
1278 static int stm32_dma_probe(struct platform_device *pdev)
1279 {
1280         struct stm32_dma_chan *chan;
1281         struct stm32_dma_device *dmadev;
1282         struct dma_device *dd;
1283         const struct of_device_id *match;
1284         struct resource *res;
1285         int i, ret;
1286
1287         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1288         if (!match) {
1289                 dev_err(&pdev->dev, "Error: No device match found\n");
1290                 return -ENODEV;
1291         }
1292
1293         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1294         if (!dmadev)
1295                 return -ENOMEM;
1296
1297         dd = &dmadev->ddev;
1298
1299         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1300         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1301         if (IS_ERR(dmadev->base))
1302                 return PTR_ERR(dmadev->base);
1303
1304         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1305         if (IS_ERR(dmadev->clk)) {
1306                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1307                 return PTR_ERR(dmadev->clk);
1308         }
1309
1310         ret = clk_prepare_enable(dmadev->clk);
1311         if (ret < 0) {
1312                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1313                 return ret;
1314         }
1315
1316         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1317                                                 "st,mem2mem");
1318
1319         dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1320         if (!IS_ERR(dmadev->rst)) {
1321                 reset_control_assert(dmadev->rst);
1322                 udelay(2);
1323                 reset_control_deassert(dmadev->rst);
1324         }
1325
1326         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1327         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1328         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1329         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1330         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1331         dd->device_tx_status = stm32_dma_tx_status;
1332         dd->device_issue_pending = stm32_dma_issue_pending;
1333         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1334         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1335         dd->device_config = stm32_dma_slave_config;
1336         dd->device_terminate_all = stm32_dma_terminate_all;
1337         dd->device_synchronize = stm32_dma_synchronize;
1338         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1339                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1340                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1341         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1342                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1343                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1344         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1345         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1346         dd->max_burst = STM32_DMA_MAX_BURST;
1347         dd->dev = &pdev->dev;
1348         INIT_LIST_HEAD(&dd->channels);
1349
1350         if (dmadev->mem2mem) {
1351                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1352                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1353                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1354         }
1355
1356         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1357                 chan = &dmadev->chan[i];
1358                 chan->id = i;
1359                 chan->vchan.desc_free = stm32_dma_desc_free;
1360                 vchan_init(&chan->vchan, dd);
1361         }
1362
1363         ret = dma_async_device_register(dd);
1364         if (ret)
1365                 goto clk_free;
1366
1367         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1368                 chan = &dmadev->chan[i];
1369                 chan->irq = platform_get_irq(pdev, i);
1370                 ret = platform_get_irq(pdev, i);
1371                 if (ret < 0)  {
1372                         if (ret != -EPROBE_DEFER)
1373                                 dev_err(&pdev->dev,
1374                                         "No irq resource for chan %d\n", i);
1375                         goto err_unregister;
1376                 }
1377                 chan->irq = ret;
1378
1379                 ret = devm_request_irq(&pdev->dev, chan->irq,
1380                                        stm32_dma_chan_irq, 0,
1381                                        dev_name(chan2dev(chan)), chan);
1382                 if (ret) {
1383                         dev_err(&pdev->dev,
1384                                 "request_irq failed with err %d channel %d\n",
1385                                 ret, i);
1386                         goto err_unregister;
1387                 }
1388         }
1389
1390         ret = of_dma_controller_register(pdev->dev.of_node,
1391                                          stm32_dma_of_xlate, dmadev);
1392         if (ret < 0) {
1393                 dev_err(&pdev->dev,
1394                         "STM32 DMA DMA OF registration failed %d\n", ret);
1395                 goto err_unregister;
1396         }
1397
1398         platform_set_drvdata(pdev, dmadev);
1399
1400         pm_runtime_set_active(&pdev->dev);
1401         pm_runtime_enable(&pdev->dev);
1402         pm_runtime_get_noresume(&pdev->dev);
1403         pm_runtime_put(&pdev->dev);
1404
1405         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1406
1407         return 0;
1408
1409 err_unregister:
1410         dma_async_device_unregister(dd);
1411 clk_free:
1412         clk_disable_unprepare(dmadev->clk);
1413
1414         return ret;
1415 }
1416
1417 #ifdef CONFIG_PM
1418 static int stm32_dma_runtime_suspend(struct device *dev)
1419 {
1420         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1421
1422         clk_disable_unprepare(dmadev->clk);
1423
1424         return 0;
1425 }
1426
1427 static int stm32_dma_runtime_resume(struct device *dev)
1428 {
1429         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1430         int ret;
1431
1432         ret = clk_prepare_enable(dmadev->clk);
1433         if (ret) {
1434                 dev_err(dev, "failed to prepare_enable clock\n");
1435                 return ret;
1436         }
1437
1438         return 0;
1439 }
1440 #endif
1441
1442 static const struct dev_pm_ops stm32_dma_pm_ops = {
1443         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1444                            stm32_dma_runtime_resume, NULL)
1445 };
1446
1447 static struct platform_driver stm32_dma_driver = {
1448         .driver = {
1449                 .name = "stm32-dma",
1450                 .of_match_table = stm32_dma_of_match,
1451                 .pm = &stm32_dma_pm_ops,
1452         },
1453 };
1454
1455 static int __init stm32_dma_init(void)
1456 {
1457         return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1458 }
1459 subsys_initcall(stm32_dma_init);