Merge remote-tracking branch 'spi/for-5.9' into spi-linus
[linux-2.6-microblaze.git] / drivers / dma / ste_dma40.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Ericsson AB 2007-2008
4  * Copyright (C) ST-Ericsson SA 2008-2010
5  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE          BIT(31)
59 #define D40_ALLOC_PHY           BIT(30)
60 #define D40_ALLOC_LOG_FREE      0
61
62 #define D40_MEMCPY_MAX_CHANS    8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0  51
66 #define DB8500_DMA_MEMCPY_EV_1  56
67 #define DB8500_DMA_MEMCPY_EV_2  57
68 #define DB8500_DMA_MEMCPY_EV_3  58
69 #define DB8500_DMA_MEMCPY_EV_4  59
70 #define DB8500_DMA_MEMCPY_EV_5  60
71
72 static int dma40_memcpy_channels[] = {
73         DB8500_DMA_MEMCPY_EV_0,
74         DB8500_DMA_MEMCPY_EV_1,
75         DB8500_DMA_MEMCPY_EV_2,
76         DB8500_DMA_MEMCPY_EV_3,
77         DB8500_DMA_MEMCPY_EV_4,
78         DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83         .mode = STEDMA40_MODE_PHYSICAL,
84         .dir = DMA_MEM_TO_MEM,
85
86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97         .mode = STEDMA40_MODE_LOGICAL,
98         .dir = DMA_MEM_TO_MEM,
99
100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118         D40_DMA_STOP            = 0,
119         D40_DMA_RUN             = 1,
120         D40_DMA_SUSPEND_REQ     = 2,
121         D40_DMA_SUSPENDED       = 3
122 };
123
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132
133 enum d40_events {
134         D40_DEACTIVATE_EVENTLINE        = 0,
135         D40_ACTIVATE_EVENTLINE          = 1,
136         D40_SUSPEND_REQ_EVENTLINE       = 2,
137         D40_ROUND_EVENTLINE             = 3
138 };
139
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static __maybe_unused u32 d40_backup_regs[] = {
146         D40_DREG_LCPA,
147         D40_DREG_LCLA,
148         D40_DREG_PRMSE,
149         D40_DREG_PRMSO,
150         D40_DREG_PRMOE,
151         D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169         D40_DREG_PSEG1,
170         D40_DREG_PSEG2,
171         D40_DREG_PSEG3,
172         D40_DREG_PSEG4,
173         D40_DREG_PCEG1,
174         D40_DREG_PCEG2,
175         D40_DREG_PCEG3,
176         D40_DREG_PCEG4,
177         D40_DREG_RSEG1,
178         D40_DREG_RSEG2,
179         D40_DREG_RSEG3,
180         D40_DREG_RSEG4,
181         D40_DREG_RCEG1,
182         D40_DREG_RCEG2,
183         D40_DREG_RCEG3,
184         D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190         D40_DREG_CPSEG1,
191         D40_DREG_CPSEG2,
192         D40_DREG_CPSEG3,
193         D40_DREG_CPSEG4,
194         D40_DREG_CPSEG5,
195         D40_DREG_CPCEG1,
196         D40_DREG_CPCEG2,
197         D40_DREG_CPCEG3,
198         D40_DREG_CPCEG4,
199         D40_DREG_CPCEG5,
200         D40_DREG_CRSEG1,
201         D40_DREG_CRSEG2,
202         D40_DREG_CRSEG3,
203         D40_DREG_CRSEG4,
204         D40_DREG_CRSEG5,
205         D40_DREG_CRCEG1,
206         D40_DREG_CRCEG2,
207         D40_DREG_CRCEG3,
208         D40_DREG_CRCEG4,
209         D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static __maybe_unused u32 d40_backup_regs_chan[] = {
215         D40_CHAN_REG_SSCFG,
216         D40_CHAN_REG_SSELT,
217         D40_CHAN_REG_SSPTR,
218         D40_CHAN_REG_SSLNK,
219         D40_CHAN_REG_SDCFG,
220         D40_CHAN_REG_SDELT,
221         D40_CHAN_REG_SDPTR,
222         D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238         u32 src;
239         u32 clr;
240         bool is_error;
241         int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280         unsigned int reg;
281         unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285         /* Clock every part of the DMA block from start */
286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287
288         /* Interrupts on all logical channels */
289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303         /* Clock every part of the DMA block from start */
304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305
306         /* Interrupts on all logical channels */
307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336         void    *base;
337         int      size;
338         dma_addr_t      dma_addr;
339         /* Space for dst and src, plus an extra for padding */
340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363         /* LLI physical */
364         struct d40_phy_lli_bidir         lli_phy;
365         /* LLI logical */
366         struct d40_log_lli_bidir         lli_log;
367
368         struct d40_lli_pool              lli_pool;
369         int                              lli_len;
370         int                              lli_current;
371         int                              lcla_alloc;
372
373         struct dma_async_tx_descriptor   txd;
374         struct list_head                 node;
375
376         bool                             is_in_client_list;
377         bool                             cyclic;
378 };
379
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @dma_addr: DMA address, if mapped
385  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
386  * This pointer is only there for clean-up on error.
387  * @pages: The number of pages needed for all physical channels.
388  * Only used later for clean-up on error
389  * @lock: Lock to protect the content in this struct.
390  * @alloc_map: big map over which LCLA entry is own by which job.
391  */
392 struct d40_lcla_pool {
393         void            *base;
394         dma_addr_t      dma_addr;
395         void            *base_unaligned;
396         int              pages;
397         spinlock_t       lock;
398         struct d40_desc **alloc_map;
399 };
400
401 /**
402  * struct d40_phy_res - struct for handling eventlines mapped to physical
403  * channels.
404  *
405  * @lock: A lock protection this entity.
406  * @reserved: True if used by secure world or otherwise.
407  * @num: The physical channel number of this entity.
408  * @allocated_src: Bit mapped to show which src event line's are mapped to
409  * this physical channel. Can also be free or physically allocated.
410  * @allocated_dst: Same as for src but is dst.
411  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412  * event line number.
413  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
414  */
415 struct d40_phy_res {
416         spinlock_t lock;
417         bool       reserved;
418         int        num;
419         u32        allocated_src;
420         u32        allocated_dst;
421         bool       use_soft_lli;
422 };
423
424 struct d40_base;
425
426 /**
427  * struct d40_chan - Struct that describes a channel.
428  *
429  * @lock: A spinlock to protect this struct.
430  * @log_num: The logical number, if any of this channel.
431  * @pending_tx: The number of pending transfers. Used between interrupt handler
432  * and tasklet.
433  * @busy: Set to true when transfer is ongoing on this channel.
434  * @phy_chan: Pointer to physical channel which this instance runs on. If this
435  * point is NULL, then the channel is not allocated.
436  * @chan: DMA engine handle.
437  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
438  * transfer and call client callback.
439  * @client: Cliented owned descriptor list.
440  * @pending_queue: Submitted jobs, to be issued by issue_pending()
441  * @active: Active descriptor.
442  * @done: Completed jobs
443  * @queue: Queued jobs.
444  * @prepare_queue: Prepared jobs.
445  * @dma_cfg: The client configuration of this dma channel.
446  * @slave_config: DMA slave configuration.
447  * @configured: whether the dma_cfg configuration is valid
448  * @base: Pointer to the device instance struct.
449  * @src_def_cfg: Default cfg register setting for src.
450  * @dst_def_cfg: Default cfg register setting for dst.
451  * @log_def: Default logical channel settings.
452  * @lcpa: Pointer to dst and src lcpa settings.
453  * @runtime_addr: runtime configured address.
454  * @runtime_direction: runtime configured direction.
455  *
456  * This struct can either "be" a logical or a physical channel.
457  */
458 struct d40_chan {
459         spinlock_t                       lock;
460         int                              log_num;
461         int                              pending_tx;
462         bool                             busy;
463         struct d40_phy_res              *phy_chan;
464         struct dma_chan                  chan;
465         struct tasklet_struct            tasklet;
466         struct list_head                 client;
467         struct list_head                 pending_queue;
468         struct list_head                 active;
469         struct list_head                 done;
470         struct list_head                 queue;
471         struct list_head                 prepare_queue;
472         struct stedma40_chan_cfg         dma_cfg;
473         struct dma_slave_config          slave_config;
474         bool                             configured;
475         struct d40_base                 *base;
476         /* Default register configurations */
477         u32                              src_def_cfg;
478         u32                              dst_def_cfg;
479         struct d40_def_lcsp              log_def;
480         struct d40_log_lli_full         *lcpa;
481         /* Runtime reconfiguration */
482         dma_addr_t                      runtime_addr;
483         enum dma_transfer_direction     runtime_direction;
484 };
485
486 /**
487  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
488  * controller
489  *
490  * @backup: the pointer to the registers address array for backup
491  * @backup_size: the size of the registers address array for backup
492  * @realtime_en: the realtime enable register
493  * @realtime_clear: the realtime clear register
494  * @high_prio_en: the high priority enable register
495  * @high_prio_clear: the high priority clear register
496  * @interrupt_en: the interrupt enable register
497  * @interrupt_clear: the interrupt clear register
498  * @il: the pointer to struct d40_interrupt_lookup
499  * @il_size: the size of d40_interrupt_lookup array
500  * @init_reg: the pointer to the struct d40_reg_val
501  * @init_reg_size: the size of d40_reg_val array
502  */
503 struct d40_gen_dmac {
504         u32                             *backup;
505         u32                              backup_size;
506         u32                              realtime_en;
507         u32                              realtime_clear;
508         u32                              high_prio_en;
509         u32                              high_prio_clear;
510         u32                              interrupt_en;
511         u32                              interrupt_clear;
512         struct d40_interrupt_lookup     *il;
513         u32                              il_size;
514         struct d40_reg_val              *init_reg;
515         u32                              init_reg_size;
516 };
517
518 /**
519  * struct d40_base - The big global struct, one for each probe'd instance.
520  *
521  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
522  * @execmd_lock: Lock for execute command usage since several channels share
523  * the same physical register.
524  * @dev: The device structure.
525  * @virtbase: The virtual base address of the DMA's register.
526  * @rev: silicon revision detected.
527  * @clk: Pointer to the DMA clock structure.
528  * @phy_start: Physical memory start of the DMA registers.
529  * @phy_size: Size of the DMA register map.
530  * @irq: The IRQ number.
531  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
532  * transfers).
533  * @num_phy_chans: The number of physical channels. Read from HW. This
534  * is the number of available channels for this driver, not counting "Secure
535  * mode" allocated physical channels.
536  * @num_log_chans: The number of logical channels. Calculated from
537  * num_phy_chans.
538  * @dma_parms: DMA parameters for the channel
539  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
540  * @dma_slave: dma_device channels that can do only do slave transfers.
541  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
542  * @phy_chans: Room for all possible physical channels in system.
543  * @log_chans: Room for all possible logical channels in system.
544  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
545  * to log_chans entries.
546  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
547  * to phy_chans entries.
548  * @plat_data: Pointer to provided platform_data which is the driver
549  * configuration.
550  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
551  * @phy_res: Vector containing all physical channels.
552  * @lcla_pool: lcla pool settings and data.
553  * @lcpa_base: The virtual mapped address of LCPA.
554  * @phy_lcpa: The physical address of the LCPA.
555  * @lcpa_size: The size of the LCPA area.
556  * @desc_slab: cache for descriptors.
557  * @reg_val_backup: Here the values of some hardware registers are stored
558  * before the DMA is powered off. They are restored when the power is back on.
559  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
560  * later
561  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
562  * @regs_interrupt: Scratch space for registers during interrupt.
563  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
564  * @gen_dmac: the struct for generic registers values to represent u8500/8540
565  * DMA controller
566  */
567 struct d40_base {
568         spinlock_t                       interrupt_lock;
569         spinlock_t                       execmd_lock;
570         struct device                    *dev;
571         void __iomem                     *virtbase;
572         u8                                rev:4;
573         struct clk                       *clk;
574         phys_addr_t                       phy_start;
575         resource_size_t                   phy_size;
576         int                               irq;
577         int                               num_memcpy_chans;
578         int                               num_phy_chans;
579         int                               num_log_chans;
580         struct device_dma_parameters      dma_parms;
581         struct dma_device                 dma_both;
582         struct dma_device                 dma_slave;
583         struct dma_device                 dma_memcpy;
584         struct d40_chan                  *phy_chans;
585         struct d40_chan                  *log_chans;
586         struct d40_chan                 **lookup_log_chans;
587         struct d40_chan                 **lookup_phy_chans;
588         struct stedma40_platform_data    *plat_data;
589         struct regulator                 *lcpa_regulator;
590         /* Physical half channels */
591         struct d40_phy_res               *phy_res;
592         struct d40_lcla_pool              lcla_pool;
593         void                             *lcpa_base;
594         dma_addr_t                        phy_lcpa;
595         resource_size_t                   lcpa_size;
596         struct kmem_cache                *desc_slab;
597         u32                               reg_val_backup[BACKUP_REGS_SZ];
598         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
599         u32                              *reg_val_backup_chan;
600         u32                              *regs_interrupt;
601         u16                               gcc_pwr_off_mask;
602         struct d40_gen_dmac               gen_dmac;
603 };
604
605 static struct device *chan2dev(struct d40_chan *d40c)
606 {
607         return &d40c->chan.dev->device;
608 }
609
610 static bool chan_is_physical(struct d40_chan *chan)
611 {
612         return chan->log_num == D40_PHY_CHAN;
613 }
614
615 static bool chan_is_logical(struct d40_chan *chan)
616 {
617         return !chan_is_physical(chan);
618 }
619
620 static void __iomem *chan_base(struct d40_chan *chan)
621 {
622         return chan->base->virtbase + D40_DREG_PCBASE +
623                chan->phy_chan->num * D40_DREG_PCDELTA;
624 }
625
626 #define d40_err(dev, format, arg...)            \
627         dev_err(dev, "[%s] " format, __func__, ## arg)
628
629 #define chan_err(d40c, format, arg...)          \
630         d40_err(chan2dev(d40c), format, ## arg)
631
632 static int d40_set_runtime_config_write(struct dma_chan *chan,
633                                   struct dma_slave_config *config,
634                                   enum dma_transfer_direction direction);
635
636 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
637                               int lli_len)
638 {
639         bool is_log = chan_is_logical(d40c);
640         u32 align;
641         void *base;
642
643         if (is_log)
644                 align = sizeof(struct d40_log_lli);
645         else
646                 align = sizeof(struct d40_phy_lli);
647
648         if (lli_len == 1) {
649                 base = d40d->lli_pool.pre_alloc_lli;
650                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
651                 d40d->lli_pool.base = NULL;
652         } else {
653                 d40d->lli_pool.size = lli_len * 2 * align;
654
655                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
656                 d40d->lli_pool.base = base;
657
658                 if (d40d->lli_pool.base == NULL)
659                         return -ENOMEM;
660         }
661
662         if (is_log) {
663                 d40d->lli_log.src = PTR_ALIGN(base, align);
664                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
665
666                 d40d->lli_pool.dma_addr = 0;
667         } else {
668                 d40d->lli_phy.src = PTR_ALIGN(base, align);
669                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
670
671                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
672                                                          d40d->lli_phy.src,
673                                                          d40d->lli_pool.size,
674                                                          DMA_TO_DEVICE);
675
676                 if (dma_mapping_error(d40c->base->dev,
677                                       d40d->lli_pool.dma_addr)) {
678                         kfree(d40d->lli_pool.base);
679                         d40d->lli_pool.base = NULL;
680                         d40d->lli_pool.dma_addr = 0;
681                         return -ENOMEM;
682                 }
683         }
684
685         return 0;
686 }
687
688 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
689 {
690         if (d40d->lli_pool.dma_addr)
691                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
692                                  d40d->lli_pool.size, DMA_TO_DEVICE);
693
694         kfree(d40d->lli_pool.base);
695         d40d->lli_pool.base = NULL;
696         d40d->lli_pool.size = 0;
697         d40d->lli_log.src = NULL;
698         d40d->lli_log.dst = NULL;
699         d40d->lli_phy.src = NULL;
700         d40d->lli_phy.dst = NULL;
701 }
702
703 static int d40_lcla_alloc_one(struct d40_chan *d40c,
704                               struct d40_desc *d40d)
705 {
706         unsigned long flags;
707         int i;
708         int ret = -EINVAL;
709
710         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
711
712         /*
713          * Allocate both src and dst at the same time, therefore the half
714          * start on 1 since 0 can't be used since zero is used as end marker.
715          */
716         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
717                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
718
719                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
720                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
721                         d40d->lcla_alloc++;
722                         ret = i;
723                         break;
724                 }
725         }
726
727         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
728
729         return ret;
730 }
731
732 static int d40_lcla_free_all(struct d40_chan *d40c,
733                              struct d40_desc *d40d)
734 {
735         unsigned long flags;
736         int i;
737         int ret = -EINVAL;
738
739         if (chan_is_physical(d40c))
740                 return 0;
741
742         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
743
744         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
745                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
746
747                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
748                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
749                         d40d->lcla_alloc--;
750                         if (d40d->lcla_alloc == 0) {
751                                 ret = 0;
752                                 break;
753                         }
754                 }
755         }
756
757         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
758
759         return ret;
760
761 }
762
763 static void d40_desc_remove(struct d40_desc *d40d)
764 {
765         list_del(&d40d->node);
766 }
767
768 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
769 {
770         struct d40_desc *desc = NULL;
771
772         if (!list_empty(&d40c->client)) {
773                 struct d40_desc *d;
774                 struct d40_desc *_d;
775
776                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
777                         if (async_tx_test_ack(&d->txd)) {
778                                 d40_desc_remove(d);
779                                 desc = d;
780                                 memset(desc, 0, sizeof(*desc));
781                                 break;
782                         }
783                 }
784         }
785
786         if (!desc)
787                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
788
789         if (desc)
790                 INIT_LIST_HEAD(&desc->node);
791
792         return desc;
793 }
794
795 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
796 {
797
798         d40_pool_lli_free(d40c, d40d);
799         d40_lcla_free_all(d40c, d40d);
800         kmem_cache_free(d40c->base->desc_slab, d40d);
801 }
802
803 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
804 {
805         list_add_tail(&desc->node, &d40c->active);
806 }
807
808 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
809 {
810         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
811         struct d40_phy_lli *lli_src = desc->lli_phy.src;
812         void __iomem *base = chan_base(chan);
813
814         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
815         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
816         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
817         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
818
819         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
820         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
821         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
822         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
823 }
824
825 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
826 {
827         list_add_tail(&desc->node, &d40c->done);
828 }
829
830 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
831 {
832         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
833         struct d40_log_lli_bidir *lli = &desc->lli_log;
834         int lli_current = desc->lli_current;
835         int lli_len = desc->lli_len;
836         bool cyclic = desc->cyclic;
837         int curr_lcla = -EINVAL;
838         int first_lcla = 0;
839         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
840         bool linkback;
841
842         /*
843          * We may have partially running cyclic transfers, in case we did't get
844          * enough LCLA entries.
845          */
846         linkback = cyclic && lli_current == 0;
847
848         /*
849          * For linkback, we need one LCLA even with only one link, because we
850          * can't link back to the one in LCPA space
851          */
852         if (linkback || (lli_len - lli_current > 1)) {
853                 /*
854                  * If the channel is expected to use only soft_lli don't
855                  * allocate a lcla. This is to avoid a HW issue that exists
856                  * in some controller during a peripheral to memory transfer
857                  * that uses linked lists.
858                  */
859                 if (!(chan->phy_chan->use_soft_lli &&
860                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
861                         curr_lcla = d40_lcla_alloc_one(chan, desc);
862
863                 first_lcla = curr_lcla;
864         }
865
866         /*
867          * For linkback, we normally load the LCPA in the loop since we need to
868          * link it to the second LCLA and not the first.  However, if we
869          * couldn't even get a first LCLA, then we have to run in LCPA and
870          * reload manually.
871          */
872         if (!linkback || curr_lcla == -EINVAL) {
873                 unsigned int flags = 0;
874
875                 if (curr_lcla == -EINVAL)
876                         flags |= LLI_TERM_INT;
877
878                 d40_log_lli_lcpa_write(chan->lcpa,
879                                        &lli->dst[lli_current],
880                                        &lli->src[lli_current],
881                                        curr_lcla,
882                                        flags);
883                 lli_current++;
884         }
885
886         if (curr_lcla < 0)
887                 goto set_current;
888
889         for (; lli_current < lli_len; lli_current++) {
890                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
891                                            8 * curr_lcla * 2;
892                 struct d40_log_lli *lcla = pool->base + lcla_offset;
893                 unsigned int flags = 0;
894                 int next_lcla;
895
896                 if (lli_current + 1 < lli_len)
897                         next_lcla = d40_lcla_alloc_one(chan, desc);
898                 else
899                         next_lcla = linkback ? first_lcla : -EINVAL;
900
901                 if (cyclic || next_lcla == -EINVAL)
902                         flags |= LLI_TERM_INT;
903
904                 if (linkback && curr_lcla == first_lcla) {
905                         /* First link goes in both LCPA and LCLA */
906                         d40_log_lli_lcpa_write(chan->lcpa,
907                                                &lli->dst[lli_current],
908                                                &lli->src[lli_current],
909                                                next_lcla, flags);
910                 }
911
912                 /*
913                  * One unused LCLA in the cyclic case if the very first
914                  * next_lcla fails...
915                  */
916                 d40_log_lli_lcla_write(lcla,
917                                        &lli->dst[lli_current],
918                                        &lli->src[lli_current],
919                                        next_lcla, flags);
920
921                 /*
922                  * Cache maintenance is not needed if lcla is
923                  * mapped in esram
924                  */
925                 if (!use_esram_lcla) {
926                         dma_sync_single_range_for_device(chan->base->dev,
927                                                 pool->dma_addr, lcla_offset,
928                                                 2 * sizeof(struct d40_log_lli),
929                                                 DMA_TO_DEVICE);
930                 }
931                 curr_lcla = next_lcla;
932
933                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
934                         lli_current++;
935                         break;
936                 }
937         }
938  set_current:
939         desc->lli_current = lli_current;
940 }
941
942 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
943 {
944         if (chan_is_physical(d40c)) {
945                 d40_phy_lli_load(d40c, d40d);
946                 d40d->lli_current = d40d->lli_len;
947         } else
948                 d40_log_lli_to_lcxa(d40c, d40d);
949 }
950
951 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
952 {
953         return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
954 }
955
956 /* remove desc from current queue and add it to the pending_queue */
957 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
958 {
959         d40_desc_remove(desc);
960         desc->is_in_client_list = false;
961         list_add_tail(&desc->node, &d40c->pending_queue);
962 }
963
964 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
965 {
966         return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
967                                         node);
968 }
969
970 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
971 {
972         return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
973 }
974
975 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
976 {
977         return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
978 }
979
980 static int d40_psize_2_burst_size(bool is_log, int psize)
981 {
982         if (is_log) {
983                 if (psize == STEDMA40_PSIZE_LOG_1)
984                         return 1;
985         } else {
986                 if (psize == STEDMA40_PSIZE_PHY_1)
987                         return 1;
988         }
989
990         return 2 << psize;
991 }
992
993 /*
994  * The dma only supports transmitting packages up to
995  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
996  *
997  * Calculate the total number of dma elements required to send the entire sg list.
998  */
999 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1000 {
1001         int dmalen;
1002         u32 max_w = max(data_width1, data_width2);
1003         u32 min_w = min(data_width1, data_width2);
1004         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1005
1006         if (seg_max > STEDMA40_MAX_SEG_SIZE)
1007                 seg_max -= max_w;
1008
1009         if (!IS_ALIGNED(size, max_w))
1010                 return -EINVAL;
1011
1012         if (size <= seg_max)
1013                 dmalen = 1;
1014         else {
1015                 dmalen = size / seg_max;
1016                 if (dmalen * seg_max < size)
1017                         dmalen++;
1018         }
1019         return dmalen;
1020 }
1021
1022 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1023                            u32 data_width1, u32 data_width2)
1024 {
1025         struct scatterlist *sg;
1026         int i;
1027         int len = 0;
1028         int ret;
1029
1030         for_each_sg(sgl, sg, sg_len, i) {
1031                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1032                                         data_width1, data_width2);
1033                 if (ret < 0)
1034                         return ret;
1035                 len += ret;
1036         }
1037         return len;
1038 }
1039
1040 static int __d40_execute_command_phy(struct d40_chan *d40c,
1041                                      enum d40_command command)
1042 {
1043         u32 status;
1044         int i;
1045         void __iomem *active_reg;
1046         int ret = 0;
1047         unsigned long flags;
1048         u32 wmask;
1049
1050         if (command == D40_DMA_STOP) {
1051                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1052                 if (ret)
1053                         return ret;
1054         }
1055
1056         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1057
1058         if (d40c->phy_chan->num % 2 == 0)
1059                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1060         else
1061                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1062
1063         if (command == D40_DMA_SUSPEND_REQ) {
1064                 status = (readl(active_reg) &
1065                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1066                         D40_CHAN_POS(d40c->phy_chan->num);
1067
1068                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1069                         goto unlock;
1070         }
1071
1072         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1073         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1074                active_reg);
1075
1076         if (command == D40_DMA_SUSPEND_REQ) {
1077
1078                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1079                         status = (readl(active_reg) &
1080                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1081                                 D40_CHAN_POS(d40c->phy_chan->num);
1082
1083                         cpu_relax();
1084                         /*
1085                          * Reduce the number of bus accesses while
1086                          * waiting for the DMA to suspend.
1087                          */
1088                         udelay(3);
1089
1090                         if (status == D40_DMA_STOP ||
1091                             status == D40_DMA_SUSPENDED)
1092                                 break;
1093                 }
1094
1095                 if (i == D40_SUSPEND_MAX_IT) {
1096                         chan_err(d40c,
1097                                 "unable to suspend the chl %d (log: %d) status %x\n",
1098                                 d40c->phy_chan->num, d40c->log_num,
1099                                 status);
1100                         dump_stack();
1101                         ret = -EBUSY;
1102                 }
1103
1104         }
1105  unlock:
1106         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1107         return ret;
1108 }
1109
1110 static void d40_term_all(struct d40_chan *d40c)
1111 {
1112         struct d40_desc *d40d;
1113         struct d40_desc *_d;
1114
1115         /* Release completed descriptors */
1116         while ((d40d = d40_first_done(d40c))) {
1117                 d40_desc_remove(d40d);
1118                 d40_desc_free(d40c, d40d);
1119         }
1120
1121         /* Release active descriptors */
1122         while ((d40d = d40_first_active_get(d40c))) {
1123                 d40_desc_remove(d40d);
1124                 d40_desc_free(d40c, d40d);
1125         }
1126
1127         /* Release queued descriptors waiting for transfer */
1128         while ((d40d = d40_first_queued(d40c))) {
1129                 d40_desc_remove(d40d);
1130                 d40_desc_free(d40c, d40d);
1131         }
1132
1133         /* Release pending descriptors */
1134         while ((d40d = d40_first_pending(d40c))) {
1135                 d40_desc_remove(d40d);
1136                 d40_desc_free(d40c, d40d);
1137         }
1138
1139         /* Release client owned descriptors */
1140         if (!list_empty(&d40c->client))
1141                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1142                         d40_desc_remove(d40d);
1143                         d40_desc_free(d40c, d40d);
1144                 }
1145
1146         /* Release descriptors in prepare queue */
1147         if (!list_empty(&d40c->prepare_queue))
1148                 list_for_each_entry_safe(d40d, _d,
1149                                          &d40c->prepare_queue, node) {
1150                         d40_desc_remove(d40d);
1151                         d40_desc_free(d40c, d40d);
1152                 }
1153
1154         d40c->pending_tx = 0;
1155 }
1156
1157 static void __d40_config_set_event(struct d40_chan *d40c,
1158                                    enum d40_events event_type, u32 event,
1159                                    int reg)
1160 {
1161         void __iomem *addr = chan_base(d40c) + reg;
1162         int tries;
1163         u32 status;
1164
1165         switch (event_type) {
1166
1167         case D40_DEACTIVATE_EVENTLINE:
1168
1169                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1170                        | ~D40_EVENTLINE_MASK(event), addr);
1171                 break;
1172
1173         case D40_SUSPEND_REQ_EVENTLINE:
1174                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1175                           D40_EVENTLINE_POS(event);
1176
1177                 if (status == D40_DEACTIVATE_EVENTLINE ||
1178                     status == D40_SUSPEND_REQ_EVENTLINE)
1179                         break;
1180
1181                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1182                        | ~D40_EVENTLINE_MASK(event), addr);
1183
1184                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1185
1186                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1187                                   D40_EVENTLINE_POS(event);
1188
1189                         cpu_relax();
1190                         /*
1191                          * Reduce the number of bus accesses while
1192                          * waiting for the DMA to suspend.
1193                          */
1194                         udelay(3);
1195
1196                         if (status == D40_DEACTIVATE_EVENTLINE)
1197                                 break;
1198                 }
1199
1200                 if (tries == D40_SUSPEND_MAX_IT) {
1201                         chan_err(d40c,
1202                                 "unable to stop the event_line chl %d (log: %d)"
1203                                 "status %x\n", d40c->phy_chan->num,
1204                                  d40c->log_num, status);
1205                 }
1206                 break;
1207
1208         case D40_ACTIVATE_EVENTLINE:
1209         /*
1210          * The hardware sometimes doesn't register the enable when src and dst
1211          * event lines are active on the same logical channel.  Retry to ensure
1212          * it does.  Usually only one retry is sufficient.
1213          */
1214                 tries = 100;
1215                 while (--tries) {
1216                         writel((D40_ACTIVATE_EVENTLINE <<
1217                                 D40_EVENTLINE_POS(event)) |
1218                                 ~D40_EVENTLINE_MASK(event), addr);
1219
1220                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1221                                 break;
1222                 }
1223
1224                 if (tries != 99)
1225                         dev_dbg(chan2dev(d40c),
1226                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1227                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1228                                 100 - tries);
1229
1230                 WARN_ON(!tries);
1231                 break;
1232
1233         case D40_ROUND_EVENTLINE:
1234                 BUG();
1235                 break;
1236
1237         }
1238 }
1239
1240 static void d40_config_set_event(struct d40_chan *d40c,
1241                                  enum d40_events event_type)
1242 {
1243         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1244
1245         /* Enable event line connected to device (or memcpy) */
1246         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1247             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1248                 __d40_config_set_event(d40c, event_type, event,
1249                                        D40_CHAN_REG_SSLNK);
1250
1251         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1252                 __d40_config_set_event(d40c, event_type, event,
1253                                        D40_CHAN_REG_SDLNK);
1254 }
1255
1256 static u32 d40_chan_has_events(struct d40_chan *d40c)
1257 {
1258         void __iomem *chanbase = chan_base(d40c);
1259         u32 val;
1260
1261         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1262         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1263
1264         return val;
1265 }
1266
1267 static int
1268 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1269 {
1270         unsigned long flags;
1271         int ret = 0;
1272         u32 active_status;
1273         void __iomem *active_reg;
1274
1275         if (d40c->phy_chan->num % 2 == 0)
1276                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1277         else
1278                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1279
1280
1281         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1282
1283         switch (command) {
1284         case D40_DMA_STOP:
1285         case D40_DMA_SUSPEND_REQ:
1286
1287                 active_status = (readl(active_reg) &
1288                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1289                                  D40_CHAN_POS(d40c->phy_chan->num);
1290
1291                 if (active_status == D40_DMA_RUN)
1292                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1293                 else
1294                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1295
1296                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1297                         ret = __d40_execute_command_phy(d40c, command);
1298
1299                 break;
1300
1301         case D40_DMA_RUN:
1302
1303                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1304                 ret = __d40_execute_command_phy(d40c, command);
1305                 break;
1306
1307         case D40_DMA_SUSPENDED:
1308                 BUG();
1309                 break;
1310         }
1311
1312         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1313         return ret;
1314 }
1315
1316 static int d40_channel_execute_command(struct d40_chan *d40c,
1317                                        enum d40_command command)
1318 {
1319         if (chan_is_logical(d40c))
1320                 return __d40_execute_command_log(d40c, command);
1321         else
1322                 return __d40_execute_command_phy(d40c, command);
1323 }
1324
1325 static u32 d40_get_prmo(struct d40_chan *d40c)
1326 {
1327         static const unsigned int phy_map[] = {
1328                 [STEDMA40_PCHAN_BASIC_MODE]
1329                         = D40_DREG_PRMO_PCHAN_BASIC,
1330                 [STEDMA40_PCHAN_MODULO_MODE]
1331                         = D40_DREG_PRMO_PCHAN_MODULO,
1332                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1333                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1334         };
1335         static const unsigned int log_map[] = {
1336                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1337                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1338                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1339                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1340                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1341                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1342         };
1343
1344         if (chan_is_physical(d40c))
1345                 return phy_map[d40c->dma_cfg.mode_opt];
1346         else
1347                 return log_map[d40c->dma_cfg.mode_opt];
1348 }
1349
1350 static void d40_config_write(struct d40_chan *d40c)
1351 {
1352         u32 addr_base;
1353         u32 var;
1354
1355         /* Odd addresses are even addresses + 4 */
1356         addr_base = (d40c->phy_chan->num % 2) * 4;
1357         /* Setup channel mode to logical or physical */
1358         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1359                 D40_CHAN_POS(d40c->phy_chan->num);
1360         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1361
1362         /* Setup operational mode option register */
1363         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1364
1365         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1366
1367         if (chan_is_logical(d40c)) {
1368                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1369                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1370                 void __iomem *chanbase = chan_base(d40c);
1371
1372                 /* Set default config for CFG reg */
1373                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1374                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1375
1376                 /* Set LIDX for lcla */
1377                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1378                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1379
1380                 /* Clear LNK which will be used by d40_chan_has_events() */
1381                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1382                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1383         }
1384 }
1385
1386 static u32 d40_residue(struct d40_chan *d40c)
1387 {
1388         u32 num_elt;
1389
1390         if (chan_is_logical(d40c))
1391                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1392                         >> D40_MEM_LCSP2_ECNT_POS;
1393         else {
1394                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1395                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1396                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1397         }
1398
1399         return num_elt * d40c->dma_cfg.dst_info.data_width;
1400 }
1401
1402 static bool d40_tx_is_linked(struct d40_chan *d40c)
1403 {
1404         bool is_link;
1405
1406         if (chan_is_logical(d40c))
1407                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1408         else
1409                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1410                           & D40_SREG_LNK_PHYS_LNK_MASK;
1411
1412         return is_link;
1413 }
1414
1415 static int d40_pause(struct dma_chan *chan)
1416 {
1417         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1418         int res = 0;
1419         unsigned long flags;
1420
1421         if (d40c->phy_chan == NULL) {
1422                 chan_err(d40c, "Channel is not allocated!\n");
1423                 return -EINVAL;
1424         }
1425
1426         if (!d40c->busy)
1427                 return 0;
1428
1429         spin_lock_irqsave(&d40c->lock, flags);
1430         pm_runtime_get_sync(d40c->base->dev);
1431
1432         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1433
1434         pm_runtime_mark_last_busy(d40c->base->dev);
1435         pm_runtime_put_autosuspend(d40c->base->dev);
1436         spin_unlock_irqrestore(&d40c->lock, flags);
1437         return res;
1438 }
1439
1440 static int d40_resume(struct dma_chan *chan)
1441 {
1442         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1443         int res = 0;
1444         unsigned long flags;
1445
1446         if (d40c->phy_chan == NULL) {
1447                 chan_err(d40c, "Channel is not allocated!\n");
1448                 return -EINVAL;
1449         }
1450
1451         if (!d40c->busy)
1452                 return 0;
1453
1454         spin_lock_irqsave(&d40c->lock, flags);
1455         pm_runtime_get_sync(d40c->base->dev);
1456
1457         /* If bytes left to transfer or linked tx resume job */
1458         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1459                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1460
1461         pm_runtime_mark_last_busy(d40c->base->dev);
1462         pm_runtime_put_autosuspend(d40c->base->dev);
1463         spin_unlock_irqrestore(&d40c->lock, flags);
1464         return res;
1465 }
1466
1467 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1468 {
1469         struct d40_chan *d40c = container_of(tx->chan,
1470                                              struct d40_chan,
1471                                              chan);
1472         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1473         unsigned long flags;
1474         dma_cookie_t cookie;
1475
1476         spin_lock_irqsave(&d40c->lock, flags);
1477         cookie = dma_cookie_assign(tx);
1478         d40_desc_queue(d40c, d40d);
1479         spin_unlock_irqrestore(&d40c->lock, flags);
1480
1481         return cookie;
1482 }
1483
1484 static int d40_start(struct d40_chan *d40c)
1485 {
1486         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1487 }
1488
1489 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1490 {
1491         struct d40_desc *d40d;
1492         int err;
1493
1494         /* Start queued jobs, if any */
1495         d40d = d40_first_queued(d40c);
1496
1497         if (d40d != NULL) {
1498                 if (!d40c->busy) {
1499                         d40c->busy = true;
1500                         pm_runtime_get_sync(d40c->base->dev);
1501                 }
1502
1503                 /* Remove from queue */
1504                 d40_desc_remove(d40d);
1505
1506                 /* Add to active queue */
1507                 d40_desc_submit(d40c, d40d);
1508
1509                 /* Initiate DMA job */
1510                 d40_desc_load(d40c, d40d);
1511
1512                 /* Start dma job */
1513                 err = d40_start(d40c);
1514
1515                 if (err)
1516                         return NULL;
1517         }
1518
1519         return d40d;
1520 }
1521
1522 /* called from interrupt context */
1523 static void dma_tc_handle(struct d40_chan *d40c)
1524 {
1525         struct d40_desc *d40d;
1526
1527         /* Get first active entry from list */
1528         d40d = d40_first_active_get(d40c);
1529
1530         if (d40d == NULL)
1531                 return;
1532
1533         if (d40d->cyclic) {
1534                 /*
1535                  * If this was a paritially loaded list, we need to reloaded
1536                  * it, and only when the list is completed.  We need to check
1537                  * for done because the interrupt will hit for every link, and
1538                  * not just the last one.
1539                  */
1540                 if (d40d->lli_current < d40d->lli_len
1541                     && !d40_tx_is_linked(d40c)
1542                     && !d40_residue(d40c)) {
1543                         d40_lcla_free_all(d40c, d40d);
1544                         d40_desc_load(d40c, d40d);
1545                         (void) d40_start(d40c);
1546
1547                         if (d40d->lli_current == d40d->lli_len)
1548                                 d40d->lli_current = 0;
1549                 }
1550         } else {
1551                 d40_lcla_free_all(d40c, d40d);
1552
1553                 if (d40d->lli_current < d40d->lli_len) {
1554                         d40_desc_load(d40c, d40d);
1555                         /* Start dma job */
1556                         (void) d40_start(d40c);
1557                         return;
1558                 }
1559
1560                 if (d40_queue_start(d40c) == NULL) {
1561                         d40c->busy = false;
1562
1563                         pm_runtime_mark_last_busy(d40c->base->dev);
1564                         pm_runtime_put_autosuspend(d40c->base->dev);
1565                 }
1566
1567                 d40_desc_remove(d40d);
1568                 d40_desc_done(d40c, d40d);
1569         }
1570
1571         d40c->pending_tx++;
1572         tasklet_schedule(&d40c->tasklet);
1573
1574 }
1575
1576 static void dma_tasklet(unsigned long data)
1577 {
1578         struct d40_chan *d40c = (struct d40_chan *) data;
1579         struct d40_desc *d40d;
1580         unsigned long flags;
1581         bool callback_active;
1582         struct dmaengine_desc_callback cb;
1583
1584         spin_lock_irqsave(&d40c->lock, flags);
1585
1586         /* Get first entry from the done list */
1587         d40d = d40_first_done(d40c);
1588         if (d40d == NULL) {
1589                 /* Check if we have reached here for cyclic job */
1590                 d40d = d40_first_active_get(d40c);
1591                 if (d40d == NULL || !d40d->cyclic)
1592                         goto check_pending_tx;
1593         }
1594
1595         if (!d40d->cyclic)
1596                 dma_cookie_complete(&d40d->txd);
1597
1598         /*
1599          * If terminating a channel pending_tx is set to zero.
1600          * This prevents any finished active jobs to return to the client.
1601          */
1602         if (d40c->pending_tx == 0) {
1603                 spin_unlock_irqrestore(&d40c->lock, flags);
1604                 return;
1605         }
1606
1607         /* Callback to client */
1608         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1609         dmaengine_desc_get_callback(&d40d->txd, &cb);
1610
1611         if (!d40d->cyclic) {
1612                 if (async_tx_test_ack(&d40d->txd)) {
1613                         d40_desc_remove(d40d);
1614                         d40_desc_free(d40c, d40d);
1615                 } else if (!d40d->is_in_client_list) {
1616                         d40_desc_remove(d40d);
1617                         d40_lcla_free_all(d40c, d40d);
1618                         list_add_tail(&d40d->node, &d40c->client);
1619                         d40d->is_in_client_list = true;
1620                 }
1621         }
1622
1623         d40c->pending_tx--;
1624
1625         if (d40c->pending_tx)
1626                 tasklet_schedule(&d40c->tasklet);
1627
1628         spin_unlock_irqrestore(&d40c->lock, flags);
1629
1630         if (callback_active)
1631                 dmaengine_desc_callback_invoke(&cb, NULL);
1632
1633         return;
1634  check_pending_tx:
1635         /* Rescue manouver if receiving double interrupts */
1636         if (d40c->pending_tx > 0)
1637                 d40c->pending_tx--;
1638         spin_unlock_irqrestore(&d40c->lock, flags);
1639 }
1640
1641 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1642 {
1643         int i;
1644         u32 idx;
1645         u32 row;
1646         long chan = -1;
1647         struct d40_chan *d40c;
1648         unsigned long flags;
1649         struct d40_base *base = data;
1650         u32 *regs = base->regs_interrupt;
1651         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1652         u32 il_size = base->gen_dmac.il_size;
1653
1654         spin_lock_irqsave(&base->interrupt_lock, flags);
1655
1656         /* Read interrupt status of both logical and physical channels */
1657         for (i = 0; i < il_size; i++)
1658                 regs[i] = readl(base->virtbase + il[i].src);
1659
1660         for (;;) {
1661
1662                 chan = find_next_bit((unsigned long *)regs,
1663                                      BITS_PER_LONG * il_size, chan + 1);
1664
1665                 /* No more set bits found? */
1666                 if (chan == BITS_PER_LONG * il_size)
1667                         break;
1668
1669                 row = chan / BITS_PER_LONG;
1670                 idx = chan & (BITS_PER_LONG - 1);
1671
1672                 if (il[row].offset == D40_PHY_CHAN)
1673                         d40c = base->lookup_phy_chans[idx];
1674                 else
1675                         d40c = base->lookup_log_chans[il[row].offset + idx];
1676
1677                 if (!d40c) {
1678                         /*
1679                          * No error because this can happen if something else
1680                          * in the system is using the channel.
1681                          */
1682                         continue;
1683                 }
1684
1685                 /* ACK interrupt */
1686                 writel(BIT(idx), base->virtbase + il[row].clr);
1687
1688                 spin_lock(&d40c->lock);
1689
1690                 if (!il[row].is_error)
1691                         dma_tc_handle(d40c);
1692                 else
1693                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1694                                 chan, il[row].offset, idx);
1695
1696                 spin_unlock(&d40c->lock);
1697         }
1698
1699         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1700
1701         return IRQ_HANDLED;
1702 }
1703
1704 static int d40_validate_conf(struct d40_chan *d40c,
1705                              struct stedma40_chan_cfg *conf)
1706 {
1707         int res = 0;
1708         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1709
1710         if (!conf->dir) {
1711                 chan_err(d40c, "Invalid direction.\n");
1712                 res = -EINVAL;
1713         }
1714
1715         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1716             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1717             (conf->dev_type < 0)) {
1718                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1719                 res = -EINVAL;
1720         }
1721
1722         if (conf->dir == DMA_DEV_TO_DEV) {
1723                 /*
1724                  * DMAC HW supports it. Will be added to this driver,
1725                  * in case any dma client requires it.
1726                  */
1727                 chan_err(d40c, "periph to periph not supported\n");
1728                 res = -EINVAL;
1729         }
1730
1731         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1732             conf->src_info.data_width !=
1733             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1734             conf->dst_info.data_width) {
1735                 /*
1736                  * The DMAC hardware only supports
1737                  * src (burst x width) == dst (burst x width)
1738                  */
1739
1740                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1741                 res = -EINVAL;
1742         }
1743
1744         return res;
1745 }
1746
1747 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1748                                bool is_src, int log_event_line, bool is_log,
1749                                bool *first_user)
1750 {
1751         unsigned long flags;
1752         spin_lock_irqsave(&phy->lock, flags);
1753
1754         *first_user = ((phy->allocated_src | phy->allocated_dst)
1755                         == D40_ALLOC_FREE);
1756
1757         if (!is_log) {
1758                 /* Physical interrupts are masked per physical full channel */
1759                 if (phy->allocated_src == D40_ALLOC_FREE &&
1760                     phy->allocated_dst == D40_ALLOC_FREE) {
1761                         phy->allocated_dst = D40_ALLOC_PHY;
1762                         phy->allocated_src = D40_ALLOC_PHY;
1763                         goto found_unlock;
1764                 } else
1765                         goto not_found_unlock;
1766         }
1767
1768         /* Logical channel */
1769         if (is_src) {
1770                 if (phy->allocated_src == D40_ALLOC_PHY)
1771                         goto not_found_unlock;
1772
1773                 if (phy->allocated_src == D40_ALLOC_FREE)
1774                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1775
1776                 if (!(phy->allocated_src & BIT(log_event_line))) {
1777                         phy->allocated_src |= BIT(log_event_line);
1778                         goto found_unlock;
1779                 } else
1780                         goto not_found_unlock;
1781         } else {
1782                 if (phy->allocated_dst == D40_ALLOC_PHY)
1783                         goto not_found_unlock;
1784
1785                 if (phy->allocated_dst == D40_ALLOC_FREE)
1786                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1787
1788                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1789                         phy->allocated_dst |= BIT(log_event_line);
1790                         goto found_unlock;
1791                 }
1792         }
1793  not_found_unlock:
1794         spin_unlock_irqrestore(&phy->lock, flags);
1795         return false;
1796  found_unlock:
1797         spin_unlock_irqrestore(&phy->lock, flags);
1798         return true;
1799 }
1800
1801 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1802                                int log_event_line)
1803 {
1804         unsigned long flags;
1805         bool is_free = false;
1806
1807         spin_lock_irqsave(&phy->lock, flags);
1808         if (!log_event_line) {
1809                 phy->allocated_dst = D40_ALLOC_FREE;
1810                 phy->allocated_src = D40_ALLOC_FREE;
1811                 is_free = true;
1812                 goto unlock;
1813         }
1814
1815         /* Logical channel */
1816         if (is_src) {
1817                 phy->allocated_src &= ~BIT(log_event_line);
1818                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1819                         phy->allocated_src = D40_ALLOC_FREE;
1820         } else {
1821                 phy->allocated_dst &= ~BIT(log_event_line);
1822                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1823                         phy->allocated_dst = D40_ALLOC_FREE;
1824         }
1825
1826         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1827                    D40_ALLOC_FREE);
1828  unlock:
1829         spin_unlock_irqrestore(&phy->lock, flags);
1830
1831         return is_free;
1832 }
1833
1834 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1835 {
1836         int dev_type = d40c->dma_cfg.dev_type;
1837         int event_group;
1838         int event_line;
1839         struct d40_phy_res *phys;
1840         int i;
1841         int j;
1842         int log_num;
1843         int num_phy_chans;
1844         bool is_src;
1845         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1846
1847         phys = d40c->base->phy_res;
1848         num_phy_chans = d40c->base->num_phy_chans;
1849
1850         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1851                 log_num = 2 * dev_type;
1852                 is_src = true;
1853         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1854                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1855                 /* dst event lines are used for logical memcpy */
1856                 log_num = 2 * dev_type + 1;
1857                 is_src = false;
1858         } else
1859                 return -EINVAL;
1860
1861         event_group = D40_TYPE_TO_GROUP(dev_type);
1862         event_line = D40_TYPE_TO_EVENT(dev_type);
1863
1864         if (!is_log) {
1865                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866                         /* Find physical half channel */
1867                         if (d40c->dma_cfg.use_fixed_channel) {
1868                                 i = d40c->dma_cfg.phy_channel;
1869                                 if (d40_alloc_mask_set(&phys[i], is_src,
1870                                                        0, is_log,
1871                                                        first_phy_user))
1872                                         goto found_phy;
1873                         } else {
1874                                 for (i = 0; i < num_phy_chans; i++) {
1875                                         if (d40_alloc_mask_set(&phys[i], is_src,
1876                                                        0, is_log,
1877                                                        first_phy_user))
1878                                                 goto found_phy;
1879                                 }
1880                         }
1881                 } else
1882                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1883                                 int phy_num = j  + event_group * 2;
1884                                 for (i = phy_num; i < phy_num + 2; i++) {
1885                                         if (d40_alloc_mask_set(&phys[i],
1886                                                                is_src,
1887                                                                0,
1888                                                                is_log,
1889                                                                first_phy_user))
1890                                                 goto found_phy;
1891                                 }
1892                         }
1893                 return -EINVAL;
1894 found_phy:
1895                 d40c->phy_chan = &phys[i];
1896                 d40c->log_num = D40_PHY_CHAN;
1897                 goto out;
1898         }
1899         if (dev_type == -1)
1900                 return -EINVAL;
1901
1902         /* Find logical channel */
1903         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1904                 int phy_num = j + event_group * 2;
1905
1906                 if (d40c->dma_cfg.use_fixed_channel) {
1907                         i = d40c->dma_cfg.phy_channel;
1908
1909                         if ((i != phy_num) && (i != phy_num + 1)) {
1910                                 dev_err(chan2dev(d40c),
1911                                         "invalid fixed phy channel %d\n", i);
1912                                 return -EINVAL;
1913                         }
1914
1915                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1916                                                is_log, first_phy_user))
1917                                 goto found_log;
1918
1919                         dev_err(chan2dev(d40c),
1920                                 "could not allocate fixed phy channel %d\n", i);
1921                         return -EINVAL;
1922                 }
1923
1924                 /*
1925                  * Spread logical channels across all available physical rather
1926                  * than pack every logical channel at the first available phy
1927                  * channels.
1928                  */
1929                 if (is_src) {
1930                         for (i = phy_num; i < phy_num + 2; i++) {
1931                                 if (d40_alloc_mask_set(&phys[i], is_src,
1932                                                        event_line, is_log,
1933                                                        first_phy_user))
1934                                         goto found_log;
1935                         }
1936                 } else {
1937                         for (i = phy_num + 1; i >= phy_num; i--) {
1938                                 if (d40_alloc_mask_set(&phys[i], is_src,
1939                                                        event_line, is_log,
1940                                                        first_phy_user))
1941                                         goto found_log;
1942                         }
1943                 }
1944         }
1945         return -EINVAL;
1946
1947 found_log:
1948         d40c->phy_chan = &phys[i];
1949         d40c->log_num = log_num;
1950 out:
1951
1952         if (is_log)
1953                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1954         else
1955                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1956
1957         return 0;
1958
1959 }
1960
1961 static int d40_config_memcpy(struct d40_chan *d40c)
1962 {
1963         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1964
1965         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1966                 d40c->dma_cfg = dma40_memcpy_conf_log;
1967                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1968
1969                 d40_log_cfg(&d40c->dma_cfg,
1970                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1971
1972         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1973                    dma_has_cap(DMA_SLAVE, cap)) {
1974                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1975
1976                 /* Generate interrrupt at end of transfer or relink. */
1977                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1978
1979                 /* Generate interrupt on error. */
1980                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1981                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1982
1983         } else {
1984                 chan_err(d40c, "No memcpy\n");
1985                 return -EINVAL;
1986         }
1987
1988         return 0;
1989 }
1990
1991 static int d40_free_dma(struct d40_chan *d40c)
1992 {
1993
1994         int res = 0;
1995         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1996         struct d40_phy_res *phy = d40c->phy_chan;
1997         bool is_src;
1998
1999         /* Terminate all queued and active transfers */
2000         d40_term_all(d40c);
2001
2002         if (phy == NULL) {
2003                 chan_err(d40c, "phy == null\n");
2004                 return -EINVAL;
2005         }
2006
2007         if (phy->allocated_src == D40_ALLOC_FREE &&
2008             phy->allocated_dst == D40_ALLOC_FREE) {
2009                 chan_err(d40c, "channel already free\n");
2010                 return -EINVAL;
2011         }
2012
2013         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2014             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2015                 is_src = false;
2016         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2017                 is_src = true;
2018         else {
2019                 chan_err(d40c, "Unknown direction\n");
2020                 return -EINVAL;
2021         }
2022
2023         pm_runtime_get_sync(d40c->base->dev);
2024         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2025         if (res) {
2026                 chan_err(d40c, "stop failed\n");
2027                 goto mark_last_busy;
2028         }
2029
2030         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2031
2032         if (chan_is_logical(d40c))
2033                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2034         else
2035                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2036
2037         if (d40c->busy) {
2038                 pm_runtime_mark_last_busy(d40c->base->dev);
2039                 pm_runtime_put_autosuspend(d40c->base->dev);
2040         }
2041
2042         d40c->busy = false;
2043         d40c->phy_chan = NULL;
2044         d40c->configured = false;
2045  mark_last_busy:
2046         pm_runtime_mark_last_busy(d40c->base->dev);
2047         pm_runtime_put_autosuspend(d40c->base->dev);
2048         return res;
2049 }
2050
2051 static bool d40_is_paused(struct d40_chan *d40c)
2052 {
2053         void __iomem *chanbase = chan_base(d40c);
2054         bool is_paused = false;
2055         unsigned long flags;
2056         void __iomem *active_reg;
2057         u32 status;
2058         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2059
2060         spin_lock_irqsave(&d40c->lock, flags);
2061
2062         if (chan_is_physical(d40c)) {
2063                 if (d40c->phy_chan->num % 2 == 0)
2064                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2065                 else
2066                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2067
2068                 status = (readl(active_reg) &
2069                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2070                         D40_CHAN_POS(d40c->phy_chan->num);
2071                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2072                         is_paused = true;
2073                 goto unlock;
2074         }
2075
2076         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2077             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2078                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2079         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2080                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2081         } else {
2082                 chan_err(d40c, "Unknown direction\n");
2083                 goto unlock;
2084         }
2085
2086         status = (status & D40_EVENTLINE_MASK(event)) >>
2087                 D40_EVENTLINE_POS(event);
2088
2089         if (status != D40_DMA_RUN)
2090                 is_paused = true;
2091  unlock:
2092         spin_unlock_irqrestore(&d40c->lock, flags);
2093         return is_paused;
2094
2095 }
2096
2097 static u32 stedma40_residue(struct dma_chan *chan)
2098 {
2099         struct d40_chan *d40c =
2100                 container_of(chan, struct d40_chan, chan);
2101         u32 bytes_left;
2102         unsigned long flags;
2103
2104         spin_lock_irqsave(&d40c->lock, flags);
2105         bytes_left = d40_residue(d40c);
2106         spin_unlock_irqrestore(&d40c->lock, flags);
2107
2108         return bytes_left;
2109 }
2110
2111 static int
2112 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2113                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2114                 unsigned int sg_len, dma_addr_t src_dev_addr,
2115                 dma_addr_t dst_dev_addr)
2116 {
2117         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2118         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2119         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2120         int ret;
2121
2122         ret = d40_log_sg_to_lli(sg_src, sg_len,
2123                                 src_dev_addr,
2124                                 desc->lli_log.src,
2125                                 chan->log_def.lcsp1,
2126                                 src_info->data_width,
2127                                 dst_info->data_width);
2128
2129         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2130                                 dst_dev_addr,
2131                                 desc->lli_log.dst,
2132                                 chan->log_def.lcsp3,
2133                                 dst_info->data_width,
2134                                 src_info->data_width);
2135
2136         return ret < 0 ? ret : 0;
2137 }
2138
2139 static int
2140 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2141                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2142                 unsigned int sg_len, dma_addr_t src_dev_addr,
2143                 dma_addr_t dst_dev_addr)
2144 {
2145         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2146         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2147         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2148         unsigned long flags = 0;
2149         int ret;
2150
2151         if (desc->cyclic)
2152                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2153
2154         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2155                                 desc->lli_phy.src,
2156                                 virt_to_phys(desc->lli_phy.src),
2157                                 chan->src_def_cfg,
2158                                 src_info, dst_info, flags);
2159
2160         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2161                                 desc->lli_phy.dst,
2162                                 virt_to_phys(desc->lli_phy.dst),
2163                                 chan->dst_def_cfg,
2164                                 dst_info, src_info, flags);
2165
2166         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2167                                    desc->lli_pool.size, DMA_TO_DEVICE);
2168
2169         return ret < 0 ? ret : 0;
2170 }
2171
2172 static struct d40_desc *
2173 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2174               unsigned int sg_len, unsigned long dma_flags)
2175 {
2176         struct stedma40_chan_cfg *cfg;
2177         struct d40_desc *desc;
2178         int ret;
2179
2180         desc = d40_desc_get(chan);
2181         if (!desc)
2182                 return NULL;
2183
2184         cfg = &chan->dma_cfg;
2185         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2186                                         cfg->dst_info.data_width);
2187         if (desc->lli_len < 0) {
2188                 chan_err(chan, "Unaligned size\n");
2189                 goto free_desc;
2190         }
2191
2192         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2193         if (ret < 0) {
2194                 chan_err(chan, "Could not allocate lli\n");
2195                 goto free_desc;
2196         }
2197
2198         desc->lli_current = 0;
2199         desc->txd.flags = dma_flags;
2200         desc->txd.tx_submit = d40_tx_submit;
2201
2202         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2203
2204         return desc;
2205  free_desc:
2206         d40_desc_free(chan, desc);
2207         return NULL;
2208 }
2209
2210 static struct dma_async_tx_descriptor *
2211 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2212             struct scatterlist *sg_dst, unsigned int sg_len,
2213             enum dma_transfer_direction direction, unsigned long dma_flags)
2214 {
2215         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2216         dma_addr_t src_dev_addr;
2217         dma_addr_t dst_dev_addr;
2218         struct d40_desc *desc;
2219         unsigned long flags;
2220         int ret;
2221
2222         if (!chan->phy_chan) {
2223                 chan_err(chan, "Cannot prepare unallocated channel\n");
2224                 return NULL;
2225         }
2226
2227         d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2228
2229         spin_lock_irqsave(&chan->lock, flags);
2230
2231         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2232         if (desc == NULL)
2233                 goto unlock;
2234
2235         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2236                 desc->cyclic = true;
2237
2238         src_dev_addr = 0;
2239         dst_dev_addr = 0;
2240         if (direction == DMA_DEV_TO_MEM)
2241                 src_dev_addr = chan->runtime_addr;
2242         else if (direction == DMA_MEM_TO_DEV)
2243                 dst_dev_addr = chan->runtime_addr;
2244
2245         if (chan_is_logical(chan))
2246                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2247                                       sg_len, src_dev_addr, dst_dev_addr);
2248         else
2249                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2250                                       sg_len, src_dev_addr, dst_dev_addr);
2251
2252         if (ret) {
2253                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2254                          chan_is_logical(chan) ? "log" : "phy", ret);
2255                 goto free_desc;
2256         }
2257
2258         /*
2259          * add descriptor to the prepare queue in order to be able
2260          * to free them later in terminate_all
2261          */
2262         list_add_tail(&desc->node, &chan->prepare_queue);
2263
2264         spin_unlock_irqrestore(&chan->lock, flags);
2265
2266         return &desc->txd;
2267  free_desc:
2268         d40_desc_free(chan, desc);
2269  unlock:
2270         spin_unlock_irqrestore(&chan->lock, flags);
2271         return NULL;
2272 }
2273
2274 bool stedma40_filter(struct dma_chan *chan, void *data)
2275 {
2276         struct stedma40_chan_cfg *info = data;
2277         struct d40_chan *d40c =
2278                 container_of(chan, struct d40_chan, chan);
2279         int err;
2280
2281         if (data) {
2282                 err = d40_validate_conf(d40c, info);
2283                 if (!err)
2284                         d40c->dma_cfg = *info;
2285         } else
2286                 err = d40_config_memcpy(d40c);
2287
2288         if (!err)
2289                 d40c->configured = true;
2290
2291         return err == 0;
2292 }
2293 EXPORT_SYMBOL(stedma40_filter);
2294
2295 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2296 {
2297         bool realtime = d40c->dma_cfg.realtime;
2298         bool highprio = d40c->dma_cfg.high_priority;
2299         u32 rtreg;
2300         u32 event = D40_TYPE_TO_EVENT(dev_type);
2301         u32 group = D40_TYPE_TO_GROUP(dev_type);
2302         u32 bit = BIT(event);
2303         u32 prioreg;
2304         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2305
2306         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2307         /*
2308          * Due to a hardware bug, in some cases a logical channel triggered by
2309          * a high priority destination event line can generate extra packet
2310          * transactions.
2311          *
2312          * The workaround is to not set the high priority level for the
2313          * destination event lines that trigger logical channels.
2314          */
2315         if (!src && chan_is_logical(d40c))
2316                 highprio = false;
2317
2318         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2319
2320         /* Destination event lines are stored in the upper halfword */
2321         if (!src)
2322                 bit <<= 16;
2323
2324         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2325         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2326 }
2327
2328 static void d40_set_prio_realtime(struct d40_chan *d40c)
2329 {
2330         if (d40c->base->rev < 3)
2331                 return;
2332
2333         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2334             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2335                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2336
2337         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2338             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2339                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2340 }
2341
2342 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2343 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2344 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2345 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2346 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2347
2348 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2349                                   struct of_dma *ofdma)
2350 {
2351         struct stedma40_chan_cfg cfg;
2352         dma_cap_mask_t cap;
2353         u32 flags;
2354
2355         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2356
2357         dma_cap_zero(cap);
2358         dma_cap_set(DMA_SLAVE, cap);
2359
2360         cfg.dev_type = dma_spec->args[0];
2361         flags = dma_spec->args[2];
2362
2363         switch (D40_DT_FLAGS_MODE(flags)) {
2364         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2365         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2366         }
2367
2368         switch (D40_DT_FLAGS_DIR(flags)) {
2369         case 0:
2370                 cfg.dir = DMA_MEM_TO_DEV;
2371                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2372                 break;
2373         case 1:
2374                 cfg.dir = DMA_DEV_TO_MEM;
2375                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2376                 break;
2377         }
2378
2379         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2380                 cfg.phy_channel = dma_spec->args[1];
2381                 cfg.use_fixed_channel = true;
2382         }
2383
2384         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2385                 cfg.high_priority = true;
2386
2387         return dma_request_channel(cap, stedma40_filter, &cfg);
2388 }
2389
2390 /* DMA ENGINE functions */
2391 static int d40_alloc_chan_resources(struct dma_chan *chan)
2392 {
2393         int err;
2394         unsigned long flags;
2395         struct d40_chan *d40c =
2396                 container_of(chan, struct d40_chan, chan);
2397         bool is_free_phy;
2398         spin_lock_irqsave(&d40c->lock, flags);
2399
2400         dma_cookie_init(chan);
2401
2402         /* If no dma configuration is set use default configuration (memcpy) */
2403         if (!d40c->configured) {
2404                 err = d40_config_memcpy(d40c);
2405                 if (err) {
2406                         chan_err(d40c, "Failed to configure memcpy channel\n");
2407                         goto mark_last_busy;
2408                 }
2409         }
2410
2411         err = d40_allocate_channel(d40c, &is_free_phy);
2412         if (err) {
2413                 chan_err(d40c, "Failed to allocate channel\n");
2414                 d40c->configured = false;
2415                 goto mark_last_busy;
2416         }
2417
2418         pm_runtime_get_sync(d40c->base->dev);
2419
2420         d40_set_prio_realtime(d40c);
2421
2422         if (chan_is_logical(d40c)) {
2423                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2424                         d40c->lcpa = d40c->base->lcpa_base +
2425                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2426                 else
2427                         d40c->lcpa = d40c->base->lcpa_base +
2428                                 d40c->dma_cfg.dev_type *
2429                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2430
2431                 /* Unmask the Global Interrupt Mask. */
2432                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2433                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2434         }
2435
2436         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2437                  chan_is_logical(d40c) ? "logical" : "physical",
2438                  d40c->phy_chan->num,
2439                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2440
2441
2442         /*
2443          * Only write channel configuration to the DMA if the physical
2444          * resource is free. In case of multiple logical channels
2445          * on the same physical resource, only the first write is necessary.
2446          */
2447         if (is_free_phy)
2448                 d40_config_write(d40c);
2449  mark_last_busy:
2450         pm_runtime_mark_last_busy(d40c->base->dev);
2451         pm_runtime_put_autosuspend(d40c->base->dev);
2452         spin_unlock_irqrestore(&d40c->lock, flags);
2453         return err;
2454 }
2455
2456 static void d40_free_chan_resources(struct dma_chan *chan)
2457 {
2458         struct d40_chan *d40c =
2459                 container_of(chan, struct d40_chan, chan);
2460         int err;
2461         unsigned long flags;
2462
2463         if (d40c->phy_chan == NULL) {
2464                 chan_err(d40c, "Cannot free unallocated channel\n");
2465                 return;
2466         }
2467
2468         spin_lock_irqsave(&d40c->lock, flags);
2469
2470         err = d40_free_dma(d40c);
2471
2472         if (err)
2473                 chan_err(d40c, "Failed to free channel\n");
2474         spin_unlock_irqrestore(&d40c->lock, flags);
2475 }
2476
2477 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2478                                                        dma_addr_t dst,
2479                                                        dma_addr_t src,
2480                                                        size_t size,
2481                                                        unsigned long dma_flags)
2482 {
2483         struct scatterlist dst_sg;
2484         struct scatterlist src_sg;
2485
2486         sg_init_table(&dst_sg, 1);
2487         sg_init_table(&src_sg, 1);
2488
2489         sg_dma_address(&dst_sg) = dst;
2490         sg_dma_address(&src_sg) = src;
2491
2492         sg_dma_len(&dst_sg) = size;
2493         sg_dma_len(&src_sg) = size;
2494
2495         return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2496                            DMA_MEM_TO_MEM, dma_flags);
2497 }
2498
2499 static struct dma_async_tx_descriptor *
2500 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2501                   unsigned int sg_len, enum dma_transfer_direction direction,
2502                   unsigned long dma_flags, void *context)
2503 {
2504         if (!is_slave_direction(direction))
2505                 return NULL;
2506
2507         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2508 }
2509
2510 static struct dma_async_tx_descriptor *
2511 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2512                      size_t buf_len, size_t period_len,
2513                      enum dma_transfer_direction direction, unsigned long flags)
2514 {
2515         unsigned int periods = buf_len / period_len;
2516         struct dma_async_tx_descriptor *txd;
2517         struct scatterlist *sg;
2518         int i;
2519
2520         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2521         if (!sg)
2522                 return NULL;
2523
2524         for (i = 0; i < periods; i++) {
2525                 sg_dma_address(&sg[i]) = dma_addr;
2526                 sg_dma_len(&sg[i]) = period_len;
2527                 dma_addr += period_len;
2528         }
2529
2530         sg_chain(sg, periods + 1, sg);
2531
2532         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2533                           DMA_PREP_INTERRUPT);
2534
2535         kfree(sg);
2536
2537         return txd;
2538 }
2539
2540 static enum dma_status d40_tx_status(struct dma_chan *chan,
2541                                      dma_cookie_t cookie,
2542                                      struct dma_tx_state *txstate)
2543 {
2544         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2545         enum dma_status ret;
2546
2547         if (d40c->phy_chan == NULL) {
2548                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2549                 return -EINVAL;
2550         }
2551
2552         ret = dma_cookie_status(chan, cookie, txstate);
2553         if (ret != DMA_COMPLETE && txstate)
2554                 dma_set_residue(txstate, stedma40_residue(chan));
2555
2556         if (d40_is_paused(d40c))
2557                 ret = DMA_PAUSED;
2558
2559         return ret;
2560 }
2561
2562 static void d40_issue_pending(struct dma_chan *chan)
2563 {
2564         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2565         unsigned long flags;
2566
2567         if (d40c->phy_chan == NULL) {
2568                 chan_err(d40c, "Channel is not allocated!\n");
2569                 return;
2570         }
2571
2572         spin_lock_irqsave(&d40c->lock, flags);
2573
2574         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2575
2576         /* Busy means that queued jobs are already being processed */
2577         if (!d40c->busy)
2578                 (void) d40_queue_start(d40c);
2579
2580         spin_unlock_irqrestore(&d40c->lock, flags);
2581 }
2582
2583 static int d40_terminate_all(struct dma_chan *chan)
2584 {
2585         unsigned long flags;
2586         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2587         int ret;
2588
2589         if (d40c->phy_chan == NULL) {
2590                 chan_err(d40c, "Channel is not allocated!\n");
2591                 return -EINVAL;
2592         }
2593
2594         spin_lock_irqsave(&d40c->lock, flags);
2595
2596         pm_runtime_get_sync(d40c->base->dev);
2597         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2598         if (ret)
2599                 chan_err(d40c, "Failed to stop channel\n");
2600
2601         d40_term_all(d40c);
2602         pm_runtime_mark_last_busy(d40c->base->dev);
2603         pm_runtime_put_autosuspend(d40c->base->dev);
2604         if (d40c->busy) {
2605                 pm_runtime_mark_last_busy(d40c->base->dev);
2606                 pm_runtime_put_autosuspend(d40c->base->dev);
2607         }
2608         d40c->busy = false;
2609
2610         spin_unlock_irqrestore(&d40c->lock, flags);
2611         return 0;
2612 }
2613
2614 static int
2615 dma40_config_to_halfchannel(struct d40_chan *d40c,
2616                             struct stedma40_half_channel_info *info,
2617                             u32 maxburst)
2618 {
2619         int psize;
2620
2621         if (chan_is_logical(d40c)) {
2622                 if (maxburst >= 16)
2623                         psize = STEDMA40_PSIZE_LOG_16;
2624                 else if (maxburst >= 8)
2625                         psize = STEDMA40_PSIZE_LOG_8;
2626                 else if (maxburst >= 4)
2627                         psize = STEDMA40_PSIZE_LOG_4;
2628                 else
2629                         psize = STEDMA40_PSIZE_LOG_1;
2630         } else {
2631                 if (maxburst >= 16)
2632                         psize = STEDMA40_PSIZE_PHY_16;
2633                 else if (maxburst >= 8)
2634                         psize = STEDMA40_PSIZE_PHY_8;
2635                 else if (maxburst >= 4)
2636                         psize = STEDMA40_PSIZE_PHY_4;
2637                 else
2638                         psize = STEDMA40_PSIZE_PHY_1;
2639         }
2640
2641         info->psize = psize;
2642         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2643
2644         return 0;
2645 }
2646
2647 static int d40_set_runtime_config(struct dma_chan *chan,
2648                                   struct dma_slave_config *config)
2649 {
2650         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2651
2652         memcpy(&d40c->slave_config, config, sizeof(*config));
2653
2654         return 0;
2655 }
2656
2657 /* Runtime reconfiguration extension */
2658 static int d40_set_runtime_config_write(struct dma_chan *chan,
2659                                   struct dma_slave_config *config,
2660                                   enum dma_transfer_direction direction)
2661 {
2662         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2663         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2664         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2665         dma_addr_t config_addr;
2666         u32 src_maxburst, dst_maxburst;
2667         int ret;
2668
2669         if (d40c->phy_chan == NULL) {
2670                 chan_err(d40c, "Channel is not allocated!\n");
2671                 return -EINVAL;
2672         }
2673
2674         src_addr_width = config->src_addr_width;
2675         src_maxburst = config->src_maxburst;
2676         dst_addr_width = config->dst_addr_width;
2677         dst_maxburst = config->dst_maxburst;
2678
2679         if (direction == DMA_DEV_TO_MEM) {
2680                 config_addr = config->src_addr;
2681
2682                 if (cfg->dir != DMA_DEV_TO_MEM)
2683                         dev_dbg(d40c->base->dev,
2684                                 "channel was not configured for peripheral "
2685                                 "to memory transfer (%d) overriding\n",
2686                                 cfg->dir);
2687                 cfg->dir = DMA_DEV_TO_MEM;
2688
2689                 /* Configure the memory side */
2690                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2691                         dst_addr_width = src_addr_width;
2692                 if (dst_maxburst == 0)
2693                         dst_maxburst = src_maxburst;
2694
2695         } else if (direction == DMA_MEM_TO_DEV) {
2696                 config_addr = config->dst_addr;
2697
2698                 if (cfg->dir != DMA_MEM_TO_DEV)
2699                         dev_dbg(d40c->base->dev,
2700                                 "channel was not configured for memory "
2701                                 "to peripheral transfer (%d) overriding\n",
2702                                 cfg->dir);
2703                 cfg->dir = DMA_MEM_TO_DEV;
2704
2705                 /* Configure the memory side */
2706                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2707                         src_addr_width = dst_addr_width;
2708                 if (src_maxburst == 0)
2709                         src_maxburst = dst_maxburst;
2710         } else {
2711                 dev_err(d40c->base->dev,
2712                         "unrecognized channel direction %d\n",
2713                         direction);
2714                 return -EINVAL;
2715         }
2716
2717         if (config_addr <= 0) {
2718                 dev_err(d40c->base->dev, "no address supplied\n");
2719                 return -EINVAL;
2720         }
2721
2722         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2723                 dev_err(d40c->base->dev,
2724                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2725                         src_maxburst,
2726                         src_addr_width,
2727                         dst_maxburst,
2728                         dst_addr_width);
2729                 return -EINVAL;
2730         }
2731
2732         if (src_maxburst > 16) {
2733                 src_maxburst = 16;
2734                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2735         } else if (dst_maxburst > 16) {
2736                 dst_maxburst = 16;
2737                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2738         }
2739
2740         /* Only valid widths are; 1, 2, 4 and 8. */
2741         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2744             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2745             !is_power_of_2(src_addr_width) ||
2746             !is_power_of_2(dst_addr_width))
2747                 return -EINVAL;
2748
2749         cfg->src_info.data_width = src_addr_width;
2750         cfg->dst_info.data_width = dst_addr_width;
2751
2752         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2753                                           src_maxburst);
2754         if (ret)
2755                 return ret;
2756
2757         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2758                                           dst_maxburst);
2759         if (ret)
2760                 return ret;
2761
2762         /* Fill in register values */
2763         if (chan_is_logical(d40c))
2764                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2765         else
2766                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2767
2768         /* These settings will take precedence later */
2769         d40c->runtime_addr = config_addr;
2770         d40c->runtime_direction = direction;
2771         dev_dbg(d40c->base->dev,
2772                 "configured channel %s for %s, data width %d/%d, "
2773                 "maxburst %d/%d elements, LE, no flow control\n",
2774                 dma_chan_name(chan),
2775                 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2776                 src_addr_width, dst_addr_width,
2777                 src_maxburst, dst_maxburst);
2778
2779         return 0;
2780 }
2781
2782 /* Initialization functions */
2783
2784 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2785                                  struct d40_chan *chans, int offset,
2786                                  int num_chans)
2787 {
2788         int i = 0;
2789         struct d40_chan *d40c;
2790
2791         INIT_LIST_HEAD(&dma->channels);
2792
2793         for (i = offset; i < offset + num_chans; i++) {
2794                 d40c = &chans[i];
2795                 d40c->base = base;
2796                 d40c->chan.device = dma;
2797
2798                 spin_lock_init(&d40c->lock);
2799
2800                 d40c->log_num = D40_PHY_CHAN;
2801
2802                 INIT_LIST_HEAD(&d40c->done);
2803                 INIT_LIST_HEAD(&d40c->active);
2804                 INIT_LIST_HEAD(&d40c->queue);
2805                 INIT_LIST_HEAD(&d40c->pending_queue);
2806                 INIT_LIST_HEAD(&d40c->client);
2807                 INIT_LIST_HEAD(&d40c->prepare_queue);
2808
2809                 tasklet_init(&d40c->tasklet, dma_tasklet,
2810                              (unsigned long) d40c);
2811
2812                 list_add_tail(&d40c->chan.device_node,
2813                               &dma->channels);
2814         }
2815 }
2816
2817 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2818 {
2819         if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2820                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2821                 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2822         }
2823
2824         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2825                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2826                 dev->directions = BIT(DMA_MEM_TO_MEM);
2827                 /*
2828                  * This controller can only access address at even
2829                  * 32bit boundaries, i.e. 2^2
2830                  */
2831                 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2832         }
2833
2834         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2835                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2836
2837         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2838         dev->device_free_chan_resources = d40_free_chan_resources;
2839         dev->device_issue_pending = d40_issue_pending;
2840         dev->device_tx_status = d40_tx_status;
2841         dev->device_config = d40_set_runtime_config;
2842         dev->device_pause = d40_pause;
2843         dev->device_resume = d40_resume;
2844         dev->device_terminate_all = d40_terminate_all;
2845         dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2846         dev->dev = base->dev;
2847 }
2848
2849 static int __init d40_dmaengine_init(struct d40_base *base,
2850                                      int num_reserved_chans)
2851 {
2852         int err ;
2853
2854         d40_chan_init(base, &base->dma_slave, base->log_chans,
2855                       0, base->num_log_chans);
2856
2857         dma_cap_zero(base->dma_slave.cap_mask);
2858         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2859         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2860
2861         d40_ops_init(base, &base->dma_slave);
2862
2863         err = dmaenginem_async_device_register(&base->dma_slave);
2864
2865         if (err) {
2866                 d40_err(base->dev, "Failed to register slave channels\n");
2867                 goto exit;
2868         }
2869
2870         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2871                       base->num_log_chans, base->num_memcpy_chans);
2872
2873         dma_cap_zero(base->dma_memcpy.cap_mask);
2874         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2875
2876         d40_ops_init(base, &base->dma_memcpy);
2877
2878         err = dmaenginem_async_device_register(&base->dma_memcpy);
2879
2880         if (err) {
2881                 d40_err(base->dev,
2882                         "Failed to register memcpy only channels\n");
2883                 goto exit;
2884         }
2885
2886         d40_chan_init(base, &base->dma_both, base->phy_chans,
2887                       0, num_reserved_chans);
2888
2889         dma_cap_zero(base->dma_both.cap_mask);
2890         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2891         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2892         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2893
2894         d40_ops_init(base, &base->dma_both);
2895         err = dmaenginem_async_device_register(&base->dma_both);
2896
2897         if (err) {
2898                 d40_err(base->dev,
2899                         "Failed to register logical and physical capable channels\n");
2900                 goto exit;
2901         }
2902         return 0;
2903  exit:
2904         return err;
2905 }
2906
2907 /* Suspend resume functionality */
2908 #ifdef CONFIG_PM_SLEEP
2909 static int dma40_suspend(struct device *dev)
2910 {
2911         struct d40_base *base = dev_get_drvdata(dev);
2912         int ret;
2913
2914         ret = pm_runtime_force_suspend(dev);
2915         if (ret)
2916                 return ret;
2917
2918         if (base->lcpa_regulator)
2919                 ret = regulator_disable(base->lcpa_regulator);
2920         return ret;
2921 }
2922
2923 static int dma40_resume(struct device *dev)
2924 {
2925         struct d40_base *base = dev_get_drvdata(dev);
2926         int ret = 0;
2927
2928         if (base->lcpa_regulator) {
2929                 ret = regulator_enable(base->lcpa_regulator);
2930                 if (ret)
2931                         return ret;
2932         }
2933
2934         return pm_runtime_force_resume(dev);
2935 }
2936 #endif
2937
2938 #ifdef CONFIG_PM
2939 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2940                          u32 *regaddr, int num, bool save)
2941 {
2942         int i;
2943
2944         for (i = 0; i < num; i++) {
2945                 void __iomem *addr = baseaddr + regaddr[i];
2946
2947                 if (save)
2948                         backup[i] = readl_relaxed(addr);
2949                 else
2950                         writel_relaxed(backup[i], addr);
2951         }
2952 }
2953
2954 static void d40_save_restore_registers(struct d40_base *base, bool save)
2955 {
2956         int i;
2957
2958         /* Save/Restore channel specific registers */
2959         for (i = 0; i < base->num_phy_chans; i++) {
2960                 void __iomem *addr;
2961                 int idx;
2962
2963                 if (base->phy_res[i].reserved)
2964                         continue;
2965
2966                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2967                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2968
2969                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2970                              d40_backup_regs_chan,
2971                              ARRAY_SIZE(d40_backup_regs_chan),
2972                              save);
2973         }
2974
2975         /* Save/Restore global registers */
2976         dma40_backup(base->virtbase, base->reg_val_backup,
2977                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2978                      save);
2979
2980         /* Save/Restore registers only existing on dma40 v3 and later */
2981         if (base->gen_dmac.backup)
2982                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2983                              base->gen_dmac.backup,
2984                         base->gen_dmac.backup_size,
2985                         save);
2986 }
2987
2988 static int dma40_runtime_suspend(struct device *dev)
2989 {
2990         struct d40_base *base = dev_get_drvdata(dev);
2991
2992         d40_save_restore_registers(base, true);
2993
2994         /* Don't disable/enable clocks for v1 due to HW bugs */
2995         if (base->rev != 1)
2996                 writel_relaxed(base->gcc_pwr_off_mask,
2997                                base->virtbase + D40_DREG_GCC);
2998
2999         return 0;
3000 }
3001
3002 static int dma40_runtime_resume(struct device *dev)
3003 {
3004         struct d40_base *base = dev_get_drvdata(dev);
3005
3006         d40_save_restore_registers(base, false);
3007
3008         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3009                        base->virtbase + D40_DREG_GCC);
3010         return 0;
3011 }
3012 #endif
3013
3014 static const struct dev_pm_ops dma40_pm_ops = {
3015         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3016         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3017                                 dma40_runtime_resume,
3018                                 NULL)
3019 };
3020
3021 /* Initialization functions. */
3022
3023 static int __init d40_phy_res_init(struct d40_base *base)
3024 {
3025         int i;
3026         int num_phy_chans_avail = 0;
3027         u32 val[2];
3028         int odd_even_bit = -2;
3029         int gcc = D40_DREG_GCC_ENA;
3030
3031         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3032         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3033
3034         for (i = 0; i < base->num_phy_chans; i++) {
3035                 base->phy_res[i].num = i;
3036                 odd_even_bit += 2 * ((i % 2) == 0);
3037                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3038                         /* Mark security only channels as occupied */
3039                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3040                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3041                         base->phy_res[i].reserved = true;
3042                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043                                                        D40_DREG_GCC_SRC);
3044                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3045                                                        D40_DREG_GCC_DST);
3046
3047
3048                 } else {
3049                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3050                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3051                         base->phy_res[i].reserved = false;
3052                         num_phy_chans_avail++;
3053                 }
3054                 spin_lock_init(&base->phy_res[i].lock);
3055         }
3056
3057         /* Mark disabled channels as occupied */
3058         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3059                 int chan = base->plat_data->disabled_channels[i];
3060
3061                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3062                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3063                 base->phy_res[chan].reserved = true;
3064                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065                                                D40_DREG_GCC_SRC);
3066                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3067                                                D40_DREG_GCC_DST);
3068                 num_phy_chans_avail--;
3069         }
3070
3071         /* Mark soft_lli channels */
3072         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3073                 int chan = base->plat_data->soft_lli_chans[i];
3074
3075                 base->phy_res[chan].use_soft_lli = true;
3076         }
3077
3078         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3079                  num_phy_chans_avail, base->num_phy_chans);
3080
3081         /* Verify settings extended vs standard */
3082         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3083
3084         for (i = 0; i < base->num_phy_chans; i++) {
3085
3086                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3087                     (val[0] & 0x3) != 1)
3088                         dev_info(base->dev,
3089                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3090                                  __func__, i, val[0] & 0x3);
3091
3092                 val[0] = val[0] >> 2;
3093         }
3094
3095         /*
3096          * To keep things simple, Enable all clocks initially.
3097          * The clocks will get managed later post channel allocation.
3098          * The clocks for the event lines on which reserved channels exists
3099          * are not managed here.
3100          */
3101         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3102         base->gcc_pwr_off_mask = gcc;
3103
3104         return num_phy_chans_avail;
3105 }
3106
3107 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3108 {
3109         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3110         struct clk *clk;
3111         void __iomem *virtbase;
3112         struct resource *res;
3113         struct d40_base *base;
3114         int num_log_chans;
3115         int num_phy_chans;
3116         int num_memcpy_chans;
3117         int clk_ret = -EINVAL;
3118         int i;
3119         u32 pid;
3120         u32 cid;
3121         u8 rev;
3122
3123         clk = clk_get(&pdev->dev, NULL);
3124         if (IS_ERR(clk)) {
3125                 d40_err(&pdev->dev, "No matching clock found\n");
3126                 goto check_prepare_enabled;
3127         }
3128
3129         clk_ret = clk_prepare_enable(clk);
3130         if (clk_ret) {
3131                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3132                 goto disable_unprepare;
3133         }
3134
3135         /* Get IO for DMAC base address */
3136         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3137         if (!res)
3138                 goto disable_unprepare;
3139
3140         if (request_mem_region(res->start, resource_size(res),
3141                                D40_NAME " I/O base") == NULL)
3142                 goto release_region;
3143
3144         virtbase = ioremap(res->start, resource_size(res));
3145         if (!virtbase)
3146                 goto release_region;
3147
3148         /* This is just a regular AMBA PrimeCell ID actually */
3149         for (pid = 0, i = 0; i < 4; i++)
3150                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3151                         & 255) << (i * 8);
3152         for (cid = 0, i = 0; i < 4; i++)
3153                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3154                         & 255) << (i * 8);
3155
3156         if (cid != AMBA_CID) {
3157                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3158                 goto unmap_io;
3159         }
3160         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3161                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3162                         AMBA_MANF_BITS(pid),
3163                         AMBA_VENDOR_ST);
3164                 goto unmap_io;
3165         }
3166         /*
3167          * HW revision:
3168          * DB8500ed has revision 0
3169          * ? has revision 1
3170          * DB8500v1 has revision 2
3171          * DB8500v2 has revision 3
3172          * AP9540v1 has revision 4
3173          * DB8540v1 has revision 4
3174          */
3175         rev = AMBA_REV_BITS(pid);
3176         if (rev < 2) {
3177                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3178                 goto unmap_io;
3179         }
3180
3181         /* The number of physical channels on this HW */
3182         if (plat_data->num_of_phy_chans)
3183                 num_phy_chans = plat_data->num_of_phy_chans;
3184         else
3185                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3186
3187         /* The number of channels used for memcpy */
3188         if (plat_data->num_of_memcpy_chans)
3189                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3190         else
3191                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3192
3193         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3194
3195         dev_info(&pdev->dev,
3196                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3197                  rev, &res->start, num_phy_chans, num_log_chans);
3198
3199         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3200                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3201                        sizeof(struct d40_chan), GFP_KERNEL);
3202
3203         if (base == NULL)
3204                 goto unmap_io;
3205
3206         base->rev = rev;
3207         base->clk = clk;
3208         base->num_memcpy_chans = num_memcpy_chans;
3209         base->num_phy_chans = num_phy_chans;
3210         base->num_log_chans = num_log_chans;
3211         base->phy_start = res->start;
3212         base->phy_size = resource_size(res);
3213         base->virtbase = virtbase;
3214         base->plat_data = plat_data;
3215         base->dev = &pdev->dev;
3216         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3217         base->log_chans = &base->phy_chans[num_phy_chans];
3218
3219         if (base->plat_data->num_of_phy_chans == 14) {
3220                 base->gen_dmac.backup = d40_backup_regs_v4b;
3221                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3222                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3223                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3224                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3225                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3226                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3227                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3228                 base->gen_dmac.il = il_v4b;
3229                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3230                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3231                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3232         } else {
3233                 if (base->rev >= 3) {
3234                         base->gen_dmac.backup = d40_backup_regs_v4a;
3235                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3236                 }
3237                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3238                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3239                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3240                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3241                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3242                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3243                 base->gen_dmac.il = il_v4a;
3244                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3245                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3246                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3247         }
3248
3249         base->phy_res = kcalloc(num_phy_chans,
3250                                 sizeof(*base->phy_res),
3251                                 GFP_KERNEL);
3252         if (!base->phy_res)
3253                 goto free_base;
3254
3255         base->lookup_phy_chans = kcalloc(num_phy_chans,
3256                                          sizeof(*base->lookup_phy_chans),
3257                                          GFP_KERNEL);
3258         if (!base->lookup_phy_chans)
3259                 goto free_phy_res;
3260
3261         base->lookup_log_chans = kcalloc(num_log_chans,
3262                                          sizeof(*base->lookup_log_chans),
3263                                          GFP_KERNEL);
3264         if (!base->lookup_log_chans)
3265                 goto free_phy_chans;
3266
3267         base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3268                                                   sizeof(d40_backup_regs_chan),
3269                                                   GFP_KERNEL);
3270         if (!base->reg_val_backup_chan)
3271                 goto free_log_chans;
3272
3273         base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3274                                             * D40_LCLA_LINK_PER_EVENT_GRP,
3275                                             sizeof(*base->lcla_pool.alloc_map),
3276                                             GFP_KERNEL);
3277         if (!base->lcla_pool.alloc_map)
3278                 goto free_backup_chan;
3279
3280         base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3281                                              sizeof(*base->regs_interrupt),
3282                                              GFP_KERNEL);
3283         if (!base->regs_interrupt)
3284                 goto free_map;
3285
3286         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3287                                             0, SLAB_HWCACHE_ALIGN,
3288                                             NULL);
3289         if (base->desc_slab == NULL)
3290                 goto free_regs;
3291
3292
3293         return base;
3294  free_regs:
3295         kfree(base->regs_interrupt);
3296  free_map:
3297         kfree(base->lcla_pool.alloc_map);
3298  free_backup_chan:
3299         kfree(base->reg_val_backup_chan);
3300  free_log_chans:
3301         kfree(base->lookup_log_chans);
3302  free_phy_chans:
3303         kfree(base->lookup_phy_chans);
3304  free_phy_res:
3305         kfree(base->phy_res);
3306  free_base:
3307         kfree(base);
3308  unmap_io:
3309         iounmap(virtbase);
3310  release_region:
3311         release_mem_region(res->start, resource_size(res));
3312  check_prepare_enabled:
3313         if (!clk_ret)
3314  disable_unprepare:
3315                 clk_disable_unprepare(clk);
3316         if (!IS_ERR(clk))
3317                 clk_put(clk);
3318         return NULL;
3319 }
3320
3321 static void __init d40_hw_init(struct d40_base *base)
3322 {
3323
3324         int i;
3325         u32 prmseo[2] = {0, 0};
3326         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3327         u32 pcmis = 0;
3328         u32 pcicr = 0;
3329         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3330         u32 reg_size = base->gen_dmac.init_reg_size;
3331
3332         for (i = 0; i < reg_size; i++)
3333                 writel(dma_init_reg[i].val,
3334                        base->virtbase + dma_init_reg[i].reg);
3335
3336         /* Configure all our dma channels to default settings */
3337         for (i = 0; i < base->num_phy_chans; i++) {
3338
3339                 activeo[i % 2] = activeo[i % 2] << 2;
3340
3341                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3342                     == D40_ALLOC_PHY) {
3343                         activeo[i % 2] |= 3;
3344                         continue;
3345                 }
3346
3347                 /* Enable interrupt # */
3348                 pcmis = (pcmis << 1) | 1;
3349
3350                 /* Clear interrupt # */
3351                 pcicr = (pcicr << 1) | 1;
3352
3353                 /* Set channel to physical mode */
3354                 prmseo[i % 2] = prmseo[i % 2] << 2;
3355                 prmseo[i % 2] |= 1;
3356
3357         }
3358
3359         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3360         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3361         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3362         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3363
3364         /* Write which interrupt to enable */
3365         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3366
3367         /* Write which interrupt to clear */
3368         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3369
3370         /* These are __initdata and cannot be accessed after init */
3371         base->gen_dmac.init_reg = NULL;
3372         base->gen_dmac.init_reg_size = 0;
3373 }
3374
3375 static int __init d40_lcla_allocate(struct d40_base *base)
3376 {
3377         struct d40_lcla_pool *pool = &base->lcla_pool;
3378         unsigned long *page_list;
3379         int i, j;
3380         int ret;
3381
3382         /*
3383          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3384          * To full fill this hardware requirement without wasting 256 kb
3385          * we allocate pages until we get an aligned one.
3386          */
3387         page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3388                                   sizeof(*page_list),
3389                                   GFP_KERNEL);
3390         if (!page_list)
3391                 return -ENOMEM;
3392
3393         /* Calculating how many pages that are required */
3394         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3395
3396         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3397                 page_list[i] = __get_free_pages(GFP_KERNEL,
3398                                                 base->lcla_pool.pages);
3399                 if (!page_list[i]) {
3400
3401                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3402                                 base->lcla_pool.pages);
3403                         ret = -ENOMEM;
3404
3405                         for (j = 0; j < i; j++)
3406                                 free_pages(page_list[j], base->lcla_pool.pages);
3407                         goto free_page_list;
3408                 }
3409
3410                 if ((virt_to_phys((void *)page_list[i]) &
3411                      (LCLA_ALIGNMENT - 1)) == 0)
3412                         break;
3413         }
3414
3415         for (j = 0; j < i; j++)
3416                 free_pages(page_list[j], base->lcla_pool.pages);
3417
3418         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3419                 base->lcla_pool.base = (void *)page_list[i];
3420         } else {
3421                 /*
3422                  * After many attempts and no succees with finding the correct
3423                  * alignment, try with allocating a big buffer.
3424                  */
3425                 dev_warn(base->dev,
3426                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3427                          __func__, base->lcla_pool.pages);
3428                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3429                                                          base->num_phy_chans +
3430                                                          LCLA_ALIGNMENT,
3431                                                          GFP_KERNEL);
3432                 if (!base->lcla_pool.base_unaligned) {
3433                         ret = -ENOMEM;
3434                         goto free_page_list;
3435                 }
3436
3437                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3438                                                  LCLA_ALIGNMENT);
3439         }
3440
3441         pool->dma_addr = dma_map_single(base->dev, pool->base,
3442                                         SZ_1K * base->num_phy_chans,
3443                                         DMA_TO_DEVICE);
3444         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3445                 pool->dma_addr = 0;
3446                 ret = -ENOMEM;
3447                 goto free_page_list;
3448         }
3449
3450         writel(virt_to_phys(base->lcla_pool.base),
3451                base->virtbase + D40_DREG_LCLA);
3452         ret = 0;
3453  free_page_list:
3454         kfree(page_list);
3455         return ret;
3456 }
3457
3458 static int __init d40_of_probe(struct platform_device *pdev,
3459                                struct device_node *np)
3460 {
3461         struct stedma40_platform_data *pdata;
3462         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3463         const __be32 *list;
3464
3465         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3466         if (!pdata)
3467                 return -ENOMEM;
3468
3469         /* If absent this value will be obtained from h/w. */
3470         of_property_read_u32(np, "dma-channels", &num_phy);
3471         if (num_phy > 0)
3472                 pdata->num_of_phy_chans = num_phy;
3473
3474         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3475         num_memcpy /= sizeof(*list);
3476
3477         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3478                 d40_err(&pdev->dev,
3479                         "Invalid number of memcpy channels specified (%d)\n",
3480                         num_memcpy);
3481                 return -EINVAL;
3482         }
3483         pdata->num_of_memcpy_chans = num_memcpy;
3484
3485         of_property_read_u32_array(np, "memcpy-channels",
3486                                    dma40_memcpy_channels,
3487                                    num_memcpy);
3488
3489         list = of_get_property(np, "disabled-channels", &num_disabled);
3490         num_disabled /= sizeof(*list);
3491
3492         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3493                 d40_err(&pdev->dev,
3494                         "Invalid number of disabled channels specified (%d)\n",
3495                         num_disabled);
3496                 return -EINVAL;
3497         }
3498
3499         of_property_read_u32_array(np, "disabled-channels",
3500                                    pdata->disabled_channels,
3501                                    num_disabled);
3502         pdata->disabled_channels[num_disabled] = -1;
3503
3504         pdev->dev.platform_data = pdata;
3505
3506         return 0;
3507 }
3508
3509 static int __init d40_probe(struct platform_device *pdev)
3510 {
3511         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3512         struct device_node *np = pdev->dev.of_node;
3513         int ret = -ENOENT;
3514         struct d40_base *base;
3515         struct resource *res;
3516         int num_reserved_chans;
3517         u32 val;
3518
3519         if (!plat_data) {
3520                 if (np) {
3521                         if (d40_of_probe(pdev, np)) {
3522                                 ret = -ENOMEM;
3523                                 goto report_failure;
3524                         }
3525                 } else {
3526                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3527                         goto report_failure;
3528                 }
3529         }
3530
3531         base = d40_hw_detect_init(pdev);
3532         if (!base)
3533                 goto report_failure;
3534
3535         num_reserved_chans = d40_phy_res_init(base);
3536
3537         platform_set_drvdata(pdev, base);
3538
3539         spin_lock_init(&base->interrupt_lock);
3540         spin_lock_init(&base->execmd_lock);
3541
3542         /* Get IO for logical channel parameter address */
3543         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3544         if (!res) {
3545                 ret = -ENOENT;
3546                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3547                 goto destroy_cache;
3548         }
3549         base->lcpa_size = resource_size(res);
3550         base->phy_lcpa = res->start;
3551
3552         if (request_mem_region(res->start, resource_size(res),
3553                                D40_NAME " I/O lcpa") == NULL) {
3554                 ret = -EBUSY;
3555                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3556                 goto destroy_cache;
3557         }
3558
3559         /* We make use of ESRAM memory for this. */
3560         val = readl(base->virtbase + D40_DREG_LCPA);
3561         if (res->start != val && val != 0) {
3562                 dev_warn(&pdev->dev,
3563                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3564                          __func__, val, &res->start);
3565         } else
3566                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3567
3568         base->lcpa_base = ioremap(res->start, resource_size(res));
3569         if (!base->lcpa_base) {
3570                 ret = -ENOMEM;
3571                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3572                 goto destroy_cache;
3573         }
3574         /* If lcla has to be located in ESRAM we don't need to allocate */
3575         if (base->plat_data->use_esram_lcla) {
3576                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3577                                                         "lcla_esram");
3578                 if (!res) {
3579                         ret = -ENOENT;
3580                         d40_err(&pdev->dev,
3581                                 "No \"lcla_esram\" memory resource\n");
3582                         goto destroy_cache;
3583                 }
3584                 base->lcla_pool.base = ioremap(res->start,
3585                                                 resource_size(res));
3586                 if (!base->lcla_pool.base) {
3587                         ret = -ENOMEM;
3588                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3589                         goto destroy_cache;
3590                 }
3591                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3592
3593         } else {
3594                 ret = d40_lcla_allocate(base);
3595                 if (ret) {
3596                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3597                         goto destroy_cache;
3598                 }
3599         }
3600
3601         spin_lock_init(&base->lcla_pool.lock);
3602
3603         base->irq = platform_get_irq(pdev, 0);
3604
3605         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3606         if (ret) {
3607                 d40_err(&pdev->dev, "No IRQ defined\n");
3608                 goto destroy_cache;
3609         }
3610
3611         if (base->plat_data->use_esram_lcla) {
3612
3613                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3614                 if (IS_ERR(base->lcpa_regulator)) {
3615                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3616                         ret = PTR_ERR(base->lcpa_regulator);
3617                         base->lcpa_regulator = NULL;
3618                         goto destroy_cache;
3619                 }
3620
3621                 ret = regulator_enable(base->lcpa_regulator);
3622                 if (ret) {
3623                         d40_err(&pdev->dev,
3624                                 "Failed to enable lcpa_regulator\n");
3625                         regulator_put(base->lcpa_regulator);
3626                         base->lcpa_regulator = NULL;
3627                         goto destroy_cache;
3628                 }
3629         }
3630
3631         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3632
3633         pm_runtime_irq_safe(base->dev);
3634         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3635         pm_runtime_use_autosuspend(base->dev);
3636         pm_runtime_mark_last_busy(base->dev);
3637         pm_runtime_set_active(base->dev);
3638         pm_runtime_enable(base->dev);
3639
3640         ret = d40_dmaengine_init(base, num_reserved_chans);
3641         if (ret)
3642                 goto destroy_cache;
3643
3644         base->dev->dma_parms = &base->dma_parms;
3645         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3646         if (ret) {
3647                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3648                 goto destroy_cache;
3649         }
3650
3651         d40_hw_init(base);
3652
3653         if (np) {
3654                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3655                 if (ret)
3656                         dev_err(&pdev->dev,
3657                                 "could not register of_dma_controller\n");
3658         }
3659
3660         dev_info(base->dev, "initialized\n");
3661         return 0;
3662  destroy_cache:
3663         kmem_cache_destroy(base->desc_slab);
3664         if (base->virtbase)
3665                 iounmap(base->virtbase);
3666
3667         if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3668                 iounmap(base->lcla_pool.base);
3669                 base->lcla_pool.base = NULL;
3670         }
3671
3672         if (base->lcla_pool.dma_addr)
3673                 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3674                                  SZ_1K * base->num_phy_chans,
3675                                  DMA_TO_DEVICE);
3676
3677         if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3678                 free_pages((unsigned long)base->lcla_pool.base,
3679                            base->lcla_pool.pages);
3680
3681         kfree(base->lcla_pool.base_unaligned);
3682
3683         if (base->phy_lcpa)
3684                 release_mem_region(base->phy_lcpa,
3685                                    base->lcpa_size);
3686         if (base->phy_start)
3687                 release_mem_region(base->phy_start,
3688                                    base->phy_size);
3689         if (base->clk) {
3690                 clk_disable_unprepare(base->clk);
3691                 clk_put(base->clk);
3692         }
3693
3694         if (base->lcpa_regulator) {
3695                 regulator_disable(base->lcpa_regulator);
3696                 regulator_put(base->lcpa_regulator);
3697         }
3698
3699         kfree(base->lcla_pool.alloc_map);
3700         kfree(base->lookup_log_chans);
3701         kfree(base->lookup_phy_chans);
3702         kfree(base->phy_res);
3703         kfree(base);
3704  report_failure:
3705         d40_err(&pdev->dev, "probe failed\n");
3706         return ret;
3707 }
3708
3709 static const struct of_device_id d40_match[] = {
3710         { .compatible = "stericsson,dma40", },
3711         {}
3712 };
3713
3714 static struct platform_driver d40_driver = {
3715         .driver = {
3716                 .name  = D40_NAME,
3717                 .pm = &dma40_pm_ops,
3718                 .of_match_table = d40_match,
3719         },
3720 };
3721
3722 static int __init stedma40_init(void)
3723 {
3724         return platform_driver_probe(&d40_driver, d40_probe);
3725 }
3726 subsys_initcall(stedma40_init);