Merge tag 'nfs-for-5.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-microblaze.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
72                                                 */
73 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
77                                         | STM32_DMA_SCR_MINC \
78                                         | STM32_DMA_SCR_PINCOS \
79                                         | STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
81                                         | STM32_DMA_SCR_TEIE \
82                                         | STM32_DMA_SCR_DMEIE)
83
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
86
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
89
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
92
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
95
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
103                                         | STM32_DMA_SFCR_DMDIS)
104
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM            0x00
107 #define STM32_DMA_MEM_TO_DEV            0x01
108 #define STM32_DMA_MEM_TO_MEM            0x02
109
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW          0x00
112 #define STM32_DMA_PRIORITY_MEDIUM       0x01
113 #define STM32_DMA_PRIORITY_HIGH         0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
115
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
122
123 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
130         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS          0x08
132 #define STM32_DMA_MAX_REQUEST_ID        0x08
133 #define STM32_DMA_MAX_DATA_PARAM        0x03
134 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST             4
136 #define STM32_DMA_MAX_BURST             16
137
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)   (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145
146 enum stm32_dma_width {
147         STM32_DMA_BYTE,
148         STM32_DMA_HALF_WORD,
149         STM32_DMA_WORD,
150 };
151
152 enum stm32_dma_burst_size {
153         STM32_DMA_BURST_SINGLE,
154         STM32_DMA_BURST_INCR4,
155         STM32_DMA_BURST_INCR8,
156         STM32_DMA_BURST_INCR16,
157 };
158
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167         u32 channel_id;
168         u32 request_line;
169         u32 stream_config;
170         u32 features;
171 };
172
173 struct stm32_dma_chan_reg {
174         u32 dma_lisr;
175         u32 dma_hisr;
176         u32 dma_lifcr;
177         u32 dma_hifcr;
178         u32 dma_scr;
179         u32 dma_sndtr;
180         u32 dma_spar;
181         u32 dma_sm0ar;
182         u32 dma_sm1ar;
183         u32 dma_sfcr;
184 };
185
186 struct stm32_dma_sg_req {
187         u32 len;
188         struct stm32_dma_chan_reg chan_reg;
189 };
190
191 struct stm32_dma_desc {
192         struct virt_dma_desc vdesc;
193         bool cyclic;
194         u32 num_sgs;
195         struct stm32_dma_sg_req sg_req[];
196 };
197
198 struct stm32_dma_chan {
199         struct virt_dma_chan vchan;
200         bool config_init;
201         bool busy;
202         u32 id;
203         u32 irq;
204         struct stm32_dma_desc *desc;
205         u32 next_sg;
206         struct dma_slave_config dma_sconfig;
207         struct stm32_dma_chan_reg chan_reg;
208         u32 threshold;
209         u32 mem_burst;
210         u32 mem_width;
211 };
212
213 struct stm32_dma_device {
214         struct dma_device ddev;
215         void __iomem *base;
216         struct clk *clk;
217         bool mem2mem;
218         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224                             ddev);
225 }
226
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229         return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234         return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239         return &chan->vchan.chan.dev->device;
240 }
241
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244         return readl_relaxed(dmadev->base + reg);
245 }
246
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249         writel_relaxed(val, dmadev->base + reg);
250 }
251
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253                                enum dma_slave_buswidth width)
254 {
255         switch (width) {
256         case DMA_SLAVE_BUSWIDTH_1_BYTE:
257                 return STM32_DMA_BYTE;
258         case DMA_SLAVE_BUSWIDTH_2_BYTES:
259                 return STM32_DMA_HALF_WORD;
260         case DMA_SLAVE_BUSWIDTH_4_BYTES:
261                 return STM32_DMA_WORD;
262         default:
263                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
264                 return -EINVAL;
265         }
266 }
267
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269                                                        dma_addr_t buf_addr,
270                                                        u32 threshold)
271 {
272         enum dma_slave_buswidth max_width;
273
274         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276         else
277                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278
279         while ((buf_len < max_width  || buf_len % max_width) &&
280                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281                 max_width = max_width >> 1;
282
283         if (buf_addr & (max_width - 1))
284                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
285
286         return max_width;
287 }
288
289 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
290                                                 enum dma_slave_buswidth width)
291 {
292         u32 remaining;
293
294         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
295                 return false;
296
297         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
298                 if (burst != 0) {
299                         /*
300                          * If number of beats fit in several whole bursts
301                          * this configuration is allowed.
302                          */
303                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
304                                      (threshold + 1) / 4) % burst;
305
306                         if (remaining == 0)
307                                 return true;
308                 } else {
309                         return true;
310                 }
311         }
312
313         return false;
314 }
315
316 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
317 {
318         /* If FIFO direct mode, burst is not possible */
319         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
320                 return false;
321
322         /*
323          * Buffer or period length has to be aligned on FIFO depth.
324          * Otherwise bytes may be stuck within FIFO at buffer or period
325          * length.
326          */
327         return ((buf_len % ((threshold + 1) * 4)) == 0);
328 }
329
330 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
331                                     enum dma_slave_buswidth width)
332 {
333         u32 best_burst = max_burst;
334
335         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
336                 return 0;
337
338         while ((buf_len < best_burst * width && best_burst > 1) ||
339                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
340                                                     width)) {
341                 if (best_burst > STM32_DMA_MIN_BURST)
342                         best_burst = best_burst >> 1;
343                 else
344                         best_burst = 0;
345         }
346
347         return best_burst;
348 }
349
350 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
351 {
352         switch (maxburst) {
353         case 0:
354         case 1:
355                 return STM32_DMA_BURST_SINGLE;
356         case 4:
357                 return STM32_DMA_BURST_INCR4;
358         case 8:
359                 return STM32_DMA_BURST_INCR8;
360         case 16:
361                 return STM32_DMA_BURST_INCR16;
362         default:
363                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
364                 return -EINVAL;
365         }
366 }
367
368 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
369                                       u32 src_burst, u32 dst_burst)
370 {
371         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
372         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
373
374         if (!src_burst && !dst_burst) {
375                 /* Using direct mode */
376                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
377         } else {
378                 /* Using FIFO mode */
379                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
380         }
381 }
382
383 static int stm32_dma_slave_config(struct dma_chan *c,
384                                   struct dma_slave_config *config)
385 {
386         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
387
388         memcpy(&chan->dma_sconfig, config, sizeof(*config));
389
390         chan->config_init = true;
391
392         return 0;
393 }
394
395 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
396 {
397         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
398         u32 flags, dma_isr;
399
400         /*
401          * Read "flags" from DMA_xISR register corresponding to the selected
402          * DMA channel at the correct bit offset inside that register.
403          *
404          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
405          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
406          */
407
408         if (chan->id & 4)
409                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
410         else
411                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
412
413         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
414
415         return flags & STM32_DMA_MASKI;
416 }
417
418 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
419 {
420         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
421         u32 dma_ifcr;
422
423         /*
424          * Write "flags" to the DMA_xIFCR register corresponding to the selected
425          * DMA channel at the correct bit offset inside that register.
426          *
427          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
428          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
429          */
430         flags &= STM32_DMA_MASKI;
431         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
432
433         if (chan->id & 4)
434                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
435         else
436                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
437 }
438
439 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
440 {
441         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
442         u32 dma_scr, id, reg;
443
444         id = chan->id;
445         reg = STM32_DMA_SCR(id);
446         dma_scr = stm32_dma_read(dmadev, reg);
447
448         if (dma_scr & STM32_DMA_SCR_EN) {
449                 dma_scr &= ~STM32_DMA_SCR_EN;
450                 stm32_dma_write(dmadev, reg, dma_scr);
451
452                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
453                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
454                                         10, 1000000);
455         }
456
457         return 0;
458 }
459
460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
461 {
462         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463         u32 dma_scr, dma_sfcr, status;
464         int ret;
465
466         /* Disable interrupts */
467         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473
474         /* Disable DMA */
475         ret = stm32_dma_disable_chan(chan);
476         if (ret < 0)
477                 return;
478
479         /* Clear interrupt status if it is there */
480         status = stm32_dma_irq_status(chan);
481         if (status) {
482                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483                         __func__, status);
484                 stm32_dma_irq_clear(chan, status);
485         }
486
487         chan->busy = false;
488 }
489
490 static int stm32_dma_terminate_all(struct dma_chan *c)
491 {
492         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493         unsigned long flags;
494         LIST_HEAD(head);
495
496         spin_lock_irqsave(&chan->vchan.lock, flags);
497
498         if (chan->desc) {
499                 dma_cookie_complete(&chan->desc->vdesc.tx);
500                 vchan_terminate_vdesc(&chan->desc->vdesc);
501                 if (chan->busy)
502                         stm32_dma_stop(chan);
503                 chan->desc = NULL;
504         }
505
506         vchan_get_all_descriptors(&chan->vchan, &head);
507         spin_unlock_irqrestore(&chan->vchan.lock, flags);
508         vchan_dma_desc_free_list(&chan->vchan, &head);
509
510         return 0;
511 }
512
513 static void stm32_dma_synchronize(struct dma_chan *c)
514 {
515         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
516
517         vchan_synchronize(&chan->vchan);
518 }
519
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
521 {
522         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
529
530         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
531         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
532         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
533         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
536 }
537
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
539
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
541 {
542         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543         struct virt_dma_desc *vdesc;
544         struct stm32_dma_sg_req *sg_req;
545         struct stm32_dma_chan_reg *reg;
546         u32 status;
547         int ret;
548
549         ret = stm32_dma_disable_chan(chan);
550         if (ret < 0)
551                 return;
552
553         if (!chan->desc) {
554                 vdesc = vchan_next_desc(&chan->vchan);
555                 if (!vdesc)
556                         return;
557
558                 list_del(&vdesc->node);
559
560                 chan->desc = to_stm32_dma_desc(vdesc);
561                 chan->next_sg = 0;
562         }
563
564         if (chan->next_sg == chan->desc->num_sgs)
565                 chan->next_sg = 0;
566
567         sg_req = &chan->desc->sg_req[chan->next_sg];
568         reg = &sg_req->chan_reg;
569
570         reg->dma_scr &= ~STM32_DMA_SCR_EN;
571         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
577
578         chan->next_sg++;
579
580         /* Clear interrupt status if it is there */
581         status = stm32_dma_irq_status(chan);
582         if (status)
583                 stm32_dma_irq_clear(chan, status);
584
585         if (chan->desc->cyclic)
586                 stm32_dma_configure_next_sg(chan);
587
588         stm32_dma_dump_reg(chan);
589
590         /* Start DMA */
591         reg->dma_scr |= STM32_DMA_SCR_EN;
592         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593
594         chan->busy = true;
595
596         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
597 }
598
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
600 {
601         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602         struct stm32_dma_sg_req *sg_req;
603         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
604
605         id = chan->id;
606         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
607
608         if (dma_scr & STM32_DMA_SCR_DBM) {
609                 if (chan->next_sg == chan->desc->num_sgs)
610                         chan->next_sg = 0;
611
612                 sg_req = &chan->desc->sg_req[chan->next_sg];
613
614                 if (dma_scr & STM32_DMA_SCR_CT) {
615                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
619                 } else {
620                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
624                 }
625         }
626 }
627
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
629 {
630         if (chan->desc) {
631                 if (chan->desc->cyclic) {
632                         vchan_cyclic_callback(&chan->desc->vdesc);
633                         chan->next_sg++;
634                         stm32_dma_configure_next_sg(chan);
635                 } else {
636                         chan->busy = false;
637                         if (chan->next_sg == chan->desc->num_sgs) {
638                                 vchan_cookie_complete(&chan->desc->vdesc);
639                                 chan->desc = NULL;
640                         }
641                         stm32_dma_start_transfer(chan);
642                 }
643         }
644 }
645
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
647 {
648         struct stm32_dma_chan *chan = devid;
649         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650         u32 status, scr, sfcr;
651
652         spin_lock(&chan->vchan.lock);
653
654         status = stm32_dma_irq_status(chan);
655         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
657
658         if (status & STM32_DMA_FEI) {
659                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660                 status &= ~STM32_DMA_FEI;
661                 if (sfcr & STM32_DMA_SFCR_FEIE) {
662                         if (!(scr & STM32_DMA_SCR_EN) &&
663                             !(status & STM32_DMA_TCI))
664                                 dev_err(chan2dev(chan), "FIFO Error\n");
665                         else
666                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667                 }
668         }
669         if (status & STM32_DMA_DMEI) {
670                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671                 status &= ~STM32_DMA_DMEI;
672                 if (sfcr & STM32_DMA_SCR_DMEIE)
673                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
674         }
675
676         if (status & STM32_DMA_TCI) {
677                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678                 if (scr & STM32_DMA_SCR_TCIE)
679                         stm32_dma_handle_chan_done(chan);
680                 status &= ~STM32_DMA_TCI;
681         }
682
683         if (status & STM32_DMA_HTI) {
684                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685                 status &= ~STM32_DMA_HTI;
686         }
687
688         if (status) {
689                 stm32_dma_irq_clear(chan, status);
690                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691                 if (!(scr & STM32_DMA_SCR_EN))
692                         dev_err(chan2dev(chan), "chan disabled by HW\n");
693         }
694
695         spin_unlock(&chan->vchan.lock);
696
697         return IRQ_HANDLED;
698 }
699
700 static void stm32_dma_issue_pending(struct dma_chan *c)
701 {
702         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
703         unsigned long flags;
704
705         spin_lock_irqsave(&chan->vchan.lock, flags);
706         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708                 stm32_dma_start_transfer(chan);
709
710         }
711         spin_unlock_irqrestore(&chan->vchan.lock, flags);
712 }
713
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715                                     enum dma_transfer_direction direction,
716                                     enum dma_slave_buswidth *buswidth,
717                                     u32 buf_len, dma_addr_t buf_addr)
718 {
719         enum dma_slave_buswidth src_addr_width, dst_addr_width;
720         int src_bus_width, dst_bus_width;
721         int src_burst_size, dst_burst_size;
722         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
723         u32 dma_scr, fifoth;
724
725         src_addr_width = chan->dma_sconfig.src_addr_width;
726         dst_addr_width = chan->dma_sconfig.dst_addr_width;
727         src_maxburst = chan->dma_sconfig.src_maxburst;
728         dst_maxburst = chan->dma_sconfig.dst_maxburst;
729         fifoth = chan->threshold;
730
731         switch (direction) {
732         case DMA_MEM_TO_DEV:
733                 /* Set device data size */
734                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735                 if (dst_bus_width < 0)
736                         return dst_bus_width;
737
738                 /* Set device burst size */
739                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
740                                                           dst_maxburst,
741                                                           fifoth,
742                                                           dst_addr_width);
743
744                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745                 if (dst_burst_size < 0)
746                         return dst_burst_size;
747
748                 /* Set memory data size */
749                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
750                                                          fifoth);
751                 chan->mem_width = src_addr_width;
752                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753                 if (src_bus_width < 0)
754                         return src_bus_width;
755
756                 /*
757                  * Set memory burst size - burst not possible if address is not aligned on
758                  * the address boundary equal to the size of the transfer
759                  */
760                 if (buf_addr & (buf_len - 1))
761                         src_maxburst = 1;
762                 else
763                         src_maxburst = STM32_DMA_MAX_BURST;
764                 src_best_burst = stm32_dma_get_best_burst(buf_len,
765                                                           src_maxburst,
766                                                           fifoth,
767                                                           src_addr_width);
768                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
769                 if (src_burst_size < 0)
770                         return src_burst_size;
771
772                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
773                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
774                         STM32_DMA_SCR_MSIZE(src_bus_width) |
775                         STM32_DMA_SCR_PBURST(dst_burst_size) |
776                         STM32_DMA_SCR_MBURST(src_burst_size);
777
778                 /* Set FIFO threshold */
779                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
780                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
781                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
782
783                 /* Set peripheral address */
784                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
785                 *buswidth = dst_addr_width;
786                 break;
787
788         case DMA_DEV_TO_MEM:
789                 /* Set device data size */
790                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
791                 if (src_bus_width < 0)
792                         return src_bus_width;
793
794                 /* Set device burst size */
795                 src_best_burst = stm32_dma_get_best_burst(buf_len,
796                                                           src_maxburst,
797                                                           fifoth,
798                                                           src_addr_width);
799                 chan->mem_burst = src_best_burst;
800                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
801                 if (src_burst_size < 0)
802                         return src_burst_size;
803
804                 /* Set memory data size */
805                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
806                                                          fifoth);
807                 chan->mem_width = dst_addr_width;
808                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
809                 if (dst_bus_width < 0)
810                         return dst_bus_width;
811
812                 /*
813                  * Set memory burst size - burst not possible if address is not aligned on
814                  * the address boundary equal to the size of the transfer
815                  */
816                 if (buf_addr & (buf_len - 1))
817                         dst_maxburst = 1;
818                 else
819                         dst_maxburst = STM32_DMA_MAX_BURST;
820                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
821                                                           dst_maxburst,
822                                                           fifoth,
823                                                           dst_addr_width);
824                 chan->mem_burst = dst_best_burst;
825                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
826                 if (dst_burst_size < 0)
827                         return dst_burst_size;
828
829                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
830                         STM32_DMA_SCR_PSIZE(src_bus_width) |
831                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
832                         STM32_DMA_SCR_PBURST(src_burst_size) |
833                         STM32_DMA_SCR_MBURST(dst_burst_size);
834
835                 /* Set FIFO threshold */
836                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
837                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
838                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
839
840                 /* Set peripheral address */
841                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
842                 *buswidth = chan->dma_sconfig.src_addr_width;
843                 break;
844
845         default:
846                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
847                 return -EINVAL;
848         }
849
850         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
851
852         /* Set DMA control register */
853         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
854                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
855                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
856         chan->chan_reg.dma_scr |= dma_scr;
857
858         return 0;
859 }
860
861 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
862 {
863         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
864 }
865
866 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
867         struct dma_chan *c, struct scatterlist *sgl,
868         u32 sg_len, enum dma_transfer_direction direction,
869         unsigned long flags, void *context)
870 {
871         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
872         struct stm32_dma_desc *desc;
873         struct scatterlist *sg;
874         enum dma_slave_buswidth buswidth;
875         u32 nb_data_items;
876         int i, ret;
877
878         if (!chan->config_init) {
879                 dev_err(chan2dev(chan), "dma channel is not configured\n");
880                 return NULL;
881         }
882
883         if (sg_len < 1) {
884                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
885                 return NULL;
886         }
887
888         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
889         if (!desc)
890                 return NULL;
891
892         /* Set peripheral flow controller */
893         if (chan->dma_sconfig.device_fc)
894                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
895         else
896                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
897
898         for_each_sg(sgl, sg, sg_len, i) {
899                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
900                                                sg_dma_len(sg),
901                                                sg_dma_address(sg));
902                 if (ret < 0)
903                         goto err;
904
905                 desc->sg_req[i].len = sg_dma_len(sg);
906
907                 nb_data_items = desc->sg_req[i].len / buswidth;
908                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
909                         dev_err(chan2dev(chan), "nb items not supported\n");
910                         goto err;
911                 }
912
913                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
914                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
915                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
916                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
917                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
918                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
919                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
920         }
921
922         desc->num_sgs = sg_len;
923         desc->cyclic = false;
924
925         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
926
927 err:
928         kfree(desc);
929         return NULL;
930 }
931
932 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
933         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
934         size_t period_len, enum dma_transfer_direction direction,
935         unsigned long flags)
936 {
937         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
938         struct stm32_dma_desc *desc;
939         enum dma_slave_buswidth buswidth;
940         u32 num_periods, nb_data_items;
941         int i, ret;
942
943         if (!buf_len || !period_len) {
944                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
945                 return NULL;
946         }
947
948         if (!chan->config_init) {
949                 dev_err(chan2dev(chan), "dma channel is not configured\n");
950                 return NULL;
951         }
952
953         if (buf_len % period_len) {
954                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
955                 return NULL;
956         }
957
958         /*
959          * We allow to take more number of requests till DMA is
960          * not started. The driver will loop over all requests.
961          * Once DMA is started then new requests can be queued only after
962          * terminating the DMA.
963          */
964         if (chan->busy) {
965                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
966                 return NULL;
967         }
968
969         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
970                                        buf_addr);
971         if (ret < 0)
972                 return NULL;
973
974         nb_data_items = period_len / buswidth;
975         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
976                 dev_err(chan2dev(chan), "number of items not supported\n");
977                 return NULL;
978         }
979
980         /*  Enable Circular mode or double buffer mode */
981         if (buf_len == period_len)
982                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
983         else
984                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
985
986         /* Clear periph ctrl if client set it */
987         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
988
989         num_periods = buf_len / period_len;
990
991         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
992         if (!desc)
993                 return NULL;
994
995         for (i = 0; i < num_periods; i++) {
996                 desc->sg_req[i].len = period_len;
997
998                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
999                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1000                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1001                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1002                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1003                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1004                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1005                 buf_addr += period_len;
1006         }
1007
1008         desc->num_sgs = num_periods;
1009         desc->cyclic = true;
1010
1011         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1012 }
1013
1014 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1015         struct dma_chan *c, dma_addr_t dest,
1016         dma_addr_t src, size_t len, unsigned long flags)
1017 {
1018         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1019         enum dma_slave_buswidth max_width;
1020         struct stm32_dma_desc *desc;
1021         size_t xfer_count, offset;
1022         u32 num_sgs, best_burst, dma_burst, threshold;
1023         int i;
1024
1025         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1026         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1027         if (!desc)
1028                 return NULL;
1029
1030         threshold = chan->threshold;
1031
1032         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1033                 xfer_count = min_t(size_t, len - offset,
1034                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1035
1036                 /* Compute best burst size */
1037                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1038                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1039                                                       threshold, max_width);
1040                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1041
1042                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1043                 desc->sg_req[i].chan_reg.dma_scr =
1044                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1045                         STM32_DMA_SCR_PBURST(dma_burst) |
1046                         STM32_DMA_SCR_MBURST(dma_burst) |
1047                         STM32_DMA_SCR_MINC |
1048                         STM32_DMA_SCR_PINC |
1049                         STM32_DMA_SCR_TCIE |
1050                         STM32_DMA_SCR_TEIE;
1051                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1052                 desc->sg_req[i].chan_reg.dma_sfcr |=
1053                         STM32_DMA_SFCR_FTH(threshold);
1054                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1055                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1056                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1057                 desc->sg_req[i].len = xfer_count;
1058         }
1059
1060         desc->num_sgs = num_sgs;
1061         desc->cyclic = false;
1062
1063         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1064 }
1065
1066 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1067 {
1068         u32 dma_scr, width, ndtr;
1069         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1070
1071         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1072         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1073         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1074
1075         return ndtr << width;
1076 }
1077
1078 /**
1079  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1080  * @chan: dma channel
1081  *
1082  * This function called when IRQ are disable, checks that the hardware has not
1083  * switched on the next transfer in double buffer mode. The test is done by
1084  * comparing the next_sg memory address with the hardware related register
1085  * (based on CT bit value).
1086  *
1087  * Returns true if expected current transfer is still running or double
1088  * buffer mode is not activated.
1089  */
1090 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1091 {
1092         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1093         struct stm32_dma_sg_req *sg_req;
1094         u32 dma_scr, dma_smar, id;
1095
1096         id = chan->id;
1097         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1098
1099         if (!(dma_scr & STM32_DMA_SCR_DBM))
1100                 return true;
1101
1102         sg_req = &chan->desc->sg_req[chan->next_sg];
1103
1104         if (dma_scr & STM32_DMA_SCR_CT) {
1105                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1106                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1107         }
1108
1109         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1110
1111         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1112 }
1113
1114 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1115                                      struct stm32_dma_desc *desc,
1116                                      u32 next_sg)
1117 {
1118         u32 modulo, burst_size;
1119         u32 residue;
1120         u32 n_sg = next_sg;
1121         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1122         int i;
1123
1124         /*
1125          * Calculate the residue means compute the descriptors
1126          * information:
1127          * - the sg_req currently transferred
1128          * - the Hardware remaining position in this sg (NDTR bits field).
1129          *
1130          * A race condition may occur if DMA is running in cyclic or double
1131          * buffer mode, since the DMA register are automatically reloaded at end
1132          * of period transfer. The hardware may have switched to the next
1133          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1134          * read.
1135          * In this case the SxNDTR reg could (or not) correspond to the new
1136          * transfer position, and not the expected one.
1137          * The strategy implemented in the stm32 driver is to:
1138          *  - read the SxNDTR register
1139          *  - crosscheck that hardware is still in current transfer.
1140          * In case of switch, we can assume that the DMA is at the beginning of
1141          * the next transfer. So we approximate the residue in consequence, by
1142          * pointing on the beginning of next transfer.
1143          *
1144          * This race condition doesn't apply for none cyclic mode, as double
1145          * buffer is not used. In such situation registers are updated by the
1146          * software.
1147          */
1148
1149         residue = stm32_dma_get_remaining_bytes(chan);
1150
1151         if (!stm32_dma_is_current_sg(chan)) {
1152                 n_sg++;
1153                 if (n_sg == chan->desc->num_sgs)
1154                         n_sg = 0;
1155                 residue = sg_req->len;
1156         }
1157
1158         /*
1159          * In cyclic mode, for the last period, residue = remaining bytes
1160          * from NDTR,
1161          * else for all other periods in cyclic mode, and in sg mode,
1162          * residue = remaining bytes from NDTR + remaining
1163          * periods/sg to be transferred
1164          */
1165         if (!chan->desc->cyclic || n_sg != 0)
1166                 for (i = n_sg; i < desc->num_sgs; i++)
1167                         residue += desc->sg_req[i].len;
1168
1169         if (!chan->mem_burst)
1170                 return residue;
1171
1172         burst_size = chan->mem_burst * chan->mem_width;
1173         modulo = residue % burst_size;
1174         if (modulo)
1175                 residue = residue - modulo + burst_size;
1176
1177         return residue;
1178 }
1179
1180 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1181                                            dma_cookie_t cookie,
1182                                            struct dma_tx_state *state)
1183 {
1184         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185         struct virt_dma_desc *vdesc;
1186         enum dma_status status;
1187         unsigned long flags;
1188         u32 residue = 0;
1189
1190         status = dma_cookie_status(c, cookie, state);
1191         if (status == DMA_COMPLETE || !state)
1192                 return status;
1193
1194         spin_lock_irqsave(&chan->vchan.lock, flags);
1195         vdesc = vchan_find_desc(&chan->vchan, cookie);
1196         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1197                 residue = stm32_dma_desc_residue(chan, chan->desc,
1198                                                  chan->next_sg);
1199         else if (vdesc)
1200                 residue = stm32_dma_desc_residue(chan,
1201                                                  to_stm32_dma_desc(vdesc), 0);
1202         dma_set_residue(state, residue);
1203
1204         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1205
1206         return status;
1207 }
1208
1209 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1210 {
1211         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1212         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1213         int ret;
1214
1215         chan->config_init = false;
1216
1217         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1218         if (ret < 0)
1219                 return ret;
1220
1221         ret = stm32_dma_disable_chan(chan);
1222         if (ret < 0)
1223                 pm_runtime_put(dmadev->ddev.dev);
1224
1225         return ret;
1226 }
1227
1228 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1229 {
1230         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1231         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1232         unsigned long flags;
1233
1234         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1235
1236         if (chan->busy) {
1237                 spin_lock_irqsave(&chan->vchan.lock, flags);
1238                 stm32_dma_stop(chan);
1239                 chan->desc = NULL;
1240                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1241         }
1242
1243         pm_runtime_put(dmadev->ddev.dev);
1244
1245         vchan_free_chan_resources(to_virt_chan(c));
1246         stm32_dma_clear_reg(&chan->chan_reg);
1247         chan->threshold = 0;
1248 }
1249
1250 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1251 {
1252         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1253 }
1254
1255 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1256                                  struct stm32_dma_cfg *cfg)
1257 {
1258         stm32_dma_clear_reg(&chan->chan_reg);
1259
1260         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1261         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1262
1263         /* Enable Interrupts  */
1264         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1265
1266         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1267         if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1268                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1269         if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1270                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1271 }
1272
1273 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1274                                            struct of_dma *ofdma)
1275 {
1276         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1277         struct device *dev = dmadev->ddev.dev;
1278         struct stm32_dma_cfg cfg;
1279         struct stm32_dma_chan *chan;
1280         struct dma_chan *c;
1281
1282         if (dma_spec->args_count < 4) {
1283                 dev_err(dev, "Bad number of cells\n");
1284                 return NULL;
1285         }
1286
1287         cfg.channel_id = dma_spec->args[0];
1288         cfg.request_line = dma_spec->args[1];
1289         cfg.stream_config = dma_spec->args[2];
1290         cfg.features = dma_spec->args[3];
1291
1292         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1293             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1294                 dev_err(dev, "Bad channel and/or request id\n");
1295                 return NULL;
1296         }
1297
1298         chan = &dmadev->chan[cfg.channel_id];
1299
1300         c = dma_get_slave_channel(&chan->vchan.chan);
1301         if (!c) {
1302                 dev_err(dev, "No more channels available\n");
1303                 return NULL;
1304         }
1305
1306         stm32_dma_set_config(chan, &cfg);
1307
1308         return c;
1309 }
1310
1311 static const struct of_device_id stm32_dma_of_match[] = {
1312         { .compatible = "st,stm32-dma", },
1313         { /* sentinel */ },
1314 };
1315 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1316
1317 static int stm32_dma_probe(struct platform_device *pdev)
1318 {
1319         struct stm32_dma_chan *chan;
1320         struct stm32_dma_device *dmadev;
1321         struct dma_device *dd;
1322         const struct of_device_id *match;
1323         struct resource *res;
1324         struct reset_control *rst;
1325         int i, ret;
1326
1327         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1328         if (!match) {
1329                 dev_err(&pdev->dev, "Error: No device match found\n");
1330                 return -ENODEV;
1331         }
1332
1333         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1334         if (!dmadev)
1335                 return -ENOMEM;
1336
1337         dd = &dmadev->ddev;
1338
1339         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1341         if (IS_ERR(dmadev->base))
1342                 return PTR_ERR(dmadev->base);
1343
1344         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1345         if (IS_ERR(dmadev->clk))
1346                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1347
1348         ret = clk_prepare_enable(dmadev->clk);
1349         if (ret < 0) {
1350                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1351                 return ret;
1352         }
1353
1354         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1355                                                 "st,mem2mem");
1356
1357         rst = devm_reset_control_get(&pdev->dev, NULL);
1358         if (IS_ERR(rst)) {
1359                 ret = PTR_ERR(rst);
1360                 if (ret == -EPROBE_DEFER)
1361                         goto clk_free;
1362         } else {
1363                 reset_control_assert(rst);
1364                 udelay(2);
1365                 reset_control_deassert(rst);
1366         }
1367
1368         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1369
1370         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1371         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1372         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1373         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1374         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1375         dd->device_tx_status = stm32_dma_tx_status;
1376         dd->device_issue_pending = stm32_dma_issue_pending;
1377         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1378         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1379         dd->device_config = stm32_dma_slave_config;
1380         dd->device_terminate_all = stm32_dma_terminate_all;
1381         dd->device_synchronize = stm32_dma_synchronize;
1382         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1383                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1384                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1385         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1386                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1387                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1388         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1389         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1390         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1391         dd->max_burst = STM32_DMA_MAX_BURST;
1392         dd->descriptor_reuse = true;
1393         dd->dev = &pdev->dev;
1394         INIT_LIST_HEAD(&dd->channels);
1395
1396         if (dmadev->mem2mem) {
1397                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1398                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1399                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1400         }
1401
1402         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1403                 chan = &dmadev->chan[i];
1404                 chan->id = i;
1405                 chan->vchan.desc_free = stm32_dma_desc_free;
1406                 vchan_init(&chan->vchan, dd);
1407         }
1408
1409         ret = dma_async_device_register(dd);
1410         if (ret)
1411                 goto clk_free;
1412
1413         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1414                 chan = &dmadev->chan[i];
1415                 ret = platform_get_irq(pdev, i);
1416                 if (ret < 0)
1417                         goto err_unregister;
1418                 chan->irq = ret;
1419
1420                 ret = devm_request_irq(&pdev->dev, chan->irq,
1421                                        stm32_dma_chan_irq, 0,
1422                                        dev_name(chan2dev(chan)), chan);
1423                 if (ret) {
1424                         dev_err(&pdev->dev,
1425                                 "request_irq failed with err %d channel %d\n",
1426                                 ret, i);
1427                         goto err_unregister;
1428                 }
1429         }
1430
1431         ret = of_dma_controller_register(pdev->dev.of_node,
1432                                          stm32_dma_of_xlate, dmadev);
1433         if (ret < 0) {
1434                 dev_err(&pdev->dev,
1435                         "STM32 DMA DMA OF registration failed %d\n", ret);
1436                 goto err_unregister;
1437         }
1438
1439         platform_set_drvdata(pdev, dmadev);
1440
1441         pm_runtime_set_active(&pdev->dev);
1442         pm_runtime_enable(&pdev->dev);
1443         pm_runtime_get_noresume(&pdev->dev);
1444         pm_runtime_put(&pdev->dev);
1445
1446         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1447
1448         return 0;
1449
1450 err_unregister:
1451         dma_async_device_unregister(dd);
1452 clk_free:
1453         clk_disable_unprepare(dmadev->clk);
1454
1455         return ret;
1456 }
1457
1458 #ifdef CONFIG_PM
1459 static int stm32_dma_runtime_suspend(struct device *dev)
1460 {
1461         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1462
1463         clk_disable_unprepare(dmadev->clk);
1464
1465         return 0;
1466 }
1467
1468 static int stm32_dma_runtime_resume(struct device *dev)
1469 {
1470         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471         int ret;
1472
1473         ret = clk_prepare_enable(dmadev->clk);
1474         if (ret) {
1475                 dev_err(dev, "failed to prepare_enable clock\n");
1476                 return ret;
1477         }
1478
1479         return 0;
1480 }
1481 #endif
1482
1483 #ifdef CONFIG_PM_SLEEP
1484 static int stm32_dma_suspend(struct device *dev)
1485 {
1486         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1487         int id, ret, scr;
1488
1489         ret = pm_runtime_resume_and_get(dev);
1490         if (ret < 0)
1491                 return ret;
1492
1493         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1494                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1495                 if (scr & STM32_DMA_SCR_EN) {
1496                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1497                         return -EBUSY;
1498                 }
1499         }
1500
1501         pm_runtime_put_sync(dev);
1502
1503         pm_runtime_force_suspend(dev);
1504
1505         return 0;
1506 }
1507
1508 static int stm32_dma_resume(struct device *dev)
1509 {
1510         return pm_runtime_force_resume(dev);
1511 }
1512 #endif
1513
1514 static const struct dev_pm_ops stm32_dma_pm_ops = {
1515         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1516         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1517                            stm32_dma_runtime_resume, NULL)
1518 };
1519
1520 static struct platform_driver stm32_dma_driver = {
1521         .driver = {
1522                 .name = "stm32-dma",
1523                 .of_match_table = stm32_dma_of_match,
1524                 .pm = &stm32_dma_pm_ops,
1525         },
1526         .probe = stm32_dma_probe,
1527 };
1528
1529 static int __init stm32_dma_init(void)
1530 {
1531         return platform_driver_register(&stm32_dma_driver);
1532 }
1533 subsys_initcall(stm32_dma_init);